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• Lindley distribution first proposed by Lindley 
(1958)
• Asymmetric continuous probability distribution
• Many applications in medical and actuarial 
science, biology, genetics, ecology and 
environmental monitoring, sociology and 
demography, engineering, life testing, reliability 
and stress-strength investigation etc.
• Many generalizations and mixtures of the 
Lindley distribution in the literature
• First version of the two-parameter Lindley 
distribution proposed by Shanker et al. (2013)
• Second version of the two-parameter Lindley 
distribution proposed by Shanker and Mishra 
(2013)

Sensitivity of the 1st Two-parameter 
Lindley Control Charts
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Two-parameter Lindley Distribution

First Version of the Two-parameter 
Lindley Distribution

• p.d.f.:

• mean: 

• variance:
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Skewness Correction

• skewness correction for the mean:

• skewness correction for
                  the variability: ( )* 2

4c s =

Shewhart-type 1st Two-parameter 
Lindley Control Charts for Detecting 
Shifts in The Process Mean
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Shewhart-type 1st Two-parameter 
Lindley Control Charts for Detecting 
Shifts in The Process Variability
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Example of Control Charts for the 1st 
Two-parameter Lindley Distribution

• simulated data (30 samples of 5 observations)
• data from a 1st two-parameter Lindley 
distribution with θ = 56 and r = 68 (15 samples 
of 5 observations)
• a change in the process mean of 1σ (15 
samples of 5 observations) due to a shift either 
in θ or in r

Fig. 2: Shewhart-type control chart for the process mean for a change in θ

Fig. 3: Shewhart-type control chart for the process variability for a change in θ

Fig. 4: Probability density function of the 1st two-parameter Lindley(56,68) 
and the Lomax(4,98) distribution

Fig. 5: Shewhart-type control chart 
for the mean of a process with 
control limits based on a 1st two-
parameter Lindley(56,68) distribution 
and plotted data from a Lomax(4,98) 
distribution 

Parameter Estimation

• solve equation 
• k estimated using first and second 
sample moments about origin: 

• control limits constructed by replacing 
θ and r with their estimators

( ) ( ) ( )22 4 2 2 3 2 0k b k b k- + - + - =

( )
2

ˆ
1

b
r
b b X

+
=

+ ( )
2ˆ
1

b

b X
q +
=

+

Parameter Estimation

Real Data Example

Waiting times [Ghitany et al. (2008), 
Shanker et al. (2013)]

Fig. 7: Shewhart-type control chart for 
the process mean

Fig. 8: Shewhart-type control chart for 
the process variability

Fig. 1: Probability density function of the first two-parameter Lindley 
distribution for various values of the parameters

( )*
4c x =

Fig. 6: Shewhart-type control chart 
for the mean of a process with 
control limits based on a 1st two-
parameter Lindley(56,68) distribution 
and plotted data from a Lomax(4,98) 
distribution 
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CONTROL CHARTS FOR TWO VERSIONS OF THE TWO-PARAMETER LINDLEY DISTRIBUTION

(continued)

Sensitivity of The 2nd Two-parameter 
Lindley Control Charts
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First Version of the Two-parameter 
Lindley Distribution

• p.d.f.:

• mean: 

• variance:
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Skewness Correction

• skewness correction for the mean:

• skewness correction for
                  the variability: 
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Shewhart-type 2nd Two-parameter 
Lindley Control Charts for Detecting 
Shifts in The Process Mean
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Shewhart-type 2nd Two-parameter 
Lindley Control Charts for Detecting 
Shifts in The Process Variability

Example of Control Charts for the 2nd 
Two-parameter Lindley Distribution

• simulated data
• 30 samples of 5 observations
• data from a 2nd two-parameter Lindley 
distribution with θ = 5 and r = 6 (15 
samples of 5 observations)
• a change in the process mean of 1σ 
(15 samples of 5 observations) due to a 
shift either in θ or in r

Fig. 10: Shewhart-type control chart for the process mean for a change in θ

Fig. 11: Shewhart-type control chart for the process variability for a change in θ

Fig. 12: Probability density function of the 2nd two-parameter 
Lindley(5,6) distribution and various Lomax distributions

Fig. 13: Shewhart-type control chart 
for the mean of a process with control 
limits based on a 2nd two-parameter 
Lindley(5,6) distribution and plotted 
data from Lomax distributions

Parameter Estimation

• solve equation 

• k estimated using first and second 

sample moments about origin: 

• control limits constructed by replacing 

θ and r with their estimators
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Parameter Estimation

Real Data Example

Waiting times [Ghitany et al. (2008), 
Shanker et al. (2013)]

Fig. 15: Shewhart-type control chart for 
the process mean

Fig. 16: Shewhart-type control chart for the 
process variability

Fig. 9: Probability density function of the 2nd two-parameter Lindley 
distribution for various values of the parameters
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Fig. 14: Shewhart-type control chart for 
the variability of a process with control 
limits based on a 2nd two-parameter 
Lindley(5,6) distribution and plotted data 
from Lomax distributions
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