Μέθοδοι Στατιστικής και Μηχανικής Μάθησης (8 ΠΜ)
Διάκριση μεθόδων στατιστικής μάθησης σε supervised και unsupervised και καθορισμός του είδους των στατιστικών προβλημάτων που θεραπεύουν, η έννοια της απόστασης στη Στατιστική, Clustering (K-means, Hierarchical clustering, Model-based clustering), Classification (LDA, QDA, K-nearest neighbors, η διαχωριστική ανάλυση του Fisher), Μέθοδοι resampling (cross-validation, bootstrap), linear model selection και regularization (subset selection, shrinkage, dimension reduction), πολυωνυμική παλινδρόμηση, step functions, regression splines, δενδρικές μέθοδοι, support vector machines, neural networks.
Προτεινόμενη Βιβλιογραφία
- Bartholomew D.J., Steele F., Moustaki I., Galbraithe J.I., Ανάλυση Πολυμεταβλητών Τεχνικών στις Κοινωνικές Επιστήμες, Εκδόσεις Κλειδάριθμος ΕΠΕ, 2011.
- Ιωαννίδης Δ., Αθανασιάδης Ι., Στατιστική και Μηχανική Μάθηση με την R, Εκδόσεις Τζιόλα, 2017.
- Rajaraman A., Ullman D.J., Εξόρυξη από Μεγάλα Σύνολα Δεδομένων, Εκδόσεις Νέων Τεχνολογιών, 2014.
- Sidney B., Everitt, Casella G., Fienberg, S., Ingram O., An R and S-PLUS Companion to Multivariate Analysis, Springer-Verlag London Limited, 2005.
- Hastie, Tibshirani and Friedman (2009) Elements of Statistical Learning, 2nd edition Springer
- James, Witten, Hastie and Tibshirani (2011) Introduction to Statistical Learning with applications in R, Springer
- B. S. Everitt, S. Landau, M. Leese, and D. Stahl (2011) Cluster Analysis, Fifth Edition, Wiley
(παλιός τίτλος: Πολυμεταβλητές Στατιστικές Τεχνικές)
Το περίγραμμα του μαθήματος βρίσκεται εδώ.