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ABSTRACT 

 

 

 

 

 

 Control charts are the most important tool of Statistical Process 

Control (SPC) which helps maintain good quality of products and services or 

even better improve it. As good quality becomes more important in our 

everyday lives, control charts related research efforts increase. The first 

control charts ever constructed were based on the assumption of a Normal 

distribution for the quality characteristic of interest. This assumption, 

however, has been proved to be rather invalid in practice. Therefore, control 

charts have been constructed for monitoring a quality characteristic under the 

assumption of non-Normal distribution. 

A lot of distributions have been considered in the relevant literature. 

There are, though, some distributions with lots of applications in various 

fields of our everyday lives, which have not been considered yet or have not 

still been addressed well enough in the field of SPC. Examples of the former 

case are the Logarithmic and Lindley-related distributions, while a case 

belonging to the latter category is the Pareto distribution. This PhD thesis is 

an attempt to fill in this gap in literature. 

There are a lot of cases, nowadays, of monitoring single observations 

instead of samples of more than one unit either due to automatic inspection 

which allows inspection of all units or due to natural limitations. Therefore, 

the individual measurements case is going to be addressed here for the 

construction of control charts for the aforementioned distributions. 

More specifically, this study proposes individual control charts for the 

original one-parameter Lindley distribution and a two-parameter extension of 

it, as well as the Logarithmic and Pareto I distributions. Individual control 

charts for these distributions are first constructed with probability-type 

control limits. Then individual Shewhart-type and EWMA control charts are 

considered along with some skewness correction method in order to enhance 



 III 

their performance, since all the distributions of interest are skewed. Two 

different skewness correction methods are used in this essay and their 

performances are compared. The performances of all charts are investigated 

and compared to each other in terms of the charts’ average run length (ARL) 

and illustrated with both simulated and real data. Conclusions and suggestions 

for further research are also provided in the last chapter of this thesis. 
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ΠΕΡΙΛΗΨΗ 

 

 

 

 

 

Τα διαγράµµατα ελέγχου είναι το πιο σηµαντικό εργαλείο του 

Στατιστικού Ελέγχου Ποιότητας (ΣΕΠ) που βοηθά στη διατήρηση της καλής 

ποιότητας προϊόντων και υπηρεσιών ή ακόµα και τη βελτίωσή της. Καθώς η 

καλή ποιότητα γίνεται όλο και πιο σηµαντική στην καθηµερινή µας ζωή, οι 

σχετικές µε τα διαγράµµατα ελέγχου ερευνητικές προσπάθειες αυξάνονται. Τα 

πρώτα διαγράµµατα ελέγχου που κατασκευάστηκαν βασίζονταν στην υπόθεση 

της Κανονικής κατανοµής για το ποιοτικό χαρακτηριστικό που µας 

ενδιαφέρει. Αυτή, όµως, η υπόθεση έχει αποδειχτεί ότι µάλλον δεν ισχύει 

στην πράξη. Για το λόγο αυτό, έχουν κατασκευαστεί διαγράµµατα ελέγχου 

για ποιοτικά χαρακτηριστικά που υποθέτουµε πλέον ότι δεν ακολουθούν την 

Κανονική κατανοµή. 

Στη σχετική βιβλιογραφία έχουν κατασκευαστεί διαγράµµατα ελέγχου 

για πολλές κατανοµές. Υπάρχουν, όµως κάποιες κατανοµές µε πολλές 

εφαρµογές σε διάφορα πεδία στην καθηµερινή µας ζωή, οι οποιές δεν έχουν 

ληφθεί ακόµη υπόψη ή δεν έχουν ερευνηθεί αρκετά όσον αφορά τον ΣΕΠ. 

Παραδείγµατα της πρώτης περίπτωσης είναι η Λογαριθµική κατανοµή, η 

κατανοµή Lindley και οι σχετικές µε αυτήν κατανοµές, ενώ µια περίπτωση 

που ανήκει στη δεύερη κατηγορία είναι η κατανοµή Pareto. Αυτή η 

διδακτορική διατριβή είναι µια προσπάθεια να συµπληρωθεί αυτό το κενό στη 

βιβλιογραφία. 

Υπάρχουν πολλές περιπτώσεις, σήµερα, όπου ελέχουµε µεµονωµένες 

παρατηρήσεις αντί δείγµατα που να αποτελούνται από περισσότερες από µία 

µονάδες είτε λόγω αυτοµατοποιηµένου ελέγχου που επιτρέπει τον έλεγχο 

όλων των παραγόµενων µονάδων είτε λόγω φυσικών περιορισµών. Εποµένως, 

εδώ θα καλυφθεί η περίπτωση χρήσης µεµονωµένων παρατηρήσεων για την 

κατασκευή των διαγραµµάτων ελέγχου για τις προαναφερθείσες κατανοµές. 
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Πιο συγκεκριµένα, αυτή η µελέτη προτείνει διαγράµµατα ελέγχου για 

µενονωµένες παρατηρήσεις από την αρχική µονοπαραµετρική κατανοµή 

Lindley και µια διπαραµετρική µορφή της, καθώς και για τη Λογαριθµική 

κατανοµή και την κατανοµή Pareto. Τα διαγράµµατα ελέγχου για 

µεµονωµένες παρατηρήσεις από αυτές τις κατανοµές κατασκευάζονται πρώτα 

µε όρια ελέγχου που βασίζονται στην πιθανότητα σφάλµατος τύπου Ι. Στη 

συνέχεια, κατασκευάζονται διαγράµµατα ελέγχου τύπου Shewhart καθώς και 

EWMA διαγράµµατα για µεµονωµένες παρατηρήσεις χρησιµοποιώντας 

κάποια µέθοδο διόρθωσης ασυµµετρίας για τη βελτίωση της συµπεριφοράς 

των διαγραµµάτων, µιας και όλες οι κατανοµές που µας απασχολούν είναι µη 

συµµετρικές. ∆ύο διαφορετικές µέθοδοι διόρθωσης ασυµµετρίας 

χρησιµοποιούνται σε αυτήν την εργασία και οι συγκρίνονται οι συµπεριφορές 

τους. Οι συµπεριφορές όλων των διαγραµµάτων ερευνούνται και 

συγκρίνονται µεταξύ τους σε σχέση µε το µέσο µήκος ροής (ARL) και γίνεται 

επίδειξη αυτής της συµπεριφοράς µέσω προσοµειωµένων αλλά και 

πραγµατικών δεδοµένων. Συµπεράσµατα και προτάσεις για περαιτέρω έρευνα 

παρέχονται επίσης στο τελευταίο κεφάλαιο αυτής της διατριβής. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

Quality is part of every aspect of our everyday lives. Statistical Process 

Control (SPC) aims to help businesses and organizations to control their 

quality of products and services and keep it steady or, even better, improve it. 

An overview of the research on SPC and control charting methods was 

provided by Woodall and Montgomery (1999). A brief history of quality 

control methods can be found in Montgomery (2009). One of the most 

important tools of SPC is the control chart. The concept of the control chart 

was first introduced by Walter A. Shewhart in 1924 in a technical 

memorandum of Bell Telephone Laboratories and has been studied and 

extended a lot ever since. Control charts (which are basically plots of data 

over time) help professionals visualize a process and see if any patterns or 

anomalies occur within it and, therefore, determine if the process of interest 

functions as it was supposed to or not, evaluate its stability and improve the 

process if required. Every process presents variations over time. The usual 

variations are the common cause variability. If, however, variation presents 

unusual patterns, then we talk about special cause variability and this is an 

indication of quality deterioration or sometimes improvement (depending on 

the monitored quality characteristic). Therefore, the special or assignable 

cause of variation can be wanted (if it has a positive effect) and, therefore, 

made part of the process when identified, or avoidable (if it has a negative 

effect), but definitely not inevitable and not allowable (as is the case with the 

common cause of variation). This means that it should be detected as soon as 

possible and a helpful tool for that purpose is an appropriate control chart. 

The original control charts proposed by Shewhart and mostly used in 

practice in businesses until today have their control limits placed at ±3 times 

the standard deviation of the quantity plotted in the chart. This construction of 

control charts is based on the assumption that the distribution of the quality 
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characteristic under study follows the Normal distribution, which, however, is 

usually not true when it comes to real-world data. This issue has been 

addressed in literature by the construction of control charts for various 

distributions, as presented later. Nevertheless, there are still some useful 

distributions for which control charts have not been constructed yet. Filling 

this gap is the aim of the current essay, which comes to propose control charts 

for some distributions with lots of applications in our everyday lives, for 

which control charts have not yet been developed such as the Logarithmic 

distribution and the one-parameter and two-parameter Lindley distributions. 

Moreover, similar control charts are proposed for the Pareto distribution, to 

contribute more to the control charts already addressed in the relevant 

literature. 

The structure of the thesis is as follows. In Part I, Chapter 1 presents an 

overview of statistical process control charts, while Chapters 2-4 give a 

review of the Lindley-, Pareto- and Logarithmic-related distributions. In Part 

II, Chapters 5-8 deal with the construction of control charts for individual 

observations from the one-parameter and two-parameter Lindley, Logarithmic 

and Pareto distributions with probability control limits, Shewhart-type control 

limits using both skewness correction and scaled weighted variance method 

and EWMA charts with both these methods for taking into consideration the 

skewness of each distribution. The constructed control charts with each of the 

three methods are compared with each other and illustrated through both 

simulated and real data examples and their performance is investigated in 

terms of the ARL. Conclusions and further research recommendations are 

offered in the last chapter of this dissertation. The contents of each Part are 

described in details in the corresponding Part’s introduction. 
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PART 1 

 

 

 

Introduction to Part 1 

Statistical Process Control (SPC) charts are the most important tools for 

assuring and improving quality by reducing process variability. These notions 

along with some literature review on SPC charts and particular distributions 

are going to be covered in this part. It should be noted that only the univariate 

case is addressed here, although a multivariate chart is more effective in 

monitoring a multivariate process than several separate univariate control 

charts. A lot of research exists on the field of multivariate and multiattribute 

control charts [e.g. Lowry and Montgomery (1995), Knoth and Schmid 

(2004), Yeh et al. (2006), Bersimis et al. (2007, 2017), Topalidou and 

Pasarakis (2009), Butte and Tang (2010), Rogalewicz (2012), Haridy et al. 

(2014a), Perdikis and Psarakis (2019), Ajadi et al. (2021)], and including all 

the relevant efforts would substantially increase the volume of this thesis. 

Besides, the multivariate case is beyond the scope of this essay, since only 

univariate control charts are proposed in Part 2. Therefore, only the univariate 

case will be discussed at this point. 

Part 1, in general, is dedicated to an overview of what has already been 

done in the literature. More specifically, Chapter 2 presents an overview of 

SPC charts with special sections on control charts for non-normal 

distributions and individual observations, which are the core of this thesis, 

while the next three chapters explore the literature on three distributions 

which are going to be used in Part 2 for the development of new control 

charts. In particular, Chapter 3 contains literature review for the Lindley 

distribution, Chapter 4 discusses the Logarithmic distribution and Chapter 5 

addresses the Pareto distribution. 
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CHAPTER 2 

 

OVERVIEW OF STATISTICAL PROCESS CONTROL 

CHARTS 

 

 

 

2.1 Introduction 

Quality plays a very important role and is required in every aspect of our 

everyday lives. Statistical Process Control (SPC) is a statistical way to 

monitor and improve quality, and control charts are the most important tool 

for this purpose. This chapter deals with the concepts of quality and SPC and 

presents an overview of some of the literature on SPC charts. 

 

 

2.2 The Concept of Quality 

Before talking about control charts we should first deal with the concept 

of quality and its definition. Although quality is very important in all the 

sectors of our everyday lives there is no single and generally accepted 

definition for it. It can be defined either based on the companies or the users 

and can include both attractiveness and utility, as well as value of design and 

product support [Mukherjee (2018)]. Quality is related to the desired 

characteristics that a product or service should exhibit at an established 

standard in order to meet the requirements of its users and satisfy them and 

this is usually the customers’ primary factor for choosing among various 

competing products and services or discriminating between products of the 

same kind. Quality does not refer only to special characteristics that are 

useful for the comparison of products and services of rival companies, but 

also includes those characteristics which are helpful for grading outcomes 

from the same process. All of the above contribute to the degree of 

importance of quality for businesses, since good quality plays a crucial role in 

their success and coping with the competing market. Quality can be defined as 
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either the degree to which a product conforms to the requirements of the 

design or the degree of excellence at an acceptable price for the customers 

and control of variability at an acceptable cost for the companies so that both 

customer satisfaction and supplier’s profitability are achieved. Some 

characteristics that can be considered when defining quality are materials, 

dimensions, shape, design, chemical components, appearance, functionality, 

fitness for purpose and applicability. According to Garvin (1987) there are 

eight components or dimensions of quality: performance, reliability, 

durability, serviceability, aesthetics, features, perceived quality and 

conformance to standards. 

Therefore, quality is a multilateral and dynamic concept, since it can be 

defined and evaluated in many ways subject to the context in which people 

use it and it is continuously changing over time in the sense that the standard 

characteristics required by customers keep becoming higher as time passes. 

This leads to a constant need for quality improvement in order for a business 

to be successful and prevail over its competitors. This can be achieved with 

the help of SPC. 

Moreover, besides the above “fitness for purpose or use” or “satisfying 

customers’ requirements” or “conformance to designer’s specifications” 

definitions, Montgomery (2009) gives another definition for quality (and 

quality improvement, in extension) based on its relationship to the variability 

of the process, since a decrease in unwanted or harmful variability of a 

process leads to better quality of its product. Therefore, a more complete 

definition of quality would combine conformance to specifications with 

minimum variance. This is exactly where SPC comes in to help the companies 

recognize the variation in their process outcomes, monitor it and identify its 

sources in order to be able to detect any possible variation changes and their 

causes. Identification of causes will be helpful in their efforts to reduce or 

eliminate them (if their outcome is negative) or adopt them (if their outcome 

is positive) and, therefore, improve quality of their products and services. 

Examples of such causes of variation can be the quality of raw material or 

equipment, the way of handling tools and machines, the skills and education 

of the employers, the negligence or carefulness of the operators and the 

environmental conditions such as temperature, humidity, acidity or pressure. 
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2.3 Statistical Process Control 

Statistical Process Control (SPC) is a powerful collection of a variety of 

statistical tools and methods used to monitor and reduce variability and, 

therefore, achieve process stability and improve process capability which 

leads to improving the performance of a process in order to ensure high 

quality of the products produced and services offered to consumers [Ryan 

(2000), Wadsworth et al. (2002), Montgomery (2009) and many others]. 

Process stability is an indication of a process in a state of control and is 

accomplished if only inherent and inevitable causes (called common causes or 

random causes) of variability are present in the process (opposite to special 

causes or assignable causes, which we want to be detected and eliminated 

from the process). [Special causes are due to irregular or unnatural causes, 

make the process unstable and, consequently, unpredictable and affect some 

aspects of the process but not necessarily all of them, while common cause 

variations are regular or natural causes which affect all the outcomes of the 

process. The most usual special causes can be classified as people, equipment, 

procedures, materials and environment. A more analytic list is given by 

Oakland (2003).] Process stability shows the ability of the process to be 

consistent and, thus, predicted. Process capability, on the other hand, 

corresponds to the performance of a process under control and reveals the 

ability of the process to meet customers’ specifications, which can also be 

used as a prediction for future production, since the process is stable. Process 

capability can also be considered as the variation of the quality characteristic 

under study when the process is in statistical control [Mitra (2021) and Burr 

(2004)]. A common measure of the process capability is the process spread 

(6σ), which will include almost all observations of the quality characteristic 

under study (Under the assumption of Normality, 99.73% of the distribution 

lies within ±3σ limits around the mean). Process capability is usually 

examined with respect to pre-defined specification limits, with various 

capability ratios which reveal the ability of the process to meet requirements. 

Besides these capability indices, process capability can also be evaluated 

through histograms and probability plots [Montgomery (2009)]. Process 
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capability indices can be computed only when the process in under control, 

because they use the mean, spread and quantiles of the process distribution, 

which change when the process is out of control (unstable). Therefore, there 

are two important steps that should be followed before investigating the 

process capability: First of all, process stability should be insured and then 

the Normality assumption should be checked [Bothe (1997)]. There have 

been, however, many attempts in the literature to extend or modify the 

traditional definitions of process capability indices in order to be used for 

non-normal distributions which can be found in references such as Rodriguez 

(1992), Luceño (1996), Somerville and Montgomery (1996) and Kotz and 

Lovelace (1998). 

From all the above, it becomes obvious that SPC is very important in 

every process of our everyday lives. For instance, SPC has found many 

applications in food industries [e.g. Ittzés (2001), Augustin and Minvielle 

(2008), Dalgiç et al. (2011), Lim et al. (2014, 2017)], textile industries [e.g. 

Maroš et al. (2011), Yılmaz and Yanık (2020), Abdulghafour et al. (2021)], 

cement industries [e.g. Tegegne et al. (2022)] and many others. Although the 

main use of SPC is in industrial manufacturing environments, it can also be 

applied in many other areas as we will see below and, therefore, besides 

produced objects we can talk about other processes and offering of services, 

too. According to Keller (2011) a process “consists of repeatable tasks, 

carried out in a specific order”. This means that the actions carried out during 

a process are generally the same for a particular set of inputs. Thus process 

can be every set of repeating actions that turn an input into an output for 

customers, with the output being not only manufactured products but services 

as well, such as “patient care, government or legal processes” as well as “late 

flight arrivals, mis-diagnoses, traffic accidents, injuries, system downtime 

events” and “time waiting in a queue, order-processing time, time to complete 

a project, etc.” [Stapenhurst (2005)]. Stapenhurst (2005) also mentions as 

areas of application of SPC sectors such as “health care, travel, education and 

training, oil and gas, distribution, public services, government, information 

technology (IT), construction, finance, chemical monitoring, health and 

safety, planning, projects, design and most other areas of an organisation” and 

presents examples covering most of them. Osanaiye and Talabi (1989) were 
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among the first researchers who dealt with non-manufacturing applications of 

control charts. Moreover, Berthouex (1989) and Morrison (2008), among 

others, discussed the application of control charts for environmental data 

monitoring. Melvin (1993) described the application of control charts to 

educational systems, while Clark and Clark (1997) addressed the use of 

control charts for athletic performance monitoring. Wu and Meaker (2002) 

presented the use of control charts for monitoring warranty data. Shore (2006) 

used control charts for monitoring queue length. Alemi and Sullivan (2001) 

presented risk adjusted X -charts with applications to diabetes monitoring. 

Sego (2006) dealt with the use of control charts in medicine and 

epidemiology. Limaye et al. (2008) and Morton et al. (2009) presented the use 

of SPC to monitor and reduce hospital-related infections. Sachlas et al. 

(2019), among many other researchers, discussed Risk Adjusted control charts 

with health applications, for taking into account, for example, the pre-

operative severity of illness or risk related with the patient. Mitra (2021) 

presented the construction of various types of Risk Adjusted and Variable 

Life-Adjusted Display charts for monitoring health-care processes while 

taking into account the risk of each patient. Simões et al. (2022) discussed the 

use of SPC charts in psychology. The use of control charts in other health-

related process monitoring can be found in Rossi et al. (1999), Hart et al. 

(2003, 2004), Albers (2010a) and Tomak and Bek (2017), as well as in the 

reviews provided by Benneyan et al. (2003), Sonneson and Bock (2003), 

Grigg and Farewell (2004), Woodall (2006), Woodall et al. (2010) and Suman 

and Prajapati (2018). SPC has also been applied to DNA microarray data and 

individual gene expression [Chimka and Oden (2008)], while, for example, 

Tsung et al. (2007) and Golosnoy et al. (2010) applied SPC to financial cases. 

Coup (2009) discussed the use of control charts in forestry and Gupta et al. 

(2009) used control charts for maintenance policy selection. De Vries and 

Reneau (2010) provided a review of control charts for animal production 

systems monitoring. Megahed et al. (2011b, 2012) presented the use of SPC 

for image data monitoring. Yashchin (2012) dealt with monitoring warranty 

data streams of computer system components with dynamically changing 

observations. Qiu (2014) states the use of SPC for monitoring sequential 
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processes such as “production lines, Internet traffic, medical systems, social 

or economic status”. Saulo et al. (2015) used control charts for monitoring 

environmental risk. Zhao and Gilbert (2015) discussed control charts for 

monitoring the waiting time of customers. Spirić et al. (2016) presented 

control charts for determining a set of suspicious electricity customers. Aslam 

et al. (2021) talk about application of SPC for managing human resource and 

monitoring various incidents of misbehaviour in working environments. 

Control charts have also been applied for monitoring various parameters 

related to the COVID-19 pandemic, as presented by Mbaye et al. (2021). 

According to Demmy (1989) and Mahanti and Evans (2012), who dealt with 

the implementation of SPC in the software industry, any process that is “well 

defined, measurable, repetitive and sufficiently critical to justify monitoring 

effort” is suitable for SPC. As stated by Oakland (2003) any process 

consisting of a transformation of a set of inputs to a set of outputs should be 

monitored in order to meet customers’ requirements. The output can be not 

only products but services as well (such as deliveries, etc.) or even 

information. The inputs, too, can be not only materials or tools and other 

equipment, but any action or method as well, even people along with their 

knowledge, training and skills. All that is needed for SPC to be applied in 

non-manufacturing processes is an accurate definition of the inputs and their 

suppliers, the outputs and their customers, the requirements for the outputs 

and precise instructions for the methods and procedures that will lead to the 

outputs. Once everything is absolutely clarified, the data collected about the 

process will be reliable and appropriate for the application of SPC which will 

help avoid failures whatever that process is. 

Now that we have defined the concept of SPC and mentioned its uses in 

our everyday lives, we should talk about its implementation, goal and 

benefits. The ideal way of implementing SPC is for every process 

contributing to the quality of a final output (product or service). This, 

however, is not practical, but SPC should not be applied in the first 

convenient (with respect to time and cost) instance, either. In order to get the 

best out of it, process prioritization is required for the implementation of 

SPC. This prioritization, as stated in Goh and Xie (1998), should be done with 

respect to their technical and statistical criticality, with the term technical 
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criticality being referring to the importance of the process to the quality of the 

final output, while the term statistical criticality concerns the statistical 

stability and capability of the process. Another important issue that should be 

avoided for a successful SPC implementation is overadjustment or tampering 

(which we will talk about later in section 2.6). Once all the aforementioned 

points are considered, SPC implementation can be very effective. According 

to Deming (1967) SPC can help achieving a balance for the economic loss 

from two usual mistakes: either looking for special causes too often or not 

looking often enough. The basic idea in SPC is continuous examination of the 

process through random samples drawn regularly in order to ensure that 

certain quality requirements are met and a high level of performance is 

maintained while changes in the process are quickly detected. So the goal of 

SPC is to achieve the decrease of defects and defective outputs which in 

sequence will lead to both increased quality and reduced cost. This means that 

SPC offers many benefits to both companies and their customers. Process 

stability and process improvement (which are both results of SPC 

implementation) mean that the complexity of the process is reduced, errors, 

non-conforming items and failure costs are decreased, on-time delivery is 

achieved, safety is increased, consistency of the process output becomes 

greater (due to variability reduction), effectiveness and productivity are 

improved (by reducing scrap and rework), machinery malfunctions are early 

diagnosed, rework of products or waste of time and materials is reduced (and, 

as a result, company’s profits are increased), future performance can be 

predicted, assessment of the ability of the process to produce according to 

specific standards can be performed and process capability can be improved. 

All of the above lead to enhanced reliability and competitiveness of the 

company and greater customers’ satisfaction. 

As mentioned at the beginning of this section, a lot of tools are used in 

SPC. Seven of them are the most important and mostly applied in SPC due to 

their great usefulness and are, therefore, called the seven quality control tools 

or the seven basic tools or the seven tools of SPC or the magnificent seven. 

They are all very powerful yet simple in their implementation and, therefore, 

used in every quality improvement scheme. The seven quality control tools 

were first highlighted by Kaoru Ishikawa [Ishikawa (1985, 1986)]. He 
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believed that almost all quality-related problems in industries can be solved 

with those fundamental tools. His original seven tools were: cause-and-effect 

(or Ishikawa or fishbone) diagram, check sheet (or tally chart), Shewhart’s 

control charts, histogram, Pareto chart, scatter diagram (or scatter plot), and 

stratification. Ever since, many writers on quality control, following his steps, 

mentioned the seven tools, and even though they all list exactly seven tools, 

their lists are not always identical. They all include most of the original 

Ishikawa’s seven tools but usually omit stratification and replace it with 

flowcharts (or process maps), run charts, bar charts, tolerance diagrams (or 

tier charts) or defect concentration diagrams. Below we focus only on the 

control charts which are the most important and more utilized of all the 

aforementioned tools. 

Control charts are basically run charts with lines connecting consecutive 

plotted points and control limits drawn on the charts in order to help us 

understand when the range of the plotted values is too high to be caused by 

common causes of variability. There is also a central line drawn at the 

average of the plotted values helping us see how successive observations are 

behaving in relation to their average. This way it is easier to notice any non-

random patterns in our process (regarding the critical-to-quality characteristic 

of interest). Control charts also give an indication of when the change in the 

process occurred (due to the time reference). The control limits are drawn in 

such a way that almost all of the observations are expected to fall between 

them and there is a very small probability that a point will be plotted outside 

them if the process does not change. Therefore, points outside the control 

limits are strong indication that the monitored process distribution has 

changed. Control charts are very useful tools for on-line process monitoring 

and more details on them are going to be presented in the next section. 

Another important thing that should be mentioned about the 

implementation of SPC (before moving to further details on control charts) is 

the distinction between Phase I and Phase II, which are two different phases 

employing different SPC methods. During Phase I [which was the only focus 

of Shewhart (1931, 1939)], we are trying to properly set up the process in 

order to make it stable and, therefore, we do not know much about it at the 

beginning. For this reason this phase is more exploratory. Controllable input 
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variables are set at such levels that the affected quality characteristic under 

study will roughly meet the designed requirements and then the collected data 

(usually 20 or 25 subgroups) are plotted on a control chart with trial limits 

calculated based on these data. Points outside the control limits are 

investigated for potential assignable causes. Any unnatural patterns found, 

also lead to further investigation. When assignable causes are identified, 

adjustments are made to the controllable input variables, out-of-control points 

are excluded and then a new set of data from the process is plotted on the 

control chart with the new control limits. This procedure is repeated until all 

special causes have been removed and the process is stable. Then we end up 

with data collected from a stable operating process, which are, therefore, 

representing the actual process performance and can be used for the 

estimation of the in-control distribution of the quality characteristic of 

interest. Consequently, in Phase II the process is considered to be known and 

in-control at the beginning and then the main objective is to monitor the 

process on-line in order to ensure that it stays in control. If an assignable 

cause occurs in the process, an out-of-control indication is given by the 

control chart and the process is stopped in order to investigate the special 

cause and fix the process. Otherwise, as long as the process remains in 

control, we have two options: to deal with the improvement of the process by 

reducing common cause variation too, or to proceed with the monitoring and 

improvement of another process and do nothing further with the process we 

were dealing with so far. So, during Phase I control charts are used to 

determine if the process is in statistical control by examining past data 

(retrospective data analysis), while control limits determined at the end of 

Phase I can be used for future data during Phase II in which we use recent 

data collected sequentially over time for online monitoring in order to 

determine if the process remains in control (prospective analysis). 

Discussions of the use of control charts in Phase I and related matters 

can be found in Woodall (2000), Borror and Champ (2001), Champ and Chou 

(2003) and Human et al. (2010b). The differences between Phase I and Phase 

II SPC analysis were described by Vining (2009). Overviews of Phase I 

control charting can be found in Chakraborti et al. (2009) and Jones-Farmer et 
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al. (2014). A thorough review of Phase I SPC analysis with efforts to bridge 

the gap between theory and practice was given by Woodall (2017). 

Shewhart control charts are very effective for Phase I due to their easy 

construction and interpretation and their effective detection of large sustained 

or sudden (outliers) shifts, measurement errors and data recording mistakes. 

Assignable causes that usually arise during Phase I produce large and 

transient shifts and Shewhart control charts are most effective in detecting 

them. On the contrary, these charts are less effective in Phase II (where large 

shifts are less common), because of their insensitivity to smaller shifts. For 

this reason, other charts that we will discuss later such as the CUSUM and 

EWMA charts are more effective during Phase II, because they are good for 

detecting small and persistent shifts which are our major concern in Phase II. 

Regarding Phase I, the selection of the observations (called “baseline”) 

that will be used for the determination of the trial control charts needs to be 

considered for more efficiency of the control charts. Zhang et al. (2010) 

proposed a method for identifying the baseline period, while earlier Kang et 

al. (2007) had pointed out the need for the data values used in Phase I to 

extend over the range of data values for which the control chart is to be used. 

The identification of the shifts or outliers and their locations is also important 

for deciding on keeping or discarding parts of the historical data when 

calculating the control limits that will be used for the remainder of Phase I 

and more importantly for Phase II. An algorithm clustering individual 

observations for the detection of multiple shifts and/or outliers in historical 

data was presented by Sullivan (2002). 

The size of Phase I data is very important for the performance of control 

charts in both Phase I and Phase II. In fact it is critical for Phase II for the 

following reason. In order to move to Phase II we need estimations of the 

process parameters, especially process variability, from Phase I data. The run 

length properties of the control chart in Phase II are influenced significantly 

by estimation from Phase I data. An accurate and precise estimation of the 

parameters in Phase I, will lead to satisfactory performance of control charts 

in Phase II, while a not so good estimation may lead to more false alarms than 

expected. A good estimation is more likely with larger sample sizes in Phase 

I. Moreover, the larger the number of available reference data in Phase I, the 
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more the Phase II control limits can perform with properties approximately 

the same as the ones in the known parameter case. These are the reasons for 

the importance of the sample size of Phase I data. While 100 observations 

(either individual or in subgroups) would be a sufficient number for Phase I, 

Quesenberry (1993) suggested that at least 300 observations are required for 

the computation of control limits that will be used during Phase II. More over, 

The Phase I reference data are usually made up of m subgroups each of size n, 

which means that there are totally m*n observations in Phase I reference data 

available for parameter estimation and setting up the control limits for the 

Phase II. Champ and Jones (2004) dealt with the design of Phase I control 

charts for various values of m and n, while Yao et al. (2017) extended their 

work for larger values of m and provided an R package for the calculations on 

demand. Jensen et al. (2006) and Psarakis et al. (2014) concluded that the 

number of phase I samples must often be quite large (in many hundreds of 

observations) for achieving a reasonable confidence that the control chart will 

perform closely to the one of the known parameter case. Moreover, 

Chakraborti (2006), Saleh et al. (2015) and Epprecht et al. (2016) showed that 

it takes a much larger Phase I sample size than usually recommended in 

textbooks in order for the properties of the control charts to be consistent and 

close to the known parameter case. 

Study of Phase I monitoring has also been conducted for more 

specialized applications. Boyles (2000), for example, dealt with Phase I when 

monitoring autocorrelated processes. The case of Phase I monitoring was 

addressed by Mahmoud and Woodall (2004) and Mahmoud et al. (2007) for 

linear profiles and Ding et al. (2006) for nonlinear profiles. Riaz (2011) 

presented an auxiliary information-based control chart for Phase I monitoring. 

In the nonparametric case Phase I monitoring was discussed by Jones-Farmer 

et al. (2009), Graham et al. (2010), Jones-Farmer and Champ (2010), Capizzi 

and Masarotto (2013) and Capizzi (2015). 

 

 

2.4 Statistical Process Control Charts 

Control charts present the position of a statistic (average, median, range, 

standard deviation) of some kind of measurement of a quality characteristic 
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relatively to three important lines, namely the upper and lower control limits 

and the central line. The horizontal axis displays the sample number in time 

order of measuring the quality characteristic of interest. The vertical axis 

presents the value of the observation or the statistic computed for the quality 

characteristic under study. The central line represents the average value of the 

quality characteristic corresponding to an in-control stable process [process 

that exhibits only common causes of variation and natural pattern (see section 

2.10)]. The control limits are computed so that almost all the sample 

observations will lie between them in an in-control state of the process. The 

points corresponding to the plotted observations are connected with lines with 

each other in order to facilitate the visualization of the behaviour of the 

observations’ sequence over time. The general formulas for the computation 

of the control limits and the central line are the following: 

( ) ( )
( )
( ) ( )

statistic standard deviation of statistic

statistic

statistic standard deviation of statistic
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=

= −
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As mentioned earlier, Shewhart’s choice was L = 3, which is founded 

statistically on the assumption of the Normal distribution. We will talk about 

the assumptions of control charts and cases of their violations (including non-

normality) later. 

This setting of the control limits is equivalent to setting up the critical 

region for a hypothesis test where the null hypothesis is that the quality 

characteristic’s average is equal to the value at which the central line is drawn 

(for the specific value of the standard deviation) and the alternative 

hypothesis is that it is not equal. So, control charts basically test this 

hypothesis repeatedly over time. If the null hypothesis is rejected then the 

distribution of the process has changed and the process is no longer under 

control. This hypothesis testing framework will be useful for the performance 

investigation of the control charts, with which we will deal later. 

Stable quality, otherwise reaching in-control state of the process and 

achieving the required standards or target specifications for a characteristic of 

interest, means that there is no unusual variability in the process and, 

therefore, the observations are randomly around and relatively close to the 
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central line and definitely inside the control limits. Observations outside the 

control limits need further investigation for the elimination of the assignable 

cause of this extra variability (if it has a negative effect on our process) or its 

adoption (if it has a positive effect) in order to improve quality (Shewhart 

(1931)). Ryan (2011) presents out-of-control action plans in section 4.16 (p. 

131) therein and Halim Lim and Antony (2019) in section 9.4.6 (p. 143) 

therein. Treatment of out-of-control signals is also dealt with in Levinson 

(2011). But even if all the observations are plotted inside the control limits, 

the existence of any systematic or non-random behaviour is a reason for 

further investigation, too, so the sequence of the observations is very 

important for a control chart. 

 

 

2.5 Purposes and Benefits from Using the Control Charts 

Control charts can be used for two purposes: To analyze past data and 

test the stability of the process or to test whether the process remains stable 

and in control (Phase I and Phase II SPC). In the first case we plot a 

preliminary set of samples to set up the control limits and then plot each 

sample we draw and interpret it in relation to the previous data, while in the 

second case we use the control chart immediately and we can plot each 

sample we draw as soon as we obtain it and take appropriate actions if a non-

random pattern arises. 

Therefore, control charts can be used to test the homogeneity of the 

process and reduce variability, help us monitor the performance of the process 

over time and keep it steady or improve it. When stability of the process has 

been ensured the process capability can be assessed and estimated. This way 

control charts can assist process improvement efforts. They also give us the 

opportunity to quickly detect abnormalities and out-of-control situations in 

the process and eliminate out-of-limits materials as soon as they are 

discovered in the process with immediate corrective actions. Control charts 

can help us reduce the defects and defective items or services produced by a 

process, as well as the scraps and reworks, and this way productivity is 

increased and costs are decreased. This can be better achieved if control 

charts are applied to process variables than produced units which are affected 
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by those variables. Control charts also make it easier for the users to 

recognize the difference between the background noise and the abnormal 

variation in a process and, consequently, avoid unnecessary process 

adjustments which would lead to more variation and, thus, deterioration of the 

performance of the process instead of its improvement which is our goal. 

Control charts can also reveal patterns in the process which give a clue for the 

cause of uncommon variation and lead to appropriate corrective actions which 

will improve the performance of the process. Moreover, they can show the 

levels of process performance and, therefore, help the users know the effect of 

certain actions and process changes and learn their process deeper. 

Furthermore, they can be used for performance comparison of different 

groups and activities as mentioned in Stapenhurst (2005). Last but not least, 

control charts are easily implemented and can be used for the improvement of 

process performance in many businesses, thus making them competing and 

able to stand out against their rivals in the market. Improved process 

performance also makes customers more satisfied and businesses more 

profitable. 

 

 

2.6 Common Mistakes and Things to Pay Attention to When Constructing or 

Interpreting a Control Chart 

Many errors may risk the effectiveness of the control chart. One of the 

most common mistakes is the wrong choice of the type of control chart to use. 

Other common mistakes include the miscalculation of control limits or their 

substitution with the specification limits, thus causing the control limits to be 

wider and the ability of the control chart to detect out-of-control conditions 

worse. 

Quality of data and measurements is also important. If measurements are 

missing or poor or erroneous, this affects the performance of the control 

chart. The same is valid when the data are not up-to-date. Out-of-control 

signals and non-random patterns appearing on a control chart are also very 

important and should never be ignored. They should always be investigated in 

order to improve the quality of the process. 
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When using control charts in Phase II, we assume that the process 

parameters are well estimated. This assumption is crucial because parameter 

estimation affects the performance of the control charts [Jensen et al. (2006)], 

especially the ones which are designed for monitoring small shifts such as the 

CUSUM charts or the Shewhart charts with sensitizing rules (Section 2.10). 

Therefore, in order to obtain good estimates of the process parameters, a large 

sample size is required for the estimation during Phase I. If the required 

amount of reference data in Phase I is not available, self-starting control 

charts can be useful. This way, successive observations in Phase II are used 

for simultaneously updating parameter estimates and the plotted statistic. 

Examples of literature on self-starting control charts include Li et al. (2010), 

Zhang et al. (2012), Keefe et al. (2015), Amiri et al. (2016), McClurg (2016), 

Amirkhani et al. (2018), Tighkhorshid et al. (2018), Khosravi and Amiri 

(2019), Ravichandran (2019), Subbulakshmi and Kachimohideen (2019), 

Cornelissen (2021) and Dogu and Noor-ul-Amin (2023). A review on self-

starting CUSUM charts literature was provided by Wendler (2021). An 

extensive study of self-starting control charts is also presented in Laurijsse et 

al. (2021). 

If the effects of parameter estimation are ignored then the control charts 

can give more false alarms than expected [Psarakis et al. (2014)] and, 

therefore, they become less effective and can lead to increase of cost. 

Substituting the parameters with their estimated values when constructing 

control charts will make them perform differently than they would in the 

known parameter case, unless a large number of data were used for the 

computation of those estimates (which is not usually possible). When 

parameters are estimated the performance of the chart is evaluated with the 

conditional ARL which is the average of the unconditional or marginal run 

length distribution for a given set of estimators over the distribution of these 

estimators. 

When using Shewhart control charts for monitoring the unknown process 

variability it is recommended in the literature to not use the range chart but 

other charts instead, such as the S or S2 chart [Mahmoud et al. (2010) and 

Epprecht et al. (2016)]. When using CUSUM control charts, one way to deal 

with the problem of the chart’s sensitivity to parameter estimation is the self-
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starting CUSUM which was proposed by Hawkins (1987). This chart, 

however, is also based on the normality assumption and needs special 

attention in case of out-of-control signal. The latter is required because the 

self-starting CUSUM statistic will at first move upwards after a shift, but 

then, contrary to the ordinary CUSUM statistic, will not continue moving 

upwards indefinitely, but it will begin moving downwards after the shifted 

values are used in the calculations. Therefore, immediate investigative and 

corrective action and subsequent resetting of the CUSUM is required after an 

out-of-control signal and all the out-of-control data should be removed when 

resetting. Self-starting CUSUM can also be affected by outliers and solutions 

as presented in Hawkins and Olwell (1998). 

Another very important issue with control charts is unwise operator 

overadjustment of equipment or other parts of a process. Tampering with the 

process can lead to many out-of-control or near-control-limits points on a 

chart. Control charts give an indication of when critical conditions for a 

process are present and need further investigation and when the process is 

performing consistently stably. Therefore, there is no need for reaction to 

every small appearance of variation, because this practice will not reduce 

variability, but increase it instead, thus leading to the appearance of more 

observations being plotted near or beyond the control limits, while the process 

would not normally produce them. 

Besides all that, the choice of the control limits, the possible use of 

sensitizing or supplementary runs rules and warning limits and the choice of 

sample size and sampling frequency are also very important in order to be 

able to combine control chart effectiveness and prevention of unnecessary and 

possibly costly process investigations and adjustments. These subjects are 

going to be discussed next. 

 

 

2.7 Performance of the Control Charts 

We talked earlier about the control charts being repeated hypotheses 

tests. Every hypothesis test has a probability α of type I error and a 

probability β of type II error. Its power is equal to 1-β. In the case of the 

control charts, we have a type I error when we decide that our process is out 
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of control when actually it is in an in-control state, while there is a type II 

error when we decide that our process is in control when in fact it is in an out-

of control state. An operating characteristic (OC) curve is a good means of 

visualizing the ability of the control chart to detect a process shift of various 

values of magnitude δ, with the OC curves being graphs with β presented on 

their vertical axis and d=|δ|/σ displayed on the horizontal axis. Observing the 

OC curves it becomes obvious that it is easier for the control charts to detect 

large shifts than smaller ones and that their power is increased as the sample 

size is increased. 

A measure of the performance of the control chart is the Average Run 

Length (ARL). ARL is defined as the average number of points plotted until 

an out-of-control-limits point appears on the chart. For uncorrelated 

observations, for all the Shewhart charts we will discuss later, ARL is 

computed as the reciprocal of the probability of a point being plotted outside 

the control limits. There are two important ARL values, namely the in-control 

ARL (ARL0) and the out-of-control ARL (ARL1). ARL0 is the ARL until 

receiving an out-of control signal while our process is in control and is, 

therefore, computed as ARL0=1/α. On the other hand, ARL1 is the ARL until 

receiving an out-of-control point while the process is indeed out-of control, 

and is, therefore, computed as ARL1=1/(1-β). A control chart with good 

performance is associated with a large value of ARL0 and a small value of 

ARL1, which should become smaller as the magnitude of the shift decreases. 

In a Shewhart control chart with the traditional 3-sigma control limits (based 

on the Normal distribution assumption mentioned earlier) in-control ARL is 

equal to ARL0=1/0.0027=370. It should be noted that when the process 

parameters are unknown and need to be estimated before Phase II begins, 

ARL cannot be computed as the reciprocal of the signaling probability 

because the signaling events are no longer independent thus causing the run 

length distribution to no loner be geometric. 

Sometimes instead of ARL other ways to assess the performance of a 

control chart are used, such as the False Alarm Rate (FAR) which is basically 

the probability of type I error. Another measure of a control chart’s 

performance is the Average Time to Signal (ATS) defined as ATS=ARL*h, 

where h is the length of the fixed time intervals at which samples are taken 
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from the process [Khoo (2004c)]. In cases of inspecting all units h=n, and, 

therefore, ATS=ARL*n [Wu et al. (2006)]. Sometimes it may also be useful 

to express the performance of the chart in terms of the expected number of 

individual units inspected (I) which is defined as I=ARL*n, where n is the 

sample size. In this case, ATS=I. Adjusted Average Time to Signal (AATS) is 

another measure of performance proposed by Tagaras (1998). It is the 

expected value of the time between the occurrence of the assignable cause and 

the chart signal. AATS was referred to as the steady state ATS by Runger and 

Pigniatello (1991). Two other measures of control chart performance found in 

Reynolds and Stoumbos (2000a) are the Average Number of Samples to 

Signal (ANSS) and the Average Number of Observations to Signal (ANOS). 

ANSS is defined as the expected number of samples of n observations from a 

certain time point (usually the beginning of the process) to the time of the 

out-of-control signal, while ANOS is defined as the number of individual 

observations from a certain time point (usually the beginning of the process) 

to the time of the out-of-control signal. Therefore, ANOS=n*ANSS. Similar 

to the case of using ARL, a control chart performs better if for given values of 

shift magnitude and in-control ANOS the out-of-control ANOS is smaller. 

All of the above performance measures are the ones used in Phase II of 

SPC. During Phase I, however, we confirm process stability at a given False 

Alarm Probability (FAP), which is the probability of at least one false alarm 

(an out-of-control signal while the process is in control). Similarly the 

signaling probability can be used, which is the probability of at least one 

signal from the m subgroups used (see definition of Phase I earlier). 

 

 

2.8 Choice of Control Limits 

The choice of the control limits is critical for a control chart because 

their width affects the chart’s performance. If the control limits are very wide, 

the type I error probability decreases and the type II error probability 

increases. On the other hand, if the control limits are too narrow, we risk 

increasing the type I error probability and decreasing the type II error 

probability. The usual practice is choosing the width of the control limits to 

be a multiple of the standard deviation of the plotted statistic. This issue is 
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addressed by Nelson (2003). Depending on the normality assumption, 

choosing three-sigma limits is a good option. This is also a good choice if the 

distribution is reasonably approximated by the Normal distribution. We will 

discuss the non-normality case in further details in section 2.18. 

 

 

2.8.1 Probability Limits 

Another choice of control limits (which is better for non-normal 

distributions) is the use of probability control limits. These require choosing 

the type I error probability first and then computing the control limits based 

on this choice of α, instead of computing the control limits as a multiple of 

the standard deviation of the plotted statistic. If the quality characteristic 

under study is normally distributed, there will be little difference between the 

three-sigma control limits and the probability limits with α chosen to be equal 

to 0.001. 

 

 

2.8.2 Action Limits and Warning Limits 

Sometimes two sets of control limits are used on the same control chart 

simultaneously. In this case, the outer control limits (the control limits 

mentioned in the previous subsection) are called action limits, because if a 

point exceeds them an action for identifying the assignable cause and 

correcting the process is immediately required. The inner control limits are 

called warning limits. In the case of using the three-sigma limits as the action 

limits, then the two-sigma control limits are used as the warning limits. On 

the other hand, when the 0.001 probability limits are used as action limits, the 

warning limits are set to be the 0.0025 probability limits. Page (1955) 

obtained the ARL function in the case of using both warning and action 

limits. 

In the case of using two sets of control limits, if one or more points fall 

between them or very close to a warning limit, caution is required because 

there might be a problem with the monitored process. In such a case, more 

information about the process is necessary and it can be gained by increasing 

the sample frequency or the sample size or both. Control charts with the 
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sample size and/or frequency changed depending on the position of the 

plotted values are called adaptive control charts (variable sampling interval or 

variable sample size control charts). 

When having a variable sample size, there are three options: First, we 

can use the average sample size for the computation of the control limits, thus 

having approximate but constant control limits. This approach works best 

with large sample sizes and when the sample sizes do not vary more than 25% 

from the average sample size. This approach has the advantage that 

calculations of the control limits and interpretation of the chart is easier but 

has also the disadvantage that since the control limits are approximate, if a 

plotted point is close to them, we cannot be sure if it is really inside or 

outside the exact control limits. A second approach for variable sample sizes 

is using the exact (but variable) control limits which are based on the actual 

size of each sample. This means that the control limits are calculated for each 

subgroup separately, based on each subgroup’s size and, therefore, they will 

vary as the sample size varies. This approach has the disadvantage of not 

looking so good as a chart with fixed control limits, but has the important 

advantage of the control limits being exact and, therefore, interpretation of 

the control chart is more direct, as usual. A third method for dealing with 

variable sample sizes is using standardized control limits. This entails the 

computation and use of standardized statistics for each subgroup and then 

using the approximation by a standard normal distribution which practically 

means that the control limits will be simply equal to -3 and 3, when using the 

three-sigma approach for the control limits. This approach has the advantage 

of constant control limits regardless of the subgroups’ sample size and the 

disadvantages of the extra computation of the standardized statistic and the 

possibility of making this way the interpretation of the standardized statistics 

and the standardized control limits more difficult due to the fact that they are 

no longer in the original scale of measurement. 

 

 

2.8.3 Control Limits and Specification Limits 

When using control charts to monitor a process, there is one important 

thing that we should paint special attention to, namely the difference between 
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control limits and specification limits. Control limits are implied by the 

process. They are computed using the natural variability of the process and 

represent the span of the values that can result from the distribution of the 

quality characteristic under study when the process is in control. Specification 

limits are completely irrelevant. They are determined externally by process 

designers or customers and represent the span of values that a process is 

desired to produce. When setting specification limits, knowledge of the 

process and its inherent variability is required, but there is no relationship 

connecting control limits with specification limits. It is definitely a mistake to 

use specification limits on a control chart in place of control limits. If we 

want to monitor the capability of the process to meet the required 

specifications, the process must first be insured to be in control. A process 

could be in control but not capable to meet the specifications, but we cannot 

be sure if it can meet the specification requirements if it is not in control, 

since it is unstable and, thus, unpredictable. 

 

 

2.9 Sample Size, Sample Frequency and Rational Subgroups 

As mentioned earlier, the sample size plays a very important role in the 

chart’s ability to detect process shifts. More specifically, larger sample sizes 

make it easier for the control charts to detect smaller shifts. Therefore, the 

choice of the sample size depends on the magnitude of shift which we want to 

detect early. OC curves mentioned in Section 2.7 can help us choose the 

appropriate sample size based on ARL from a statistical point of view, 

depending on the power we want the control chart to have in detecting shifts 

of a certain magnitude. Moreover, the sample size should be decided by 

looking at the process variability. If the inherent process variability is large 

then larger sample sizes are required in order to detect the out-of-control 

situation, while smaller samples would be required for the case of a process 

with smaller inherent variation. When setting-up a control chart it is generally 

suggested to collect a minimum of 20-30 data points, so as to have the time 

required for the estimates of the process mean and standard deviation (and, 

consequently, the control limits which depend on them) to become accurate 

[Stapenhurst (2005)]. For variable measure data a sample size between 2 and 
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12 (usually chosen to be equal to 4 or 5) is required for setting-up a control 

chart, while for attributes a sample size between 25 and 250 (with most 

commonly chosen values being 50, 100 and 200) is required in order to obtain 

a reliable estimate of the process parameters [Murdoch (1979)]. 

Frequency of sampling is also important, mostly from the economic 

point of view, because the ideal choice of drawing large samples in high 

frequency is not always realistic. So the choice will be either to draw small 

samples more frequently or larger samples less frequently. The usual choice 

in practice is the first one. From an economic point of view, smaller and more 

frequent samples are preferred if the cost of producing defective items is 

high, because large intervals can cause many defective items to be produced 

before detecting a process shift. Sometimes it is useful to begin with frequent 

samples and to reduce the frequency later when the process becomes stable. If 

a point plots close to the control limits then it is reasonable to increase the 

sample size or decrease the sampling interval or both, because there is a high 

possibility of the next point plotting outside the control limits and we want to 

detect an assignable cause as quickly as possible. The opposite can be chosen 

when a point plots close to the central line. 

Sampling frequency also depends on the process performance and the 

consequences of changes in the process. For example if process changes are 

disastrous or costly or if significant changes are happening frequently in the 

process, then frequent sampling is preferred. On the contrary, long intervals 

between samples are more reasonable when changes in the process happen 

rarely and even when they do, only a moderate loss is suffered when it takes 

some time to detect them. Furthermore, if there is a suspicion of cyclical 

behaviour of the process, samples should be drawn frequently in order to give 

the ability of investigating the possibility of a cyclic pattern (see definition in 

section 2.10). 

The rate of production can also affect the choice of the sample size and 

sampling interval. High production rates require more frequent samples 

(because of the higher possibility of many nonconforming items in a short 

time interval) and allow larger sample sizes to be drawn economically (if 

testing in not costly or catastrophic). If testing is, however, expensive or 

disastrous then smaller sample sizes are preferred no matter how high the 
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production rate is. If the investigation of false alarms is also expensive, then 

smaller sample sizes are preferred, too. 

Besides the sample size and sampling frequency, the way of collecting 

the samples is also important for the construction of control charts. There 

might be cases, for example, when the level of one variable affects the 

behaviour of other variable(s) related to the quality characteristic under study 

and sometimes the combined effect of two or more variables on the quality 

characteristic of interest is different from the individual effect of each of 

those variables. One such case could be the effect of the combination of some 

level of pressure and some level of temperature on a quality characteristic of 

a chemical process. In such a case, a more effective sampling process would 

entail controlling one of those factors (pressure and temperature) at various 

specific levels and then find the effect of the other on the quality 

characteristic of interest for each of the first factor’s values. If not such a 

sampling process is adopted, but samples are drawn from random 

combinations of pressure and temperature instead, there is a high risk of not 

identifying the interactive effect of those variables on the quality 

characteristic of interest and, therefore, not monitor the process effectively.  

A method for collecting data must be rational. Rational subgrouping 

requires respect of the structure of the process data and the collection of 

samples so as to minimize the chance of variability due to assignable causes 

(if they are present in the monitored process) and maximize the chance of 

variability due to common causes. In other words the samples should be 

collected so as to increase the probability of variation between the samples, 

while keeping the within samples variation small. If the within-samples 

variability is large the width of the control limits increases and the sensitivity 

of control charts to process shifts is reduced. Nelson (1988) talked about the 

need for rational subgroups and emphasized the fact that data collected over a 

short time period will not necessarily be rational subgroups. Palm (1992) 

illustrated the significance of a good sampling plan for the construction of 

control charts and underlined the importance of rational sampling. Rational 

subgroups were also discussed in Reynolds and Stoumbos (2006a). 

One way to minimize the within samples variation is to sample items 

produced consecutively by the same process (in a short enough time period in 



 28  

order for the process to be stable during the data collection time) with an 

interval between two successive samples, so that any process shifts that have 

occurred are presented on the chart as between-sample variation. This way, 

rational subgroups contain only common cause variation. Otherwise, large 

within-subgroup variations will be present and this will make control limits 

wider thus making the control chart insensitive to process shifts. This 

approach provides a better estimation of the standard deviation of the process 

in the case of variables control charts which we will discuss later. In this case 

the within-sample measure of variability is used to construct the control 

limits. When choosing the rational subgroups, it is important to insure that 

each item is produced by the same process. If samples contain data from 

different process conditions, the variation will be so large that it will make it 

difficult for important process changes to be noticed. Another general 

approach for constructing rational subgroups entails subgroups being a 

random sample of all units produced over the entire interval since the last 

subgroup was selected. Therefore, caution is required about the interval 

between chosen units, because if it is very wide there is a risk of an out-of-

control process appearing as in control due to the wider control limits. 

Subgroups should be selected in such a way that there will be no 

autocorrelation in the observations within the subgroups, because this makes 

within-subgroup variation too small (affecting the width of the control limits 

and, therefore, the effectiveness of the chart) and a bad predictor for the 

between-subgroups variation. Furthermore, the smaller the within-subgroup 

variation the narrower the control limits, thus giving more false alarms of out-

of-control state. 

Moreover, attention should be paid in the selection of the appropriate 

subgroup size, unless the process itself enforces the size of the rational 

subgroup to be equal to one, as is usually the case for example in chemical 

industries or processes where quality characteristics change very slowly and, 

therefore, consecutive samples drawn close to each other will be almost 

identical. Although the subgroup size is usually selected without special 

thought to be equal to 5, 10 or 20, it is very important for a control chart. It is 

crucial for the appropriateness of signals and the overall performance of the 

control chart as was proved, for example, by Tabim and Ferreira (2015). The 
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subgroup size may prevent the control chart to detect significant process 

shifts if it is too small or may be responsible for many out-of-control signals 

without any significant shift. So the choice of the subgroup size should be 

such that the probability of detecting important shifts will be high, while 

probability of false alarms caused by insignificant shifts will be very small, 

and, therefore, only a reasonable right amount of control chart signals will be 

given [Razmy (2016), Manyele (2017)]. 

Other SPC tools discussed earlier such as the cause-and-effect diagram 

or the scatter diagram, may be useful when choosing rational subgroups, 

because they can help us identify possible causes of differences in the process 

or important correlations and choosing the right subgroups to detect them. For 

example waiting times might be affected by the department or by the number 

of cases which may depend on the time of the day, thus causing the waiting 

times to be different in various times or sectors. Use of a histogram could also 

be helpful for deciding if rational subgrouping is required, as is the case for 

example if the shape of the distribution is bimodal, because this would be an 

indication that two processes have contributed to the data. In case of any data 

pattern immerging during a process monitoring, further rational subgrouping 

can be useful as it could help explain the reason. We will talk more about 

patterns in section 2.10. 

The idea behind rational subgroups is homogeneity, namely that data 

chosen for the subgroups come essentially from the same population and data 

from different populations (for example data from different shifts, different 

machines or different operators) are not mixed. Mixing data from them when 

constructing the control chart, will give a control chart for a mixture 

distribution (with an overestimation of the variability due to different 

processes) which will not be suitable for application to data coming from each 

population separately and will not be able to detect differences from one 

process to another or detect if a particular process does not perform well. 

Although it may not be practical to construct a control chart for each of the 

different populations, it might be very helpful, in order to see if each of the 

different processes performs well on its own. All the different processes could 

separately be in statistical control and this would be an indication that process 

improvement is required for each of them. 
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2.10 Patterns on Shewhart Control Charts and Shewhart Control Chart 

Enhancements 

We have already mentioned earlier the possibility of non-random 

behaviour of our data in the control charts, else called patterns, which 

(besides observations outside the control limits) is also an indication that our 

process may be out of control due to an assignable cause. Any non-even 

distribution of the plotted points around the central line of the control chart is 

an indication of a non-random behaviour and needs to be further investigated. 

We talk about patterns on Shewhart control charts specifically and not 

control charts in general, because patterns on other control charts that we will 

see later (such as EWMA and CUSUM charts) are not necessarily and 

indication of an out-of-control situation. This is due to the fact that the 

statistics plotted on those control charts are functions of both the current and 

the past observations and are, therefore, correlated. This means that patterns 

are expected to be present on those control charts even if the process is in 

control. 

 

 

2.10.1 Control Chart Patterns 

A sequence of observations of the same type, called a “run”, is an 

example of a non-random behaviour but not the only possibility. Other 

patterns are also likely. Even if all points of a control chart are inside the 

control limits, if they exhibit any non-random pattern they indicate that 

something unusual is happening in our process and needs attention. The 

process must be stopped and investigated even if the plotted statistic lies 

between control limits. If the source causing this pattern is helpful (as it 

rarely might be) then it must be identified and adopted in the process, 

otherwise it must be detected and efforts should be made to reduce it or even 

better eliminate it (if possible), so as to improve the process. 

So it is important not to only recognize the pattern but be able to assign 

the root causes to non-random patterns. Identification of causes of patterns, 

however, requires good knowledge and understanding of the process 
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(equipment, operating conditions) and the impact of those causes on the 

quality characteristic under study. It should also be noted that the causes of a 

pattern in a control chart monitoring the mean of a process can be different 

from those for a control chart monitoring the variability of the process. Some 

of the most important and usual patterns that can appear on a control chart 

with some of their possible causes are the following [Hubbard (1990), 

Noskievičovα (2013)]: 

(1) normal or natural: This pattern is the representation of the stable in-

control process. Points on the control chart are scattered in the chart, 

fluctuating randomly around the central line between the control limits, 

not very close to them and definitely not exceeding them, with 

approximately half of the data below the central line and the other half 

above it and all the points of the control chart lying there without any 

non-random behaviour. This is the only pattern we would like to see on 

a control chart when the process performs well. Each of the following 

patterns is unwanted. 

(2) trend (upward trend or downward trend): This pattern (Figure 2.1a,b) is 

displayed as a continuous gradual (increasing or decreasing) run of 

points in one direction caused by a factor which started to act on the 

process at the beginning of the change in level. This pattern can 

happen because of workers’ fatigue or effective training (leading to 

gradual change in their skill level) in machine operation and/or 

measuring systems, inspector’s or well-skilled superior’s presence or 

any other change of supervision, change in the production rate or the 

number of components reaching the process, gradual change of the 

quality of raw materials or components over time (because of SPC 

implementation by the supplier), tool wear, gradual deterioration of 

measuring equipment or machine parts, machine warm-up and cool-

down, or change of the maintenance system or inadequate maintenance. 

In chemical processes trends can occur due to settling or separation of 

components of a mixture. 

(3) sudden large shifts (freaks): This pattern (Figure 2.1c) is depicted as 

occasional wild individual observations (often called “freaks”), namely 

points close to the control limits showing sudden and high changes 
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affecting one or more samples and can be caused by mistakes such as 

wrong setting, sampling mistakes, error in measurement and plotting, 

misplacement of inputs or raw materials, use of new tools for short test 

periods, incomplete or omitted manufacturing operations, breaks of 

power or gas supply, overcorrection, failure of a component, or 

equipment malfunctions. 

(4) smaller sustained shift (upward shift or downward shift): This pattern 

(Figure 2.1d,e) is demonstrated on the chart as a sudden jump to a new 

level (above or below the previous one) with the process remaining at 

the new level, which means that there is a series of points on the same 

side of the central line. This can be caused by damaged equipment, 

new personnel, new suppliers, new production methods, new or 

repaired machines or equipment, change in work practices or 

measurement system, changes in maintenance, change in operators’ 

skills or motivation, change in quality of raw materials, intentional 

data improvement when recording them, or failure to recalculate the 

control limits after a change in the process. 

(5) systematic: This pattern (Figure 2.1f) is sometimes called “saw-tooth 

effect” and is exhibited as a series of consecutive alternating high and 

low points in a control chart. This can occur when there are two 

different alternating processes together, such as two machines working 

together or two operators with different skill levels using the same 

machine (for example a shift change), two alternating suppliers, or 

tampering. In fact, one of the most typical causes for this pattern is 

process overcontrol or unwise operator overadjustment of equipment, 

for example after just a few measurements above the average or close 

to the control limits. Overadjusting of a process is often called 

“tampering” with the process. Adjusting a process which is statistically 

in control increases the variation in the process. If operators try to 

achieve certain values of a quality characteristic of interest but the 

result is a little lower or higher (but still in control), the “saw-tooth” 

pattern appears on the chart, which leads to more adjustments and 

finally to a process that is definitely out of control. 
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(6) cyclic: This pattern (Figure 2.1g) is displayed on the chart with upward 

and downward movements of points recurring periodically. It is an 

indication of an assignable cause with periodic effects on the process. 

Identification of the period of variation can give a strong indication of 

where one should start looking for the causes, which might be for 

example seasonal factors (as is the case for winter or summer or 

holiday activities or procedures taking place at repeated times of the 

day, week, month or year). Other reasons might be rotation in 

equipment, or shift changes in machine handlers or personnel making 

measurements, or operator fatigue and subsequent boosting after 

breaks. This pattern may also result from environmental changes (such 

as changes in temperature, humidity or lighting), fluctuation in voltage 

or pressure, or some other variable in the machinery causing it to 

malfunction sporadically, periodic machine maintenance or lubrication, 

periodically alternating raw material and supplies, seasonal variation of 

incoming components, or due to periodicity of mechanical or chemical 

properties of raw material. Failure to apply a correct sampling plan for 

the implementation of the control chart can also cause cycles or 

prevent them from being revealed. Infrequent sampling may cause only 

the high and low points to be represented on the control chart (as 

mentioned earlier). 

(7) stratification: This pattern (Figure 2.1h) is presented on the chart with 

points clustering closely around the central line lacking variability and 

never approaching the control limits. This may happen because of 

incorrect calculation of the control limits or incorrect rational 

subgrouping, or when not recalculating the control limits after a 

process improvement. It can also result from a process with very 

different components, each with small associated variation, such as 

different raw material streams or the output of different machines 

working simultaneously or different shifts performing differently 

(which could be avoided if rational subgrouping, as mentioned earlier, 

was used). If all the different components are mixed and samples are 

drawn from the mixed output, small variation will result. This happens 

because the range between the smallest and the largest observation in 
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the sample is very large (since those values come from different 

distributions and we basically measure the variability between the 

different underlying distributions) causing the width of the control 

limits to increase. The result is basically what one might call “too good 

to be true” or “too much consistency” and it is not at all a good 

situation, but rather worrying, because if not detected and corrected, it 

can prevent identification and elimination of the cause of difference 

between the process components and, therefore, lead to process 

deterioration instead of improvement. This pattern may also emerge 

when testing or measuring with a malfunctioning instrument or 

conducting chemical or biological tests with outdated reagents. It can 

also appear when recording data incorrectly or intentionally 

manipulating them (for example not recording extreme values). 

(8) mixture: This pattern (Figure 2.1i) is portrayed by unexpectedly large 

variation, wild values (close to the control limits) and absence of 

points near the central line and can be the result of two different 

simultaneous processes one producing a set of small values and the 

other a set of high values. It could be for example the result of 

different lots of raw material with different characteristics mixed as 

process input. It could be caused by incorrect subgrouping (different 

subgroups taken from different sources). It could result for example 

from different work methods used by different operators, different 

testing or measuring tools used or various machines working 

simultaneously. The severity of the mixture pattern depends on the 

extend to which the different distributions overlap. Other causes could 

be change in the calibration of a measurement tool, process overcontrol 

or unwise operator overadjustment of equipment after just a few 

measurements above the average or close to the control limits, sporadic 

use of raw material of variable quality or from different suppliers, 

malfunctioning inspection device, or instability of automatic control. 

The detection of unnatural patterns is crucial for increasing the 

sensitivity of the Shewhart control charts, since these charts study samples 

individually and do not consider the joint information obtained from 

sequential points, opposite to CUSUM and EWMA control charts for 
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example, which combine the values of present and past samples. To increase 

the sensitivity of the Shewhart control charts and enhance their performance, 

supplementary sensitizing rules and runs rules are used in conjunction with 

the charts. These rules help us determine the presence of special causes from 

the charts and detect small shifts and patterns. They should not, however, be 

used when monitoring individual data, because the false alarm rate is high in 

this case. Attention is also needed with correlated data and this is the reason 

that these rules should not be used with CUSUM and EWMA control charts, 

either. They are also meaningless (and, therefore, not used) in case of 

applying control charts for comparison of different groups or actions (as 

mentioned in Section 2.5) where there is no logical data order. 
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Figure 2 - 1: Patterns on Shewhart control charts 
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2.10.2 Sensitivity Rules 

While Shewhart control charts are effective in detecting large shifts, they 

lack sensitivity in detecting small shifts. Their effectiveness for detecting 

small shifts as well as non-random patterns is enhanced with the use of 

supplementary sensitizing runs rules. The advantages and disadvantages of 

Shewhart control charts with supplementary runs rules were presented in 

Nelson (1985). Koutras et al. (2007) and Park and Seo (2012) reviewed the 

literature on the use of sensitizing runs rules in Shewhart control charts. The 

implementation of these rules is based on dividing the control chart area into 

various zones above and below the central line defined in terms of multiples 

of the standard deviation of the plotted statistic, as shown in Figure 2.2. For 

this reason these rules are also called “zone rules”. The properties of control 

chart zone tests were studied by Roberts (1958). The performance of the zone 

control chart was studied by Davis et al. (1990), who also compared it with 

the performance of various Shewhart charts with and without runs rules. The 

zone chart’s performance was improved with the addition of a fast initial 

response feature by Davis et al. (1994). 

 

 

Figure 2 - 2: Shewhart control chart with “1-sigma”, “2-sigma” and “3-sigma” 

zones (“Zone C”, “Zone B” and “Zone A”, respectively). 

 

 

Different sets of zone rules have been proposed with the most famous set 

being the one by Western Electric Company (1956). Two other sets are the 
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one in Nelson (1984) and the one from Duncan (1986). Duncan’s rules are 

similar to the Western Electric rules but in a different order, while Nelson’s 

rules are more and some of them are a little different as to the number of 

points they require. Nelson’s rules cover more cases of patterns as we will see 

next. The only rule common in all sets is rule 1 which basically is also the 

only Shewhart’s rule. More sets of rules can be found in Noskievičovα (2013) 

and Halim Lim and Antony (2019), but most of them are similar to these 

three. For the application of some of these rules (where 2-sigma limits come 

in), warning limits mentioned earlier can be proved very useful. 

According to the Western Electric alarm rules the chart will signal if any 

of the following situations is true. 

1. One point outside the 3-sigma control limits (beyond Zone A) 

2. Two out of three consecutive points outside the 2-sigma limits (in Zone 

A or beyond) on one side of the central line 

3. Four out of five consecutive points outside the 1-sigma limits (in Zone 

B or beyond) on one side of the central line 

4. Eight consecutive points on one side of the central line (in Zone C or 

beyond) 

Duncan’s set includes the following alarm rules: 

1. One point outside the 3-sigma control limits (beyond Zone A) 

2. Seven consecutive points up and down or on one side of the central 

line (in Zone C or beyond) 

3. Two consecutive points outside the 2-sigma limits (in Zone A or 

beyond) 

4. Four consecutive points outside the 1-sigma limits (in Zone B or 

beyond) 

5. “Obvious” cycles up and down 

Nelson’s alarm rules are the following: 

1. One point outside 3-sigma control limits (beyond Zone A) 

2. Nine consecutive points on one side of the central line 

3. Six consecutive points increasing or decreasing 

4. Fourteen consecutive points alternating up and down 

5. Two out of three consecutive points outside the 2-sigma limits (in Zone 

A and beyond) on one side of the central line 
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6. Four out of five consecutive points outside the 1-sigma limits (in Zone 

B and beyond) on one side of the central line 

7. Fifteen consecutive points inside the 1-sigma limits (in Zone C) 

8. Eight consecutive points with none inside the 1-sigma limits (none in 

Zone C) 

It should be noted that these rules are applied on one side of the center line at 

a time. For a two-sided control charts they are applied to each side separately. 

When using several of those rules simultaneously, usually graduated response 

to out-of-control signals is applied. For example, when a control chart 

presents an out-of-control point we stop the process immediately and we look 

for an assignable cause, but if one or two consecutive points get out of a 2-

sigma warning limit, then we can increase the sampling frequency (adaptive 

sampling response) instead of looking for an assignable cause, in order to get 

a high probability of detecting the problem quicker than we would with the 

longer sampling interval. Caution is definitely required when combining some 

of the above rules. Each supplementary run rule increases the overall false 

alarm rate (FAR), although the FAR associated with it can be small on its 

own. The more rules used simultaneously, the higher the frequency of false 

alarms becomes. ARL computations for various combinations of four Western 

Electric alarm rules, as well as for the simultaneous use of all four of them, 

were conducted in Champ and Woodall (1990) revealing the decrease in ARL 

when the process is in control. The most recommended combination of rules 

in the literature is Western Electric rule 1 with Western Electric rule 4 or, 

respectively, Nelson’s rule 1 with Nelson’s rule 2. Nelson’s rule 7 is 

recommended to be used at “a start-up of SPC rather than in an on-going 

control”. According to Montgomery (2009), although in Phase II Shewhart 

control charts are not very effective when it comes to small to moderate 

shifts, using sensitizing rules to improve their ARL performance is likely to 

be an “unsatisfactory attempt” because of the increase in FAR and, therefore, 

“routine use of sensitizing rules to detect small shifts or to react more quickly 

to assignable causes in Phase II should be discouraged”. 
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2.10.3 Relations between Unnatural Patterns and Rules 

The first two Western Electric rules, or equivalently Nelson’s rules 1 and 

5, can recognize quickly sudden large shifts, while smaller sustained shifts 

can be quickly detected by Western Electric rules 3 and 4 (or Nelson’s rules 6 

and 2, respectively). Trends can be detected by Nelson’s rule 3. Attention is 

required, though, for false alarms when data are correlated. Davis and 

Woodall (1988) showed that this rule increases the false alarm rate very 

much. Nelson’s rule 4 can detect the systematic variation pattern. Nelson’s 

rules 7 and 8 are connected with patterns caused by incorrect sampling 

strategy. The first of those two can detect stratification, while the second one 

can detect mixture patterns. 

Wheeler (2004) states that, even if none of the above tests gives an out-

of-control indication, there is still a possibility of an assignable cause being 

present in our process. For example there could be a process with two high 

points being followed by one low point on the chart repeatedly. This is 

definitely a repeated pattern but the previously mentioned rules do not detect 

it. Yet the process is not random and, therefore, not in control. For this 

reason, Wheeler (2004) proposes one more rule for pattern detection, which 

is: “An explanation should be sought anytime a pattern repeats itself eight 

times in succession.” 

 

 

2.10.4 Runs-type Signaling Rules or Supplementary Rules 

These rules are used to enhance Shewhart control charts by making them 

more sensitive to detecting smaller shifts in the process. They are a 

generalization of the original Shewhart control chart’s 1-of-1 rule. 1-of-1 rule 

means that the statistic plotted on the chart computed only from the current 

sample is used for testing if there is an out-of-control signal or not. It would 

be, however, more useful to test a few of the previous samples as well, 

because this might reveal a pattern in the signals. For example there might be 

a run of two consecutive samples giving a signal which would make the 

indication of an out-of-control condition stronger. This is where these 

supplementary runs rules come in handy. Two of the most popular rules of 

this kind are the 2-of-2 and 2-of-3 rules, which belong to the more general 
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category of the k-of-k runs-type signaling rules, where k can be equal to or 

greater than 2. The k-of-k rule signals when k consecutive points on the chart 

exceed the control limit(s). There is a generalization of this rule, too, which is 

the k-of-w rule with 1≤k≤w. This rule signals when k out of the last w points 

on the chart are on or beyond the control limit(s). Control charts using these 

rules are more sensitive to smaller shifts than the simple Shewhart charts, but 

they have certain disadvantages. Their false alarm rate increases and there is 

also the risk of not immediately detecting large shifts in the process, because 

the chart’s ability to detect a large shift is delayed until at least w samples 

have been collected. This means that caution is needed when deciding to use 

these rules and careful balance of cost and benefit should be considered. 

Many control charts with this type or rules have been proposed in the 

literature, such as by Champ (1992), Klein (2000), Shmueli and Cohen 

(2003), Khoo and Ariffin (2006), Acosta Mejia (2007), Antzoulakos and 

Rakitzis (2007), Lim and Cho (2009), Antzoulakos and Rakitzis (2010), 

Cheng and Chen (2011), and Santiago and Smith (2013a). Moreover, Champ 

and Woodall (1987) dealt with various out-of-control situations when k of w 

consecutive points fall outside the 1-, 2-, or 3-sigma limits with 2≤k≤w. 

Maragah and Woodall (1992), Alwan et al. (1994), and Balkin and Lin (2001) 

analyzed the effect of serial dependence on the runs rules charts by 

simulations (actually, for a retrospective application of the chart). Derman 

and Ross (1997) proposed two additional rules. The first of them signals when 

two consecutive points exceed either one of the two 3-sigma control limits 

and the second rule signals when 2-of-3 consecutive points exceed different 

3-sigma control limits. These two rules were modified by Klein (2000) by 

requiring the related points to exceed a same control limit. Generalized kth-

order runs were used by Weiß (2012, 2013) for monitoring categorical data. 

Khilare and Shirke (2014) studied the steady-state performance of cumulative 

count of conforming control charts with runs rules. Mehmood et al. (2018) 

investigated the performance of X̄ chart with various runs rules for known 

and unknown parameters of various distributions, using the false alarm rate 

and power curve performance measures. Mehmood et al. (2019) discussed 

control charts based on various runs rules for various probability distributions 

and for both known and unknown parameters. 
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2.10.5 Recommendations for the Application of Rules for Unnatural Patterns 

Recognition 

The most important recommendation in the literature regarding the use 

of the sensitizing and supplementary runs rules mentioned so far is to never 

routinely apply all the available tests, because they increase the false alarm 

rate very much when applied all simultaneously. Caution is also suggested 

when using these rules for correlated data as mentioned earlier. Same is valid 

for Moving Range charts as well as EWMA and CUSUM charts where the 

same observation is used multiple times for the computations and, therefore, 

successive values are not independent. This makes the application of the zone 

rules unsafe with these charts. Therefore, only the point beyond control limits 

rule should be applied with these charts. Lesany and Fatemi Ghomi (2021) 

also noted that the concept of CCPR is basically a test of whether the control 

limits are the same for all samples and, therefore, it is meaningless to look for 

behavioural patterns when control limits are computed separately for each 

sample as is the case with variable sample sizes. These rules also make sense 

only for symmetrical or almost symmetrical control limits. This is the reason 

that extra caution is required with individual data especially when they are 

highly skewed, because they will produce false signals. Therefore, only the 

point beyond limits rule can be applied for this kind of data. If the individual 

data come from a symmetric distribution, however, all the sensitizing rules 

can be applied. Same is true for control charts for averages due to the central 

limit theorem and standardized charts. For all the other Shewhart control chart 

types, that we will see later, namely control charts for range or standard 

deviation and control charts for attributes, the rules that can be applied are 

Nelson’s rules 1, 2, 3 and 8. If, however, data come from a distribution for 

which the normal approximation is valid then the control limits are almost 

symmetrical and then the sensitizing rules can be applied without a problem 

for the attributes control charts with constant control limits. Noskievičovα 

(2013) also suggests that Nelson’s rules 7 and 8 should be used at the 

beginning of the SPC implementation for the verification of rational 

subgrouping. When the distribution is stable (Phase II) it is recommended to 
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start with Western Electric rules 1 and 4 and if it is necessary to additionally 

sensitize the control chart one or both of the other two Western Electric rules 

could be used. Stapenhurst (2015) also notes that “as the group size, n, 

decreases the likelihood of runs below the average increases slightly, so some 

analysts suggest that for n<6, a run of eight points below the average is 

required to signal a decrease in process variability”. 

 

 

2.10.6 Control Chart Patterns Recognition and Performance of Control Charts 

Under Drifts 

The control chart patterns we presented earlier can appear on control 

charts either as single or concurrent patterns. Many attempts have been done 

in literature for pattern recognition on control charts, using various methods. 

For example, neural networks and other machine learning models were used 

by Hwarng (1991), Guh and Hsieh (1999), Guh and Tannock (1999), Guh et 

al. (1999), Gauri and Chakraborty (2007), Shaban et al. (2010) and 

Xanthopoulos and Razzaghi (2014) among others. Robustness of neural 

network-based control chart pattern recognition to non-normality was studied 

by Guh (2002). Statistical correlation coefficient method was employed by 

Yang and Yang (2005). Principal Component Analysis was utilized by 

Colosimo et al. (2007). Hassan et al. (2003) dealt with control chart pattern 

recognition (CCPR) using statistical features. CCPR based on Gaussian 

mixture models was proposed by Yu (2012). Classification methods were used 

by Othman and Eshames (2012). A more sophisticated technique can be found 

in Ebrahimzadeh et al. (2013) where a hybrid method is used combining a 

feature extraction module, a classification module (based on neural networks 

and support vector machines) and an optimization module with an algorithm 

which was proved to have very high recognition accuracy. Other hybrid 

methods were developed for concurrent CCPR by Chen et al. (2007) and 

Wang et al. (2009). Akaaboune et al. (2022) combined neural networks and 

Principal Components Analysis for concurrent CCPR. Recognition of mixture 

control chart patterns was addressed by Lu et al. (2011) and Zhang and Cheng 

(2015) by means of support vector machines. An adaptive neuro-fuzzy 

inference system was used for CCPR by Nikpey et al. (2014). John (2022) 
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proposed a CCPR method for monitoring weekly customer complaints. A 

review of CCPR literature was presented by Hachicha and Ghorbel (2012), 

while a review of literature on concurrent CCPR was presented by García et 

al. (2022). 

Davis and Woodall (1988) studied the performance of control chart trend 

rule under linear drift, showing that these charts are not effective for drifts 

detection. Gan (1991b) studied the performance of EWMA control charts 

under drift, while Gan (1992a) and Gan (1996) studied the performance of 

CUSUM charts under drifts and trends. Divocky and Taylor (1995), Chang 

and Fricker (1999) and Fahmy and Elsayed (2006) dealt with control chart 

detection of drifts. Shu et al. (2008) used a weighted CUSUM chart for the 

detection of patterns. EWMA charts were used to detect drifts in Ross et al. 

(2012). Reynolds and Stoumbos (2001a) dealt with monitoring both mean and 

variance of processes subject to drifts and so did Stoumbos et al. (2003) for 

processes subject to both drifts and sustained shifts. Zou et al. (2009) 

presented comparisons of control charts for monitoring process mean with 

drifts. Kabiri Naeini et al. (2011) developed a method for CCPR based on 

Bayesian inference and MLE and proved through simulation both the 

accuracy of the proposed method for the detection of unusual patterns and 

satisfactory reasults in the estimation of pattern parameters. Knoth (2012) 

dealt with drifts on control charts and their detection and extended pre-

existing literature results. Detection of patterns was achieved through 

adaptive generalized likelihood ratio control charts in Capizzi and Masarotto 

(2012). Lesany et al. (2014) dealt with recognition of both single and 

concurrent unnatural patterns. Lesany and Fatemi Ghomi (2021) addressed the 

extraction and organization of statistical distribution functions for simulation 

of variations and patterns in control charts for variability. 

 

 

2.11 Selection of the Type of the Control Chart 

When having to construct a control chart in order to monitor a process, 

one important choice to be made is the selection of the appropriate type of the 

control chart to be used. The type and the distribution of the data are defining 

for the type of the control chart to be used. There are two types of data: 
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numerical (or variables data) and attribute data. Numerical data consist of 

measurements taken on a continuous scale, whose accuracy can be chosen by 

choosing the number of decimals to be recorded. Examples of such data are 

measurements of height, weight, length, width, depth, diameter, distance, 

volume, time, temperature, pressure, amount of money etc. Attributes data 

consist of countable non-measurable data with no decimals (discrete data) 

indicating the presence or absence of a defect or a characteristic of interest. 

Examples of attributes data include the number of defects or defective items 

(a defective item may have more than one defects, but an item with more than 

one defects is not necessarily defective), number of mistakes, injuries, 

accidents, complaints, orders, rejects, people, events, etc. Data with 

categories are easily turned into attributes data by considering the number or 

percentage of units belonging in each category. If there is an option of the 

data type when collecting the data, we should always bear in mind two 

important things. First is the fact that variables data contain much more 

information than the attributes data (for example exact concentration of an 

ingredient in each item versus the number of items containing that ingredient 

in a level above or less than a certain amount) and will, therefore, reveal non-

random variation more easily when plotted on control charts. The other thing 

to consider is the cost (in time and money) for the collection and analysis of 

the data which is more for the variables data and less for the attribute ones. 

Similarly, whenever there is a choice between defects data or defective items 

data, we should always remember that defects data contain more information 

than defective (for example the number of forms containing mistakes without 

knowing what mistakes and how many of them versus the particular number 

of mistakes contained in the forms). 

The above discrimination of data means that there are generally two 

types of control charts: control charts for variables ( X -chart for the process 

mean, R-chart for the process range, S-chart for the process standard 

deviation, S2-chart for the process variability) and control charts for attributes 

(np-chart for the number of nonconforming observations for constant sample 

size, p-chart for the percentage or fraction of nonconforming observations for 
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variable sample size, c-chart for data in subgroups with the same sample size, 

u-chart for data in subgroups of different sample sizes).  

When choosing the type of control chart to use, it would be better if this 

could be done before collecting the data, because then there is an option of 

the way to collect the dataset and the chart to use accordingly. More 

specifically, we take into consideration how soon the chart can identify the 

out-of-control situations and select the one which does that sooner. So, we 

first choose the X /s charts and then X /R charts (the choice between them 

depends also on the sample size), secondly we choose the individual X/MR 

charts and thirdly the c- or u- charts. The p- and np- charts are the last option, 

since they are the slowest in detecting process shifts. If there is no option as 

to how to collect the data, then the choice of the chart-type depends strictly 

on the data at hand and the quality characteristic we want to monitor. Figure 

2.3 presents the algorithm for the choice by practitioners of the appropriate 

type of Shewhart control chart to be used depending on the data for the 

quality characteristic under study. Further details on the Shewhart control 

charts presented on this graph are going to be presented in the following 

section. 

This graph contains only the types of Shewhart control charts. There are, 

however, other control charts besides them, such as CUSUM and EWMA 

control charts, which were constructed in order to solve some problems 

(disadvantages) of the Shewhart charts and will be addressed here later. For 

various types of univariate control charts, a selection guide is presented in 

Chapter 10 of Montgomery (2009). A general recommendation summarizing 

that selection guide regarding all types of control charts would be to prefer 

CUSUM and EWMA control charts rather than Shewhart charts when 

interested in detecting small shifts or monitoring data that are skewed or 

autoccorrelated. More details on these and other weaknesses of Shewhart 

charts will be discussed later. 
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Figure 2 - 3: Flowchart guide for the selection of the appropriate Shewhart control chart type 
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2.12 Shewhart Control Charts 

As previously mentioned, Shewhart control chats can be used to monitor data 

that are either variables or attributes. Each category of data is monitored by 

different types of Shewhart control charts. This section is dedicated to the 

presentation of these charts and their constructions and characteristics. One of the 

major differences between the variables control charts and the attributes control 

charts is that when dealing with variables data (individual observations or not) we 

need two different charts for monitoring the process mean and process variability 

while control charts for attributes respond to both mean shifts and variance shifts. 

Before starting with the control charts for variables, it should be noted that when 

monitoring a quality characteristic that is a variable, we should monitor both its 

mean and its variability, because even if the process mean stays in control the 

process variability might be out of control. Attention is required when interpreting 

those two charts in case of non-normal data. If the underlying distribution is 

normal then the control chart for the mean should behave independently from the 

control chart for the variability. If this is not the case and the underlying 

distribution is skewed then the two charts will “follow” each other, thus leading to 

wrong analysis. When interpreting patterns on these two charts, we should bear in 

mind that the interpretation of the chart for the mean relies on a constant 

variability. Therefore, the chart for variability should be analyzed first in order to 

determine that the variability is in control. If the chart for variability indicates an 

out-of-control condition we should not proceed to interpretation of the chart for 

the mean unless the variability has been brought in control first. If both charts 

indicate the presence of an assignable cause, we should first deal with the 

elimination of the assignable cause which will first bring in control the chart for 

variability. Now, before moving on to the particular types of the Shewhart control 

charts we need to distinguish between setting up a control chart and regularly 

using a control chart (Phase I and Phase II). 
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2.12.1 Setting-up the Control Charts 

When setting up a control chart an initial considerable data set is analyzed in 

order to find the standard deviation for the computation of the control limits of the 

chart. The so called “standard procedure” for setting up a control chart is to 

compute the standard deviation and then examine if the dataset comes from an in-

control process or not. The steps as presented by Porter and Caulcutt (1992) and 

Caulcutt (1995) are the following: 

(a) Obtain the dataset. 

(b) Put the data into subgroups. 

(c) Calculate the mean and range of each subgroup. 

(d) Calculate the overall mean ( )X  and the mean range ( )R . 

(e) Estimate the process standard deviation by using nR d , where dn is 

Hartley’s constant which is tabulated for various values of n in the 

appendices of many SPC textbooks. 

(f) Construct the control chart for monitoring the mean or variability by using 

X , R , or nR d , and appropriate constants, for the computation of the 

control limits. 

(g) Plot the group means on the mean chart and the group ranges on the range 

chart. 

(h) If the control charts show that the process is in control then these charts or 

other charts of a more appropriate type based on the same estimates can be 

used for monitoring the process in the future. 

(i) If the control charts show that the process is out of control, investigate the 

assignable causes and take corrective actions. Then repeat steps (a)-(i). 

Subgroups in step (b) should be selected in a way that makes each subgroup 

as homogenous as possible with maximum variation between subgroups and not 

within them. It should be noted that the control limits are computed so as the 

variation of the plotted statistic is only due to common causes and the measure of 

dispersion used for the calculation of the control limits is based on the within 

subgroup variability. This note is stressed by many authors on SPC who warn that 
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when setting up a control chart it is not correct to use the estimate of the process 

standard deviations from all the data, because this estimate can be affected by the 

between-samples variation. 

The purpose of using a control chart is to compare current observations from 

the process to the process expectation based on past values in order to keep the 

process under control. This is the reason that when setting up a control chart if the 

chart indicates an out-of-control situation the whole procedure is repeated until the 

control charts show only in-control process points and then the final estimations 

are established for the parameters to be used for future control charts. 

 

 

2.12.2 Choosing between Variables and Attributes Control Charts 

Shewhart control charts for attributes are easier to implement than the 

Shewhart control charts for variables since they do not require two control charts 

(one for the mean and one for the variability, since one chart is responding to 

changes to both of them) and they do not require actual measurements but just the 

number of nonconforming items or the number of nonconformities in a sample, 

which sometimes is easier than exact measurements (for example it is easier to 

monitor if patients survived for a specific time interval after a surgery than 

monitoring exactly how long they lived) or quicker or less expensive. Other 

advantages of the attributes control charts are that they can be used for visual 

inspections of items and can be applied to several different nonconformities at the 

same time, while for variables a separate control chart is required for each 

monitored quality characteristic. On the other hand, the attributes control charts 

need good definition of the specified requirements for an item to be categorized as 

conforming or nonconforming (otherwise the classification is completely 

subjective thus leading to inconsistencies) and require larger sample size (equal to 

or more than 50) than the control charts for variables (a sample size of four or five 

can be adequate). The sample size must be large enough to allow defects or 

defective items to be observed in the sample, otherwise the attributes control 

charts will present the wrong indication of process improvement due to many 
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samples with zero defects or defective items. On the contrary, the items required 

for variables control charts are much less than those required for the attributes 

charts. The latter is particularly important for cases when the testing is destructive 

or very expensive. Variables control charts are preferable in this case even if 

variables inspection is more expensive and more time-consuming than attributes 

inspection. Moreover, if attributes control charts indicate an out-of-control 

situation then the number of nonconforming items that should be rejected or the 

number of nonconformities on an item is unacceptable, while variables control 

charts give a signal before the detection of something unacceptable or before the 

number of rejected items increases in the process and when they signal, they 

usually help more in identifying the special cause. It should also be noted that, as 

we will see later in the relevant section (2.12.5), the attributes charts are not 

appropriate for rare event data. Furthermore, attributes data contain less 

information than the variables data (for example when plotting only the 

concentration of an ingredient which is higher than a specific value instead of 

plotting all concentrations) and, therefore, attributes control charts cannot detect 

out-of-control shifts or give warnings as easy and quickly as the variables control 

charts. So, whenever it is possible to choose between the two types, variables 

control charts are generally preferable to attributes control charts. 

There are, however, some cases when it is particularly suggested to use 

mostly variables or attributes control charts. More specifically, Montgomery 

(2009) suggests choosing variables control charts in new processes or processes 

which have problems continuously, when testing is destructive or expensive, when 

trying to diagnose problems in a process or change process specifications, or when 

continuous demonstration of process stability and capability is required. Moreover, 

when attributes charts have already been used for monitoring a process, but the 

process still remains out of control or is in control but the process outcome is still 

unacceptable, then variables control charts are definitely required. On the other 

hand, attributes control charts are chosen when we need to monitor processes for 

which measurements cannot be obtained or processes which are complex groups of 

operations (such as the production of computers or cars or parts of them) where 
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the output quality is measured in the existence of defects or not and successful or 

unsuccessful output performance. Attributes control charts are also useful for a 

historical summary of the performance of the monitored process. 

 

 

2.12.3 Shewhart Control Charts for Variables 

When dealing with variables, it is very important to first determine the 

subgroup size to decide which control chart to use, because when we monitor the 

variability we must be careful in the choice of estimator for the standard deviation. 

Although the range R is usually preferable due to its simplicity, the sample 

standard deviation s should be preferred in cases of moderately large sample size 

(n>10), because then R is not statistically efficient for estimating the standard 

deviation, or in cases of variable sample size. 

The control chart for monitoring the process mean is the X-bar chart, which is 

constructed as follows (when using the sample ranges for estimating the process 

variability): 
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sample ranges of the m subgroups in the sample and ( )2 23 /A d n= , with the usual 

3-sigma limits convention. For the computation of A2, d2=EW=ERn/σ (which is the 

expectation of the relative range W) is used, with Rn being the range of a sample 

size n from a normal distribution of variance σ2. The constant A2 is tabulated for 

various sample sizes in the appendices of many SPC textbooks. 

If we are interested in detecting moderate to large process shifts (on the order 

of two standard deviation units or larger) when using this control chart, then 

relatively small samples (n=4, 5, or 6) are quite effective. When, however, we 
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want to detect small shifts then larger sample sizes are definitely required 

(possibly n=15 to n=25). An alternative would be the use of CUSUM or EWMA 

control charts. 

When using the standard deviation instead of the sample range, the control 

limits of the X-bar chart are constructed as follows: 
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standard deviations of the m subgroups in the sample and ( )3 33 /A d n= , with the 

usual 3-sigma limits convention. For the computation of A3, d3=ESn/σ is used, with 

Sn being the standard deviation of a sample size n from a normal distribution of 

variance σ2. 

The variability of a process can be monitored using either the sample range R 

(R chart) or the sample standard deviation (s chart). The R chart is constructed 

using the following equations: 
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where D3=1-3(d3/d2) and D4=1+3(d3/d2). Here d2 is defined as previously and d3 is 

the standard deviation of W which means d3=σR/σ, where σR is the standard 

deviation of R. The constants D3 and D4 are also tabulated for various values of n 

in the appendices of many SPC textbooks. 

It should be noted that for small sample sizes the R chart is relatively 

insensitive to shifts in the process standard deviation. Therefore, sample sizes 

larger than n=5 are preferable, since they are more effective, but we should always 

remember that the efficiency decreases as the sample size increases. For n>10 a 
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control chart for s or s2 should be preferred. Moreover, the s chart is less sensitive 

than the R chart to shifts caused by just one of the observations in the sample. 

The control limits and central line of the s control chart are computed as 

follows: 
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constant depending on the sample size n and E(s)= c4σ. When using the unbiased 

estimator 4s c of σ, where 
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= ∑  is the average of the standard deviations of 

the m samples, then the control limits and central line of the s chart become: 
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where B4=B6/c4 and B3=B5/c4, and the corresponding x  chart is constructed as 

follows: 
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where ( )3 43A c n= . Values of the constants c4, A3, B3, B4, B5 and B6 are also 

tabulated for various values of n in the appendices of many SPC textbooks. 

Attention is required to the estimator of the standard deviation used when 

constructing the control charts so far. All the above formulas are based on the use 

of the unbiased estimator s2 of σ2 which uses n-1 in the denominator, which means 

that in the above formulas 
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denominator instead of n-1, then the constants c4, A3, B3, B4 are replaced with the 

constants c2, A1, B1, B2, respectively, as defined in Bowker and Lieberman (1972). 

A subject of discussion regarding the x  and s charts concerns whether or not 

these two charts should be combined into a single chart, because a shift in 

variability can affect the performance of the x  chart, although a shift in the 

process mean will not have an effect on the performance of the s chart other than 

possibly affecting a single subgroup. Combination charts have been proposed by 

Chao and Cheng (1996), Chen and Cheng (1998), and Hawkins and Deng (2009) 

among others, but when the combined chart raises a signal, there is no indication 

whether the shift occurred in the mean or the variance or both and this can be 

figured out only by looking at individual x  and s charts. Moreover, when 

simultaneously monitoring the process mean and variability, there is always the 

possibility of misleading signals, namely a signal from the chart for the mean 

(variability) being misinterpreted as a signal from the chart for the variability 

(mean) as was noted by John and Bragg (1991). 

So far we used either the range R or the standard deviation s to construct 

control charts for monitoring the process variability. If we want, however, to 

monitor it directly with the sample variance instead of using the sample standard 

deviation, then the s2 control chart can be used, which is defined with probability 

limits constructed as follows. 
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where 2
/2, 1α nχ −  and ( )

2

1 /2 , 1α nχ − −  are the upper and lower α/2 percentage points of the 

chi-square distribution with n-1 degrees of freedom and 
2

s  is the average sample 

variance obtained from preliminary data if σ2 is not known. If it is known, 
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however, it can be used in the above equation instead of 
2

s . The effect of 

measurement errors on the Shewhart S2 control chart was studied by Linna and 

Woodall (2001). 

 

 

2.12.4 Shewhart Control Charts for Individual Measurements 

The last two control charts of the category of Shewhart control charts for 

variables are the ones for monitoring the mean and variability of a process with 

individual measurements. These charts are useful in many cases in which the 

available data consist of samples of only one observation. This is very common 

nowadays with modern and automated inspection and measurement technology, 

since this way every process unit is examined and there is no basis for rational 

subgrouping. There are also cases of short production runs, where the output 

consists of only a very small amount of items in the entire run. Moreover, there are 

situations in which all units are monitored such as service applications or 

situations in which testing can be destructive or sampling and measuring can be 

very expensive and/or time consuming, thus making individual sampling a one-

way choice. There are also cases when the production rate is low or the data are 

slowly available such as in the clerical or accounting sector and other 

manufacturing or non-manufacturing processes. Examples of these situations 

include time to complete a task, equipment or machine downtime, examination 

marks, delays in time or costs due to, for example, late delivery or breakdowns and 

sales or number of complaints during a month. If the interval between two 

consecutive produced items is large, there is significant opportunity for process 

shifts between them and, therefore, by the time of the next sample the process 

might have already come out of control, so the control charting will become too 

slow to react to problems. In such cases, it is not safe to assume that even two 

successive units are produced under the same conditions and, therefore, the only 

natural choice is to draw samples consisting of only one unit. Furthermore, 

sometimes successive observations differ only due to measurement errors or errors 

during the analysis as happens very usually in chemical processes or differ very 
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little as is the case when monitoring variables such as temperature, thickness and 

pressure. Other situations where samples consist of individual observations are the 

cases of taking multiple measurements at several different locations on the same 

unit or the case of using control charts to determine the capability of a process to 

meet specification limits. The latter is justified by Burr (2004) by the fact that 

consumers purchase individual items and not groups of them. Therefore, they are 

interested in each item’s quality and that is the way it should be monitored: 

individually. 

The data from all such processes which consist of only one observation can 

be monitored using a Shewhart control chart for individual observations (when we 

are interested in a large magnitude of shift). For a smaller shift magnitude, on the 

other hand, alternative control charts such as the CUSUM and EWMA, that will be 

presented later (sections 2.14.1 and 2.14.2), would be a better choice. 

The Shewhart control chart for individual observations (X chart) is 

constructed as follows: 
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where MR  is the average of the moving ranges (MR) of two observations, with 

MRi=|xi-xi-1|. The term d2 is the Hartley’s constant, as earlier. If a moving range of 

two observations is used, then d2=1.128. It should be noted that the standard 

deviation is estimated using moving ranges instead of the usual estimation which 

can be affected by outliers and non-normality. 

The X control chart, despite its simplicity in construction and use, is not as 

good in detecting small shifts in the process mean as is the Shewhart chart for the 

mean and needs more samples to detect changes of the same magnitude (the power 

of the X chart is less than the power of the Shewhart mean chart, whose power 

increases as the sample size increases). Moreover, the X chart cannot distinguish 

between changes in the process mean or variability. Therefore, it should not be 
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preferred when there is a choice of using another control chart. All the above are 

also the reason that a moving range control chart (MR chart) is usually used 

together with an X control chart, for monitoring the variability of data with 

individual observations. The control limits of the MR chart are constructed as 

follows: 

4
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UCL D MR

CL MR

LCL D MR

=

=

=

 

If a moving range of two observations is used D3=0 and D4=3.267. 

The interpretation of the control charts for individual observations is similar 

to the interpretation of the control charts for the means. We first start with the 

interpretation of the MR chart, to insure that variability is in-control and then 

proceed with the interpretation of the X chart. If a point plots outside the control 

limits this is an indication of an out-of-control process. Attention should be paid, 

however, to the fact that the moving range points are correlated. This correlation 

can cause patterns of runs or cycles and, therefore, only points beyond the control 

limits indicate out-of-control signals on a MR control chart. On the contrary, any 

pattern on the X control chart should be investigated since the individual 

observations are assumed to be uncorrelated. If both X and MR charts present 

points beyond the control limits, the spike on the MR chart can help in the 

identification of the exact point when the process mean shift occurred. In case of 

runs on an MR chart, as mentioned in Stapenhurst (2005), it is suggested that “14 

points below the mean are required before a process change is indicated”. 

Moreover, because of the relative insensitivity of the X chart at identifying out-of-

control situations comparative to the means chart, Stapenhurst (2005) suggests 

using warning limits to increase the chart’s sensitivity and mentions some 

recommendations for four or five consecutive points beyond additional ±1σ 

warning limits. 

Crowder (1987c) presented the ARL values for the combination of X and MR 

control chart for various shifts in the process mean and standard deviation and 

showed that the in-control ARL is much less than the corresponding one for the 
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Shewhart control chart for the mean if traditional three-sigma control limits are 

used. He suggested combining the use of the three-sigma limits for the X chart 

with a different computation of the upper control limit for the MR chart in order to 

get an in-control ARL value close to that of the Shewhart means control charts. 

More specifically, he suggested using , 4 5UCL DMR D= ≤ ≤ . 

The MR control chart is debatable in literature, since some researchers 

recommend using it while others oppose. Amin and Ethridge (1998), for example, 

suggest using X and MR charts together for better detection of shifts than when 

using only the X chart. On the other hand, for example, Roes et al. (1993) and 

Rigdon et al. (1994), support the opinion that the MR chart cannot really provide 

useful information about a shift in the process variability but also shows shifts in 

the process mean that are presented in the X chart and, therefore, MR chart is not 

necessary. Moreover, they recommend using the X chart for monitoring both the 

process mean and process variability, since an increase in variability will cause 

points on the X chart to be plotted at a greater distance from the central line and if 

the variability shift is large enough there will be points beyond the control limits 

of the X chart as well. Montgomery (2009) supports the uselessness of combining 

X and MR charts but does not discourage it and suggests being careful with the 

interpretation when using both charts and depending mainly on the X chart. 

 

 

2.12.5 Shewhart Attribute Control Charts 

When the available data are attributes data, before choosing the control chart 

to use for monitoring them, we need to distinguish between defects and defective 

items. This is important, because different control charts are used for each of those 

categories of data. Besides, an item with a defect is not necessarily defective 

(minor defect(s) not affecting the performance) and a defective item can have one 

or more defects. When we are interested in monitoring the number of defective 

items, the control charts are constructed based on the binomial distribution, while 

control charts for monitoring the number of defects are constructed based on the 

Poisson distribution. The control charts for monitoring the defectives are the p-
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charts and the np-charts, while the control charts for the number of defects are the 

c-charts and u-charts. One of the major differences between the variables control 

charts and the attributes control charts is that when dealing with variables data 

(individual observations or not) we need two different charts for monitoring the 

process mean and process variability while control charts for attributes respond to 

both mean shifts and variance shifts. 

The p-charts (used for monitoring the proportion of nonconforming or 

defective items) and the np-charts (for monitoring the number of nonconforming 

items in a sample of size n) have similar control limits especially for constant 

sample size (in which case the two control charts result in the same conclusions 

about the process) simply due to the fact that the number of items is equal to the 

product of the proportion multiplied by the sample size. The control limits of the 

p-charts are constructed using the binomial distribution with parameters the 

sample size n and the proportion p. Therefore, according to equation (2.1) the 

control limits and central line of this chart are given by 
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Similarly the control limits and central line for the np chart are given by 
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The sample size required for the construction of the p-chart is suggested by 

Duncan (1986) to be large enough to give a 50% probability of detecting a process 

shift of a specific size. According to Montgomery (2009) the required sample size 

n for the detection of a shift of size δ is given by ( )
2

1
L

n p p
δ
 = − 
 

 for the L-sigma 

Shewhart control limits. For a small fraction of nonconforming items, the value of 
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n is chosen so as to have a positive LCL which means that 
( ) 21 p

n L
p

−
> . Another 

problem with the p-charts is the possibility of very small values of UCLs. In a 

situation like that the control chart will signal with any nonconforming unit in a 

sample, thus increasing the false alarm rate of the chart. A larger sample size can 

give the solution to this problem, too. The false alarm rate can also be quite 

different from the desired due to the discrete nature of the Binomial distribution. 

Lucas et al. (2010) suggested the addition of a value equal to 1/n to the computed 

value of the UCL of the chart in order to make the false alarm rate of the chart 

smaller. Another performance-related problem of the p-chart is the bias in its run 

length performance. A solution was presented by Acosta-Mejia (1999) who 

proposed a run length unbiased p-chart. Research presenting the problems of the p-

charts includes Goh (1987), Xie et al. (1999), Chan et al. (2003a) and Goh and Xie 

(2003). Xie and Goh (1993) and Schwertman and Ryan (1997) dealt with p-charts 

with probability limits. Ryan and Schwertman (1997) dealt with the sensitivity of 

the p-chart and compared the use of probability limits with the traditional 3-sigma 

limits in terms of out-of-control ARL proving that these charts performed better 

and then proposed a p-chart with adjusted control limits using the approximation 

of the Binomial distribution by a Poisson distribution. Ryan and Schwertman 

(1999), later on, presented a more flexible dual control chart method. Nelson 

(1997) dealt with supplementary runs rules to increase the sensitivity of the np 

charts, while Vaughan (1992, 1993) had discussed the issue of np control charts 

with variable sampling interval. Ho and Quinino (2013) presented an attribute 

control chart for monitoring variability and compared its performance to that of R 

and S2 charts. 

For the case of the number of defects charts, the choice between c-charts and 

u-charts is based mostly on the opportunity for the monitored event. If the 

opportunity remains the same, the c-charts are used. Otherwise, u-charts are 

chosen. The u-charts are also chosen in the case of more than one inspection units 

in our sample. Both control charts assume infinitely large number of opportunities 

or potential locations of defects (or nonconformities) and small probability of 
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occurrence of a defect at any location in order for the Poisson distribution to fit 

well. This is the reason that, when monitoring data with low number of rejects 

compared to the potential number of rejects, the results are similar either we use p- 

and np- charts or c- and u- charts [Stapenhurst (2005)]. The c-charts for the 

number of defects or nonconformities are constructed as follows: 
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The type I error risk with these control limits is not equally allocated above and 

below the control limits due to the fact that the Poisson distribution is skewed and, 

therefore, probability limits are suggested for this chart especially for small c 

value. 

The u-chart for the average number of defects (or nonconformities) per 

inspection unit is constructed as follows: 
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When having to choose between using control charts for the number of 

defects or fraction of nonconforming items, Montgomery (2009) suggests the 

control charts for the number of defects or nonconformities, because they are more 

informative due to the fact that usually there are several different types of defects 

and analysis of defects by type gives more information about their possible causes, 

which is very helpful during corrective actions in case of an out-of-control signal. 

When monitoring a process based on the output defects, sometimes it is 

possible to find many types of defects of different amount of importance. This is 

very usual, for example, in the production of computers, cars, automated 

equipments and big appliances. In such cases an item with some less serious 

defects (for example in appearance) which do not affect its performance may not 

be defective or nonconforming. The defects are, therefore, classified into four 
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categories depending on their severity (the effect they have on the performance) 

and the number of demerits in an inspection unit is the weighted sum of the 

number of defects in each class in that particular inspection unit. The weights 

which are usually used in practice are 100 for Class A (very serious defects), 50 

for Class B (serious defects), 10 for Class C (moderately serious defects) and 1 for 

Class D (minor defects). The classes are assumed to be independent and Poisson 

distributed (with reasonably large parameter values) and all n inspection units are 

assumed to be of the same size. Then the number of demerits per unit i

D
u

n
=  

(where D is the total number of demerits in all n inspection units) can be 

monitored with a D chart constructed as follows: 
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average number of defects in each class per inspection unit is obtained from data 

drawn from an in-control process. The properties of the D chart were studied by 

Jones et al. (1999) who suggested the use of probability limits which lead to a 

chart with superior performance than that of the chart with the three-sigma limits 

which was presented above. Type II errors of demerit control charts were 

investigated by Chimka and Arispe (2007), while Chimka and Arispe (2006) 

proposed a demerit control charts for Poisson distributed defects. One of the most 

recent applications of demerit control charts was proposed for the textile sector by 

Yılmaz and Yanık (2020). 

Control charts for attributes were first proposed by Shewhart (1926, 1927). 

They have been used in many areas ever since, from health care [Woodall (2006), 

Albers (2009)] to animal sciences [Vries and Teneau (2010)]. They have been 

studied, improved, extended or altered in order to achieve better performance. 

Early reviews on attribute control charts were presented by Woodall (1997), 

Woodall et al. (1997), Mohammed et al. (2003) and Jones-Farmer (2008). Other 
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more recent reviews include Szarka and Woodall (2011), Jahromi et al. (2012) and 

Saghir and Lin (2015a). 

Dorris (1977) investigated the effects of inspection errors on the performance 

of c charts. Soffer (1981) addressed a transformed p chart for monitoring data with 

variable sample size. Sculli and Woo (1982) dealt with the design of np charts. 

Nelson (1983a) proposed an early-warning test for Shewhart p-charts. Suich 

(1988) studied the c chart with inspection error. Chan and Xiao (1990) introduced 

weighted attribute control charts for variable sample size. Padgett and Spurrier 

(1990) developed Shewhart-type control charts for monitoring percentiles of 

strength distributions. Rocke (1990) presented adjusted p- and u- charts for 

monitoring data with varying sample sizes. Bonnett (1993) addressed the issue of 

determining the appropriate sample size for p charts. Nayebpour and Woodall 

(1993) investigated Taguchi’s online attributes control charts. Winterbottom 

(1993) proposed adjustments for improving the control limits of attributes control 

charts. Grayson et al. (1995) studied the performance of u charts with control 

limits based on the average sample size. Chen (1998) introduced some adjustments 

for improving the p charts. Braun (1999) investigated the performance of the p- 

and c- charts with estimated control limits. Wu et al. (2001) presented np charts 

with fractional control limits. Jolayemi (2002) addressed the statistical design of 

np charts with multiple control regions. Chan et al. (2003b) presented a continuity 

adjustment for the np-chart and the c-chart for attributes by adding a Uniform(0,1) 

distributed random observation to the conventional sample statistic in order to 

make its distribution continuous and constructing the control limits given the type 

I risk. They also provided comparison and guidelines for the selection of the 

proper control chart among the proposed continuity adjustment control chart, the 

traditional Shewhart control chart and the control chart based on the exact 

distribution of the unadjusted statistic. Khoo (2003) increased the sensitivity of 

control charts for fraction nonconforming. Wu and Luo (2003) discussed the three-

triplet np charts. Khoo (2004a) introduced a moving average control chart for 

monitoring the fraction nonconforming. Khoo (2004d) investigated the 

performance of the moving average control chart for Poisson distribution 



 65  

compared to the c chart for monitoring nonconformities. Kittlitz (2006) 

investigated the c chart. Tsai et al. (2006) proposed square root transformation-

based attribute control charts. Wu et al. (2006) developed an np chart with 

curtailment which doubled the detection effectiveness of the conventional np 

chart. Hart et al. (2007) considered p charts with small subgroup sizes. Wu and 

Wang (2007) addressed an np chart with double inspections. Chakraborti and 

Human (2008) dealt with the performance of c-charts in Phase II applications. 

Morris and Riddle (2008) investigated the sample size required for detecting 

quality improvements with p charts. Sim and Lim (2008) discussed attribute charts 

for monitoring zero-inflated processes. Wu et al. (2009d) introduced a new type of 

np chart for monitoring the mean of a variable based on an attribute inspection 

using warning limits instead of specification limits for the classification of 

inspected units as conforming or nonconforming. They proved that, although it is 

less effective than the X ̄ chart when using the same sample size and sampling 

frequency, it can become more effective than the X ̄ chart in terms of ATS and 

extra quadratic loss when optimizing the warning limits and using a greater sample 

size and/or sampling frequency (which is possible with this chart since it does not 

require any computation due to attribute inspection which is less costly) and 

allows operators to take corrective actions before actually producing any defective 

items. Abooie and Aminnayeri (2010) studied the np chart with variable limits. 

Shu and Wu (2010) addressed p charts for monitoring imprecise fraction 

nonconforming. Duclos and Voirin (2010) used the p-chart for healthcare-related 

process improvement. Perez et al. (2010a,b) dealt with the optimization of DS u 

charts. Ho and Costa (2011) considered monitoring a wandering mean with an np 

chart. Ho et al. (2011) introduced an alternative np chart in the presence of non-

constant misclassification errors with a similar performance (in terms of ARL 

values) to a traditional np chart without classification errors, using monitoring 

statistics which are based on the results of independent repeated classifications 

with classification errors during the inspection process. They found that there are 

many possible combinations of the sample size and the number of repeated 

classifications that give an ARL value similar to that of a control chart without 
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misclassification errors. Therefore, they discussed the optimal choice for this 

combination by minimizing a cost function for the required ARL value which 

included the cost for a new unit and the cost of repeated classifications. Chen and 

Song (2012) studied the effects of sample sizes on the performance of p charts 

during Phase I and Phase II. Park (2013) introduced an improved p chart based on 

the Wilson interval. An economic alternative to the c chart was proposed by Black 

and Chimka (2014). Lupo (2014) used the Taguchi loss function to design c charts. 

Aslam et al. (2015c) introduced a mixed chart for monitoring process quality using 

attribute data combined with variable data and three pairs of control limits and 

proved the proposed chart’s superiority over the traditional np chart in terms of 

quick detection of processs shifts. Tiplica (2015) studied the performance of c 

charts with estimated parameter. Chakraborty and Khurshid (2016) investigated 

the effect of misclassification due to measurement error on the power of control 

chart for proportions. Hernández and Garcia (2016) dealt with risk estimation in 

np charts. Mohammad et al. (2016) developed improved p-charts. Morais (2016) 

proposed an ARL-unbiased np control chart. Paulino et al. (2016a) introduced an 

ARL-unbiased c chart, while Paulino et al. (2016b) developed ARL-unbiased c 

charts for monitoring autocorrelated Poisson data. Wu et al. (2016) presented c- 

and np-charts with run rules for monitoring processes with estimated parameters. 

Zhao and Driscoll (2016) discussed c charts with bootstrap adjusted control limits. 

Faraz et al. (2017) studied the performance of the np-chart. Lee and Khoo (2017) 

proposed an np chart combining double sampling and variable sampling interval. 

Aslam et al. (2018a) designed an attribute control chart for two-stage process 

while Erginel et al. (2018) dealt with attribute control charts with fuzzy sets. 

Argoti and García (2017, 2018) studied the ARL-bias in Shewhart p-charts. 

Altuntas et al. (2018) introduced the standardized u-chart which combines the 

service quality scale and used it for monitoring patient dissatisfaction in hospitals. 

Argoti and Carrión-García (2018) proposed quasi ARL-unbiased p-charts. 

Before we proceed, it should be noted that attributes control charts are based 

on the assumption of specific underlying distributions which are not always valid. 

If those assumptions are valid then the attributes control charts are preferable. If 
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the assumptions are not valid, however, attributes control limits will not be 

accurate and, therefore, individual control charts which do not depend on any 

assumption are more appropriate. Moreover, as Stapenhurst (2005) states, two 

usual suggestions are to use individual control charts instead of attribute ones 

whenever the average of the plotted data is greater than 1 or 5. Stapenhurst (2005) 

suggests using both attributes and individual control charts when in doubt and if 

any inconsistencies are found then careful thought is required in order to 

understand the reason for those inconsistencies and, therefore, better understand 

the process being monitored. 

 

 

2.13 Control Charts Dealing with Rare Events and Low Rates of Defects and 

Time-Between-Events (TBE) Control Charts 

When the rate of defects in a process is very low, for example at the level of 

parts per million, then there will be a lot of samples containing zero defects and c- 

and u- control charts will be ineffective. A solution to this problem would be to 

use a control chart for the time between consecutive occurrences. If the monitored 

defects or events are assumed to be Poisson distributed, then the distribution of the 

time between them will be the exponential distribution. Therefore, the control 

charts for the time between events (TBE) will be constructed based on the 

exponential distribution, which is very skewed and the control chat will be very 

asymmetric. In order to solve this problem, Nelson (1994) proposed transforming 

the exponential random variable to a Weibull random variable, because the 

Weibull distribution is well approximated by the Normal distribution. If X is an 

exponentially distributed random variable then, according to Nelson (1994), the 

appropriate transformation for a good Normal approximation is X1/3.6 = X0.2777. 

Rare event data are quite common in real world situations. Some examples 

include accidents involving airplanes or trains, serious injuries at work, 

resignations, breakdowns or natural disasters such as fires. A definition from the 

viewpoint of control charts as presented by Stapenhurst (2005) is that rare events 

occur when the process average falls below 1 or the LCL is 0. 
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As mentioned earlier, low rate events are monitored with individual control 

charts. If the occurrence rate, however, is very low as is the case with rare data, 

then the individual control charts present the same problem as the attributes 

control charts, namely many zero observations and occasionally a non-zero one, 

which would cause the chart to signal every non-zero value as an out-of-control 

observation. Therefore, other approaches must be followed for the monitoring of 

rare events in order to reduce the false alarm rate. The most usual approach is to 

count the TBE and convert it into a number of events per an appropriate interval 

(for example per month or year). These results will then be monitored with an 

X/MR control chart. Other approaches would be to increase the sample size or to 

combine groups (for example monitor incidents quarterly instead of monthly) in 

order to avoid monitoring rare events [Stapenhurst (2005)]. 

One of the first studies of control charts for monitoring cases of zero defects 

was the one by Calvin (1983). Other research regarding the cases of monitoring 

law defect rates and/or TBE control charts includes Goh (1987, 1991), Lucas 

(1989), Lawson and Hathaway (1990), Goh and Xie (1994, 1995), Govindaraju and 

Lai (1998), McCool and Joyner-Motley (1998), Radaelli (1998), Xie et al. (1998, 

2002a), Chan et al. (2003a), Liu et al. (2004), Pan (2004), Steiner and MacKay 

(2004), Di Bucchianico et al. (2005), Zhang (2006), Liu (2007), Zhang et al. 

(2007b, 2011b), Yeh et al. (2008), Khoo and Xie (2009), Shamsuzzaman et al. 

(2009), Zhang (2009), Xie et al. (2010), Albers (2012), He et al. (2012b), Xie 

(2012), Acosta-Mejia (2013), Qu et al. (2014, 2015a), Woodall and Driscoll 

(2015), Fang et al. (2016), Ali and Pievatolo (2016, 2018), Ali (2017) and Sanusi 

and Xie (2017). Bourke (1992) investigated the performance of CUSUM charts for 

monitoring processes with low count level. Jones and Champ (2002a,b) dealt with 

Phase I TBE control charts. Ranjan et al. (2003) discussed control chats for 

monitoring inter-arrival times. Alemi and Neuhauser (2004) applied control charts 

for TBE to monitoring asthma attacks. Chang and Gan (2007) introduced a 

modified Shewhart np chart for monitoring high-yield processes with very low 

defect level (cloze to zero) using runs rules and compared its run length 

performance with that of other control charts for high-yield processes. They also 
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presented the design procedure for the proposed chart for samples or 100% 

inspection to facilitate its use in practice. Zhang et al. (2007a) presented control 

charts for monitoring Gamma distributed TBE. Lai and Govindaraju (2008) 

addressed the reduction of signal variability in control charts for monitoring high-

quality processes. Ozsan (2008) studied the effect of estimation errors on TBE 

EWMA control charts for high-quality processes. Pehlivan (2008) investigated the 

robustness of the lower-sided TBE EWMA charts. Sego et al. (2008) conducted a 

comparison of control charts for monitoring small rates. Wu et al. (2009b,c) 

presented two charts for simultaneously monitoring the time interval and the 

magnitude of an event. Wang (2009a) compared p-charts for low defective rate. 

Gan and Tan (2010) presented risk-adjusted control charts for monitoring the 

number between failures for patients with heart problems while Gandy et al. 

(2010) applied risk-adjusted control charts for monitoring time to events. Liu et al. 

(2010) introduced a probability-type control chart for simultaneously monitoring 

the frequency (time interval between the occurrences, which was assumed to 

follow an Exponential distribution) and size of an attribute event (which was 

assumed to follow a Poisson or truncated Poisson distribution) and proved that the 

proposed chart was more effective than seperate control charts for the frequency 

and magnitude particularly for detecting downward shifts (smaller TBE and/or 

smaller event size) and its effectiveness was more invariable against the types of 

shifts (frequency shift, magnitude shift or both). Qu et al. (2011) introduced the 

T&TCUSUM chart, which combines a Shewhart T chart and a TCUSUM chart for 

monitoring the time interval T between the occurrences of an event or the TBE and 

was proved to perform better than other charts since it was more sensitive to both 

small and large shifts. Szarka and Woodall (2011) provided a review of control 

charts for high quality binary processes. Doğu (2012) applied control charts for 

monitoring the time between medical errors. Dovoedo and Chakraborti (2012) 

proposed boxplot-based control charts for monitoring TBE during Phase I. Luo et 

al. (2012) used CUSUM charts for TBE data for online radiation monitoring. 

Mastrangelo and Gillan (2012) dealt with the monitoring of relatively low rates of 

hospital-related infection incidents with g-type control charts for monitoring days 
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between infections and other g-type control chart alternatives and Negative 

Binomial control charts. Fang et al. (2013) introduced synthetic-type control charts 

for monitoring TBE. Joekes and Barbosa (2013) introduced control charts for 

monitoring fraction nonconforming in high quality processes. Bersimis et al. 

(2014) proposed a compound control chart for monitoring high-quality processes. 

Kumar and Chakraborti (2015) dealt with Phase I control charts for monitoring 

TBE. Luong and Htet (2015) constructed control charts for monitoring TBE for 

nonconforming units in high-quality processes. Qu et al. (2015b) developed a 

CUSUM chart for monitoring TBE. Ali et al. (2016) provided an overview of some 

control charts used for monitoring high-quality processes. Kumar and Chakraborti 

(2016) studied the effect of parameter estimation on Shewhart-type control charts 

for monitoring TBE. Chakraborty et al. (2017b) presented a generally weighted 

moving average control chart for monitoring TBE. Fallah and Jafarian (2017) 

noted the inaccuracy of traditional Shewhart charts (even with adjusted control 

limits) when monitoring high quality processes with very low fraction 

nonconforming and proposed an np-chart for high quality processes with 

adjustments for the control limits obtained from Cornish-Fisher expansions in 

order to improve the in-control performance. Kumar and Chakraborti (2017) 

proposed a Bayesian statistically designed Shewhart-type chart for TBE 

monitoring when the interarrival times are assumed to follow an Exponential 

distribution. Kumar et al. (2017) dealt with Shewhart-type charts for monitoring 

TBE. Mao et al. (2017) investigated the performance of Wheeler’s control chart 

for monitoring the rate of rare events. Nezhad and Jafarian-Namin (2017) 

considered adjusted limits for the control chart for monitoring fraction 

nonconforming in high-quality processes. Alevizakos et al. (2018) used a double 

EWMA chart for monitoring TBE. Sanusi and Mukherjee (2019) introduced a 

control chart for monitoring TBE and event magnitudes simultaneously, combining 

two plotting statistics (one for the magnitude and one for the TBE) into a single 

plotting statistic using max-type and distance measures. They illustrated the 

proposed chart with application to real data on damage caused by outbreak of fire 

disaster. They also compared the proposed control chart with the control charts 
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proposed by Wu et al. (2009b,c) proving their chart’s superiority (especially for 

detecting moderate to large shifts in the process parameters) and its ability to 

simultaneously detect upward shifts in the magnitude and downward shifts in the 

TBE and vice versa, contrarily to the other charts. Sanusi et al. (2020) discussed 

the Max-EWMA chart for monitoring simultaneously the event magnitude and the 

TBE. 

 

 

2.14 CUSUM and EWMA Control Charts 

Although Shewhart control charts are easily constructed, they have many 

drawbacks when their assumptions [such as specific underlying distribution, 

known parameters, independent and identically distributed data (see Sections 2.15 

and 2.17)] are violated, which is often the case in real world applications. 

Moreover, the increasing need for better quality nowadays requires smaller process 

shifts to be detected, which, as has already been mentioned, is one of the 

weaknesses of Shewhart control charts. Therefore, other control charts with better 

performance have been developed. This section is dedicated to some of them, such 

as the CUSUM and EWMA charts which have been proved to be the more useful 

and efficient alternatives to the Shewhart control charts. 

Other examples of alternative control charts (which are here omitted) include, 

among others, the moving average control charts (which are a special case of the 

EWMA charts when 
2

1
λ

w
=

+
 where w is the moving average window [Mitra 

(2021)] and are generally less effective than EWMA charts in detecting small 

process parameters shifts), the cumulative count of conforming charts, the median 

and mid-range charts and control charts based on other sample statistics, the 

median moving range charts, difference control charts, standardized charts, 

synthetic charts, sequential probability ratio charts, cuscore and generalized 

likelihood ratio charts, Tukey’s control charts, Bayesian control charts and fuzzy 

charts. Control charts have also been constructed based on various sampling 

schemes and using various economic and economic-statistical criteria for optimal 
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control chart design. Moreover, control charts have been proposed for monitoring 

short production run processes and processes with censored data. Adaprive control 

charts have also been developed to cover the cases of variable sampling rate 

(depending on the position of the plotted statistics) and variable design 

parameters. The cases of risk-adjusted control charts and control charts for 

autocorrelated processes and profile monitoring have also been addressed in 

literature to deal with the occurrence of data independence assumption violation. 

All of the above, however, are beyond the scope of this thesis and, therefore, will 

not be covered herein. 

Comparisons of Shewhart charts to other charts were conducted by Reynolds 

and Stoumbos (2004a), proving the overall good performance of CUSUM and 

EWMA charts. Comparisons of Shewhart and CUSUM charts from the economic 

point of view were conducted by Goel (1968), Von Collani (1987) and Saniga et 

al. (2006a,b, 2012), showing the cost advantages of CUSUM charts, which, 

however, are small considering the simplicity of Shewhart charts. 

 

 

2.14.1 Cumulative Sum (CUSUM) Control Charts 

Shewhart control charts are very effective for monitoring shifts of magnitude 

larger than 1.5σ to 2σ. For smaller shifts they become less effective. On the other 

hand, CUSUM control charts are a good alternative when we want to monitor 

smaller shifts. This is the result of the fact that, contrary to the Shewhart control 

charts which use only the current values, the CUSUM charts use the information 

from several sample values. Therefore, CUSUM control charts are very useful 

when dealing with individual observations. In fact, they are usually used with 

individual data and less with grouped data [Montgomery (2009)]. 

CUSUM control charts were first proposed by Page (1954) and studied by 

many authors ever since, such as Goldsmith and Whitfield (1961), Page (1961), 

Johnson and Leone (1962), Ewan (1963), Bissell (1969), Goel and Wu (1971), 

Gardiner et al. (1987), Hawkins (1981, 1992a,b, 1993), Woodall (1983, 1986), 

Waldmann (1986), Gan (1991a, 1993b), Woodall and Adams (1993), Hawkins and 
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Olwell (1998), Luceño and Puig-Pey (2000) and Musdalifah et al. (2017). An 

overview of the developments on CUSUM control charts was presented by Ruggeri 

et al. (2007a). As presented in Qiu (2014), there is a connection between the 

sequential probability ratio test and the CUSUM chart. This connection was used 

to obtain various optimality properties of the CUSUM control charts by 

researchers such as Lorden (1971), Moustakides (1986), Ritov (1990) and 

Yashchin (1993). 

There are two ways to plot CUSUMs, the tabular (or algorithmic) CUSUM 

and the V-mask form of the CUSUM. The V-mask was proposed by Barnard 

(1959) and further studied by Johnson (1961) and Lucas (1973, 1976). 

Montgomery (2009), however, presented some problems with V-mask and 

“strongly advised against” using them. 

 

 

2.14.1.1 CUSUM Chart for Monitoring the Process Mean 

The tabular CUSUM chart for monitoring the process mean plots the sample 

number on the horizontal axis, while on the vertical axis it plots two statistics C+ 

and C- which are called one-sided upper and lower CUSUMs, respectively, and are 

calculated as follows: 

( )

( )
0 1

0 1

max 0,

max 0,

i i i

i i i

C x µ K C

C µ K x C

+ +
−

− −
−

 = − + + 

 = − − + 
 

with the starting values being defined as 0 0 0C C+ −= =  and K which is called the 

reference value (or the allowance or the slack value) being chosen halfway 

between the in-control and the out-of-control mean values or equivalently as one-

half of the magnitude of the shift which we want to detect expressed in standard 

deviation units, which means that 1 0

2 2

µ µδ
K σ

−
= = . With this control chart a 

process is considered as out of control if either of the two statistics plots beyond 

the decision interval H=hσ, with h being usually chosen as five times the process 

standard deviation σ. The choice of this parameter is critical for the control chart, 
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because it affects the chart’s performance. A combination of 
1

2
k =  (if K=kσ) and h 

= 4 or h = 5, usually gives good ARL properties to the chart for monitoring a shift 

of one standard deviation unit in the process mean. Generally, we choose h so as to 

obtain a desired value of in-control ARL given the selected value 
2

δ
k = . For a 

small value of type II error probability, the decision interval is computed as 

( )2

1 0

lnσ α
H

µ µ

−
=

−
 [Mitra (2021)]. Gan (1991a) presented graphs useful for choosing 

the design parameters for the construction of CUSUM control charts with the 

minimum out-of-control ARL value for a specific shift magnitude of interest for a 

given in-control ARL, while Hawkins (1993) presented various optimal 

combinations of those two parameters for achieving an in-control ARL value equal 

to 370. A program for the computation of CUSUM ARL was given by Vance 

(1986). ARL computation was presented by Brook and Evans (1972) based on the 

Markov chain approach and based on two different approximations by Hawkins 

(1992a) and Woodall and Adams (1993). 

If the chart presents an out-of-control signal, we take the same actions as we 

would in a corresponding situation with any control chart. We investigate the 

process in order to find the assignable cause and proceed to corrective actions. 

Then we reset the CUSUM statistics to zero and continue using the CUSUM chart. 

One of the most important advantages of the CUSUM chart is that it can help 

us identify the time point when the assignable cause occurred by counting 

backwards from the out-of-control signal until we reach the point when the value 

of the statistic became non-zero. This way we obtain the first period after the 

process shift. Another advantage of the CUSUM chart is that we can easily 

estimate the new process mean, using the counters N+ and N- of the number of 

consecutive periods for which the corresponding CUSUM statistics, C+ and C-, had 

a non-zero value before the chart’s signal. This can be achieved using the 
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relationships 0
ˆ iC
µ µ K

N

+

+
= + +  or 0

ˆ iC
µ µ K

N

−

−
= − − , depending on whether the upper 

or lower CUSUM statistic was the one which gave the signal. 

 

 

2.14.1.2 The Standardized CUSUM Control Chart 

An alternative to the CUSUM control chart for the mean is the standardized 

CUSUM chart. For this chart the observations xi are first standardized to obtain 

0i
i

x µ
y

σ

−
=  and then these values are used for the computation of the two CUSUM 

statistics which will be plotted on the chart, as previously. The two new statistics 

are computed as follows: 

1

1

max 0,

max 0,

i i i

i i i

C y k C

C k y C

+ +
−

− −
−

 = − + 

 = − − + 
 

This control chart has the advantage that the choices of the two parameters, k and 

h, of the chart are not scale dependent. This chart leads naturally to the CUSUM 

chart for monitoring the process variability. 

 

 

2.14.1.3 CUSUM Chart for Monitoring the Process Variability 

The CUSUM charts for monitoring the process variability are constructed 

based on the method proposed by Hawkins (1981, 1993). The observations are first 

standardized as before and then used for the computation of a new standardized 

quantity which, according to Hawkins (1981, 1993) is sensitive to changes in the 

process variance rather than changes in the process mean, but according to 

Montgomery (2009) and Mitra (2021), is sensitive to both changes. The new 

standardized quantity is defined as 

0.822

0.349

i

i

y
v

−
=  
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and it’s in control distribution is approximately N(0,1). Using this quantity the 

CUSUM statistics which will be plotted on the CUSUM chart for variability are 

computed as follows: 

1

1

max 0,

max 0,

i i i

i i i

S v k S

S k v S

+ +
−

− −
−

 = − + 

 = − − + 
 

where the initial values of the statistics are defined as 0 0 0S S+ −= =  and the values 

of the parameters k and h are chosen as for the CUSUM chart for the mean. The 

chart’s interpretation is also similar to the one for the CUSUM chart for the mean. 

The CUSUM charts for mean and variability can be plotted separately or, as 

suggested by Hawkins (1993), on the same graph. If the CUSUM chart for 

variability gives an out-of-control signal, then a shift has occurred in the process 

variability, while if both charts present an out-of-control signal, then a shift has 

occurred in the process mean. 

According to Hawkins and Olwell (1998), the optimal CUSUM control chart 

for monitoring the process variability is a CUSUM of the sum of squared 

deviations from a subgroup mean. This approach, however, can be affected by the 

distribution of the statistic, which should be taken under consideration by the 

CUSUM control chart instead of trying to transform the statistic to obtain 

approximate normality. So Hawkins and Olwell (1998) found the optimal values 

for k for the case of the Gamma distribution. 

Acosta-Mejia et al. (1999) proposed three CUSUM charts for monitoring the 

process variability and compared various control charts for monitoring variability 

including Shewhart charts and their own and other CUSUM charts. They found 

that the CUSUM chart using the likelihood ratio test for the change point of a 

normal process variance was the best. An adoptive CUSUM for monitoring the 

process variability was proposed by Shu et al. (2010) using weights which change 

as the current estimate of the process variance changes. A CUSUM chart for 

monitoring the process variability was also introduced by Abbasi et al. (2012). 
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2.14.1.4 FIR CUSUM and Other CUSUM Chart Improvements 

If we want to improve the sensitivity of the CUSUM chart at process start-up, 

then the Fast Initial Response (FIR) or headstart is used, as proposed by Lucas and 

Crocier (1982a). According to this method, the starting values of the statistics 0C +  

and 0C −  (for the CUSUM for the process mean) or 0S +  and 0S −  (for the CUSUM for 

the process variability) are set to a non-zero value, usually H/2 (50% headstart). 

The advantage of this method is that it decreases the out-of-control ARL values 

when the process starts at an out-of-control value thus improving the chart’s 

performance, while in case of the process starting at the in-control level the 

headstart has little effect on the chart’s performance as the CUSUM statistics drop 

to zero quickly. Other FIR CUSUM control charts were proposed by Haq et al. 

(2014b). 

If we want to increase the CUSUM (or FIR CUSUM) chart’s sensitivity to 

larger shifts, for which it is not so efficient, we can combine it with a Shewhart 

control chart as presented in Lucas (1982). The Shewhart control limits are then 

set at around 3.5 standard deviations from the in-control process average and there 

is an out-of-control indication for our process when either or both control charts 

give an out-of-control signal. Combined Shewhart-CUSUM control charts perform 

better in detecting sudden jumps in the process mean, but as presented in Bissell 

(1984b), the improvement over a simple Shewhart mean chart (although 

significant) is less when the shift is a slow drift. Reynolds and Stoumbos (2005) 

noted that it is not necessary to use Shewhart control limits with a CUSUM (or 

EWMA) control chart when the chart is based on squared deviations from the in-

control value. Combined Shewhart-CUSUM control charts were applied in 

monitoring non-manufacturing processes by Westgard et al. (1977) and Blacksell 

et al. (1994) and their optimization design was investigated by Wu et al. (2008b). 

Haridy et al. (2013) developed an optimization design for the combined np-

CUSUM control chart for monitoring attribute data. 

As mentioned for Shewhart control charts, a method for enhancing the 

performance of the chart is the use of runs-type signaling rules (Section 2.10.4). 
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Although this method is usually used with Shewhart control charts, it was also 

applied for the CUSUM control chart by Riaz et al. (2011). 

 

 

2.14.1.5 CUSUM Charts When Using Rational Subgroups Instead of Individual 

Observations 

All the previous CUSUM control charts were constructed based on their most 

usual use, for individual observations. If, however, rational subgroups are used, 

then the CUSUM charts for the mean presented earlier are extended to cover the 

case of rational subgroups by replacing the individual observations by the sample 

or subgroup average and replacing σ with xσ σ n= . Contrary to the Shewhart 

control charts for which it is preferred to use rational subgroups instead of 

individual observations whenever possible, with CUSUM charts it is better using 

individual observations instead of rational subgroups whenever there is a choice 

[Hawkins and Olwell (1998)]. 

When rational subgroups are used the CUSUM control chart for the process 

variability, as presented in Chang and Gan (1995) and Hawkins and Olwell (1998), 

are based on the normality assumption. If the sample variance of the ith subgroup 

is 2

iS  and the in-control and out-of-control variance values are 2

0σ  and 2

1σ , 

respectively, then the CUSUM statistics plotted on the CUSUM chart for 

variability are computed as follows: 
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with the initial values of the statistics being defined again as 0 0 0C C+ −= =  while 

( ) 2 2

0 1 0 1

2 2

0 1

2ln σ σ σ σ
k

σ σ
=

−
. The value of H is chosen so as to obtain a desired in-control 

ARL value for the specific value of k. The FIR method can be applied to this chart, 

too. 
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2.14.1.6 Risk-Adjusted (RA) CUSUM Charts and CUSUM Charts with Ranked Set 

Sampling (RSS) 

Usually variables control charts are based on the assumption of independent 

and identically distributed data. This assumption, however, is violated when 

monitoring health-care processes. The outcome of a surgery, for example, does not 

only depend on the surgeon’s performance but on the pre-operative severity of 

illness or risk related with the patient. Therefore, risk-adjusted (RA) control charts 

are required in health-care applications in order to take into account that severity. 

RA CUSUM charts were discussed by several authors such as Steiner et al. (2000), 

Grigg et al. (2003), Grunkemeier et al. (2003), Novick et al. (2006), Biswas and 

Kalbfleisch (2008), Sego et al. (2009) and Gan et al. (2012). 

Ranked set sampling (RSS) has also been used as an alternative to random 

sampling for improving the performance of control charts. It has been applied in 

literature for monitoring both process mean and variability. Examples for the case 

of CUSUM charts include Al-Sabah (2010), Haq et al. (2014a), Abujiya et al. 

(2015a,b, 2016b,c), Abid et al. (2017) and Abujiya and Lee (2019). 

 

 

2.14.1.7 Other CUSUM Charts 

Besides CUSUM control charts for the process mean and variability, CUSUM 

control charts for other quantities [such as ranges and standard deviations (when 

rational subgroups are used), fraction of nonconforming items or number of 

defects], have been proposed by Iwasiewicz et al. (1985), Lucas (1985), Rendtel 

(1987), Gan (1993a), Lowry et al. (1995), White et al. (1997) and Duran and Albin 

(2009). Particularly when monitoring count data with low defect rate, CUSUM 

control charts for the time between events can be used as in Lucas (1985) and 

Bourke (1991). These charts can perform well even under moderate departures 

from the exponential distribution, as presented in Borror et al. (2003). O’ Campo 

and Guyer (1999) used a CUSUM control chart for monitoring rates of perinatal 

health outcomes. The monitoring of proportions was also addressed by Reynolds 

and Stoumbos (1999, 2000a,b) and Singh et al. (2002). Zhou et al. (2014) 
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compared weighted CUSUM charts for monitoring process proportions with 

varying sample sizes. 

Taylor (1968) and Chiu (1974) dealt with the economic design of CUSUM 

control charts. Jones et al. (2004) discussed the case of CUSUM control charts 

with estimated parameters. Olteanu and Vining (2009) used likelihood ratio 

methods for CUSUM charts for the case of censored lifetime data. Olteanu (2010) 

studied CUSUM control charts for censored reliability data. Castagliola and 

Maravelakis (2011) presented a CUSUM control chart for monitoring process 

variability with estimated parameters. Khaliq and Riaz (2016) developed a robust 

Tukey-CUSUM control chart, based on Tukey control chart under CUSUM 

framework. Qu et al. (2017) introduced a CUSUM chart for monitoring the 

intensity ratio of negative events. 

Although a single CUSUM is usually used for a specific process shift, Sparks 

(2000) proposed a CUSUM control chart with the simultaneous use of multiple 

CUSUM statistics with different values of k to deal with the unknown value of δ. 

Sparks (2000) suggested that the number of simultaneous statistics (which is 

usually equal to three) should be found by the range of shifts which we want our 

control chart to detect. Other CUSUM control charts have also been designed for 

simultaneous detection of a range of mean shifts by Zhao et al. (2005) and Han et 

al. (2007), combining two or more individual CUSUM control charts, respectively, 

designed so as to obtain a good overall performance. 

As proven by Moustakides (1986), the CUSUM chart is the optimal control 

chart for the detection of a process shift of a certain magnitude (for which it was 

designed) among all control charts with the same in-control ARL. The actual shift 

occurring in the process, however, will not be exactly of that particular magnitude 

and, therefore, the designed CUSUM chart will not be the optimal control chart. In 

order to overcome this problem of unknown size of the process shift, Ryu et al. 

(2010) proposed a CUSUM control chart which uses a probability distribution for 

the size of the shift in the process mean. 

When a shift occurs in the process mean or variability, this shift is not always 

a step shift as was the case for the CUSUM control charts presented in the 
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beginnings of section 2.14.1. On the contrary, it can be a gradual shift with or 

without a parametric pattern. If the shift follows a linear model, then it is called a 

linear drift. The case of CUSUM control charts for the case of a linear drift has 

been dealt with by Bissell (1984a,b) and Gan (1992a), while, more recently, Shu et 

al. (2008) presented a weighted CUSUM control chart for the detection of gradual 

mean shifts following a parametric model. 

The case of monitoring both process mean and process variability 

simultaneously with the use of CUSUM control charts was also addressed in 

literature. For example, Yeh et al. (2004) proposed a CUSUM chart for monitoring 

both process mean and variability based on batch data. Wu et al. (2007b) proposed 

a CUSUM chart with variable sample sizes and sampling intervals for monitoring 

both process mean and variance. Cheng and Thaga (2010) proposed a CUSUM 

chart for quickly detecting both small and large shifts in both process mean and 

standard deviation and compared it with other single charts like the chart proposed 

by Chen and Cheng (1998) and the EWMA proposed by Cheng and Xie (1999). 

Maleki and Salmasnia (2017) combined a CUSUM chart with generalized 

likelihood ratio for monitoring process mean and variability simultaneously under 

the presence of measurement errors. 

 

 

2.14.2 Exponentially Weighted Moving Average (EWMA) Control Charts 

The EWMA control charts are also a good alternative to the Shewhart control 

charts when interested in monitoring small process shifts. As Montgomery (2009) 

mentions, their performance is approximately equivalent to CUSUM charts’ 

performance [as was proved by Lucas and Saccucci (1990)], but they can be easier 

to construct and implement since their control limits have a similar form to the 

Shewhart control charts’ limits. Ryan (2011) also supports the similar behaviour of 

the CUSUM and EWMA control charts but seems to suggest the use of CUSUM 

rather EWMA charts due to their advantages: First of all, the CUSUM statistics for 

monitoring the process variability do not depend on the process variance, while the 

exponentially weighted moving averages do. In order to solve this dependency the 
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standardized averages could be used but this would require the formulas for the 

construction of the control limits to be changed. Moreover, there is the inertia 

problem that will be mentioned in section 2.14.2.1 which can make the EWMA 

control chart slower in process shifts detection than the CUSUM chart. If, 

however, the process shift occurs at the beginning of the process or close to it then 

the EWMA control chart is preferable to the CUSUM chart, according to Hawkins 

and Wu (2014), since it detects the shift faster regardless of the shift size. 

EWMA control charts are usually used with individual observations, just like 

the CUSUM control charts [Montgomery (2009)]. In fact, they are ideal for 

monitoring individual observations due to their insensitivity to the normality 

assumption because they use a weighted average of all past and current 

observations. By construction, the possible negative effect of the past data on the 

sensitivity of the EWMA control charts is reduced by the exponentially reducing 

weights given to the past data, as we will see in the next section. This is one of the 

major differences of EWMA charts from the CUSUM charts which accumulate all 

the past observations assigning equal weights to all of them and use a restarting 

mechanism in order to eliminate the possible negative effect of the past 

observations. 

 

 

2.14.2.1 EWMA Control Charts for Monitoring the Process Mean 

The EWMA chart was first introduced by Roberts (1959) as Geometric 

Moving Average (GMA) chart and since then its design, enhancements and 

performance have been studied further by Robinson and Ho (1978), Hunter (1986), 

Crowder (1987a,b, 1989), Lucas and Saccucci (1990), MacGregor and Harris 

(1990), Saccucci and Lucas (1990), Han and Tsung (2004), Shamsuzzaman and 

Wu (2012) and Shu et al. (2014). An overview of EWMA control charts was 

provided by Ruggeri et al. (2007b). The statistic which is plotted on an EWMA 

control chart versus the sample number is the exponentially weighted moving 

average of the observations which is calculated as follows: 

( ) 11i i iz λx λ z −= + −      (2-2) 
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with the starting value of the statistic being defined to be equal to the in-control 

process mean (z0 = µ0) and 0 < λ ≤ 1 being the smoothing constant representing the 

weight given to the current sample mean. If λ = 1, the EWMA control chart 

becomes an ordinary Shewhart control chart. The choice of the value of λ affects 

the width of the control chart. Therefore, it is very important for the control 

chart’s performance. But first, let’s present the control limits of the EWMA 

control chart to make the last statement clearer. The control limits of the chart, in 

case of monitoring individual observations, are computed as follows: 

( )
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1 1
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1 1
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i
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 = + − − −
=

 = − − − −

    (2-3) 

The design parameters L and λ of the chart are chosen so as to achieve a desired 

in-control ARL value, which can also be close to the corresponding value for the 

CUSUM control chart for detecting small shifts for an appropriate combination of 

L and λ. As Montgomery (2009) mentions, the usually chosen values of λ which 

work well in practice are 0.05 ≤ λ ≤ 0.25, with λ = 0.05, λ = 0.10 and λ = 0.20 

being popular choices. In general, smaller values of λ are chosen for the detection 

of smaller shifts. Small λ values make the EWMA control chart more insensitive to 

normality. On the other hand, when using small λ values the risk of the so called 

“inertia effect” is increased. This happens when a shift occurs in the mean in the 

opposite direction of the EWMA statistic relative to the central line. Then the 

small value of λ does not give much weight to the present data and, therefore, it 

takes a while until the EWMA statistic reacts to the shift. As a result, the 

effectiveness of the EWMA chart to detect the shift decreases. Shu et al. (2007) 

proved that one-sided EWMA charts (for monitoring shifts in the mean of 

Normally distributed processes) suffer less inertia in detecting shifts than the 

corresponding two-sided charts. So the use of one-sided EWMA charts could be a 

solution to this problem whenever possible (when a specific shift direction is more 

likely to occur or of more interest). In order to overcome the problem of inertia in 
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the general case, however, Capizzi and Masarotto (2003) proposed the use of an 

adaptive EWMA control chart. The inertia effect can be serious in case of using an 

EWMA chart with a small λ value, due to that fact that the EWMA chart uses only 

one statistic, while CUSUM does not suffer significantly from the inertia effect 

because it uses two statistics with restarting [Yashchin (1987, 1993)]. For this 

reason, in order to overcome the problem of inertia, Spliid (2010) proposed using 

one-sided EWMA control charts with resetting. Woodall and Mahmoud (2005) 

studied the inertial properties of various control charts and defined the signal 

resistance of a control chart as the “largest standardized deviation of the sample 

mean from the in-control value not leading to an immediate out-of-control signal”. 

They showed that, the signal resistance for the EWMA chart is significantly higher 

than the one for the CUSUM chart. Moreover, unlike the Shewhart chart for which 

the signal resistance is constant and equal to L, the signal resistance of the EWMA 

chart is a function of the two design parameters of the EWMA chart and the value 

of the EWMA statistic itself. The most important thing, however, is that it depends 

on the value of λ in a way that smaller λ values (which are desired as mentioned 

previously) result to larger values of the chart’s signal resistance. In order to 

overcome this problem, Woodall and Mahmoud (2005) recommended using 

Shewhart and EWMA control charts together (an EWMA chart with Shewhart 

control limits), especially for small λ values. When λ is specifically chosen to be 

equal to 0.1, according to Jones et al. (2001) and Jones (2002), 400 in-control 

subgroups are required for the EWMA control chart to have desirable properties 

when parameters are estimated. 

 

 

2.14.2.2 EWMA Chart for Monitoring the Process Variability 

The case of monitoring the process variability was addressed by MacGregor 

and Harris (1993) for both correlated and uncorrelated data. The EWMA-based 

statistic for monitoring the process standard deviation is called the exponentially 

weighted mean square error (EWMS) and is defined as follows: 

( ) ( )22 2

11i i iS λ x µ λ S −= − + −  
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and its square root is plotted on an exponentially weighted root mean square 

(EWRMS) control chart for which control limits are constructed as follows: 
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According to MacGregor and Harris (1993), the EWMS statistic is sensitive to 

both process mean shifts and process variability shifts and it is suggested to 

replace the mean value µ with an estimate at each time and, therefore, the statistic 

plotted on the exponentially weighted moving variance EWMV control chart is 

computed as follows: 

( ) ( )22 2

11i i i iS λ x z λ S −= − + −  

Chang and Gan (1994) dealt with optimal design of one-sided EWMA control 

charts for monitoring the process variability. Shu and Jiang (2008) proposed an 

EWMA control chart for monitoring increases in process variability following 

Crowder and Hamilton (1992) who had also dealt with monitoring of the process 

standard deviation using EWMA. Other research dealing with EWMA control 

charts for monitoring process variability includes Huwang et al. (2009) who 

studied the EWMV chart and Huwang et al. (2010). 

 

 

2.14.2.3 FIR EWMA and Other EWMA Control Chart Improvements 

As far as their sensitivity to larger shifts is concerned, EWMA control charts 

can be improved by combining them with Shewhart control charts with wider than 

usual 3σ limits, as was the case with CUSUM control charts, too. This way EWMA 

control charts can become effective in detecting both small and large process 

shifts. The EWMA control charts can also become quicker in detection of 

processes which are out of control at start-up by the addition of a FIR or headstart 

feature as presented earlier with CUSUM control charts. Different FIR approaches 

for EWMA control charts were proposed by Rhoads et al. (1996) and Steiner 
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(1999b), with the latter mentioned in literature as more easily implemented in 

practice. 

Lucas and Saccucci (1990) noted that a Shewhart-EWMA control chart can be 

designed so as to have ARL properties similar to those of a good Shewhart-

CUSUM control chart. They also presented the FIR EWMA which, as they stated, 

is especially useful for cases of choosing a small λ value. Woodal and Maragah 

(1990) noted that the procedure by Lucas and Saccucci (1990) is based on the 

assumption of independence of observations over time and will, therefore, not 

work well under the presence of autocorrelation in the data and made some 

suggestions on the FIR EWMA.  

The FIR EWMA control chart proposed by Lucas and Saccucci (1990) had 

fixed control limits with a head-start. A FIR EWMA control charts with time-

varying control limits and a head-start was introduced by Rhoads et al. (1996). 

Other FIR EWMA control chart with time-varying control limits and different 

head-starts were proposed by Steiner (1999b) and Haq et al. (2014b). 

Lucas and Saccucci (1990) and Knoth (2005) also studied the FIR EWMA 

control charts and Van Gilder (1994) described their application at General 

Motors. Chih-Min et al. (2000) applied Shewhart limits on EWMA charts for 

monitoring wafer data. Reynolds and Stoumbos (2005) showed the improvement of 

the EWMA control chart when using Shewhart control limits, but they found the 

combination of a regular EWMA control chart with an EWMA of squared 

deviation from the in-control value to be superior than the Shewhart-EWMA 

control chart. Capizzi and Masarotto (2010) studied the performance of Shewhart-

EWMA control charts with estimated parameters. 

 

 

2.14.1.4 EWMA Control Chart for Grouped Data 

In case of monitoring data in rational subgroups, instead of individual 

observation as before, we replace the individual observations with the sample 

average and σ with xσ σ n= . Steiner (1998) presented an EWMA control chart 

for grouped data, when grouped data occur in more than just two groups 



 87  

(conforming, nonconforming), similar to the CUSUM chart for grouped data 

proposed by Steiner et al. (1996). 

 

 

2.14.2.4 GWMA Control Charts 

Sheu and Lin (2003) introduced a generalization of the EWMA chart, called 

the Generally Weighted Moving Average (GWMA) control chart, and compared it 

with the EWMA chart proving that the GWMA chart is more sensitive than the 

EWMA chart for monitoring small shifts in the process mean. Then they made the 

chart even more sensitive to small shifts by proposing the composite Shewhart-

GWMA chart. Sheu and Chiu (2007) considered a GWMA chart for monitoring 

Poisson processes, while Chiu (2007) studied GWMA and double GEMA control 

charts for monitoring Poisson distributed processes. Chiu and Sheu (2008) 

introduced FIR Poisson GWMA charts. Shey and Shin (2008) discussed 

monitoring process mean and variance with a GWMA chart based on residuals. 

Sheu and Hsieh (2009) introduced the double GWMA chart which is an extension 

of the GWMA chart resulting by imitating the double EWMA control chart and 

proved (through simulation) the proposed chart’s superiority over both the GWMA 

and the double EWMA charts. Chiu and Lu (2015) studied the steady-state 

performance of the Poisson double GWMA control chart. Areepong and 

Sukparungsee (2016) investigated the performance of zero-inflated Binomial 

GWMA chart. Alevizakos et al. (2018) used a double GWMA chart for monitoring 

time between events. Chen (2020) discussed the double GWMA control chart for 

monitoring COM-Poisson distributed processes and proved its superiority over the 

GWMA and double EWMA charts for the COM-Poisson distribution in detecting 

small shifts in the process mean or variability or both. 

 

 

2.14.2.5 Other EWMA Control Charts 

Most EWMA control charts are designed for monitoring step shifts. 

Sometimes, however, process shifts are gradual (called “drifts”). EWMA control 
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charts for drifts were proposed by Gan (1991b) and Tseng et al. (2007). Domangue 

and Patch (1991), Gan (1995), Chen et al. (2001, 2004), Khoo et al. (2010), Haq et 

al. (2015a) and Raza et al. (2019) proposed an EWMA control chart for monitoring 

both process mean and variability. Gan (1989a) investigated the performance of 

modified EWMA charts for monitoring data from the Binomial distribution. Gan 

(1990a) used a modified EWMA chart for the Binomial distribution, while Gan 

(1990b) used modified EWMA charts for monitoring data from the Poisson 

distribution. Wasserman (1995) proposed an EWMA control chart for short-run 

process monitoring. Jones et al. (2001) investigated the performance of the EWMA 

control chart with estimated parameters, showing that the EWMA charts are very 

affected by estimation and have reliable performance for very large sample sizes 

(n=2000), which are usually difficult to obtain in practice. A solution for reliable 

and effective EWMA control chart with estimated parameters could be the self-

starting EWMA chart. Such a procedure, based on the self-starting CUSUM 

proposed by Hawkins (1987), was presented in Qiu (2014). Steiner and MacKay 

(2001) used EWMA charts for censored data. Jones (2002) addressed EWMA 

control charts with estimated parameters. Zhang et al. (2003) studied the DEWMA 

chart for monitoring Poisson processes. Zhang and Chen (2004) discussed EWMA 

control charts for type I censored data. Kotani et al. (2005) introduced an EWMA 

control chart for high-yield processes constructed by applying the designing 

method of the EWMA chart to the CCC-r chart, investigated its performance in 

terms of the average number of observations to signal (using Markov Chain 

method) and compared it with the control chart proposed by Ohta and Kusukawa 

(2004), proving the superiority of the proposed chart. Reynolds and Stoumbos 

(2006b) used a combination of EWMA charts [including an EWMA of squared 

deviations such as the one presented in Reynolds and Stoumbos (2005)] to 

effectively monitor shifts in both process mean and process variability. Grigg and 

Spiegelhalter (2007) dealt with risk adjusted EWMA chart. Knoth (2007) studied 

the ARL of the EWMA control charts for monitoring Normal mean and variability 

simultaneously. Han et al. (2007) designed EWMA control charts for simultaneous 

detection of a range of mean shifts combining individual EWMA control charts, 
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designed so as to obtain a good overall performance. Sheu et al. (2007) proposed 

an extended EWMA chart for monitoring data from the Poisson distribution. 

Kusukawa et al. (2008) developed a synthetic EWMA chart for monitoring high-

yield processes. Maravelakis and Castagliola (2009) presented an EWMA chart for 

monitoring process standard deviation in case of unknown process parameters. 

Serel (2009) introduced economic design of EWMA control charts based on loss 

function. Tsai and Lin (2009) dealt with EWMA control chart for monitoring the 

average of type I censored data. Weiß (2009c) introduced the Markov np chart and 

the Markov EWMA chart for group inspection of dependent binary observations, 

using the Markov Binomial distribution which is a generalization of the Binomial 

distribution useful for the approximation of the dependence structure of the binary 

observations. The performances of the proposed charts were investigated with 

exact computations of their ARLs and illustrated with application to real web 

access data. Capizzi and Masarotto (2010) dealt with parameter estimation for 

combined Shewhart-EWMA charts. Steiner and Jones (2010) used an updating 

EWMA control chart for the monitoring of risk adjusted survival time. Abbas et al. 

(2011) used runs-type signaling rules in order to improve the performance of 

EWMA control charts. Baik et al. (2011) introduced the G-EWMAG control chart 

which combines the g-chart with the EWMAG chart (EWMA with attribute data 

applied to g statistics) and duscussed its optimal design so as to make the proposed 

chart sensitive to both large and small shifts in high-quality processes. Mavroudis 

and Nicolas (2011) extended the work by Shu et al. (2007) in order to obtain one-

sided EWMA charts for high-yield processes following the Geometric distribution 

and compared the proposed chart’s performance with the corresponding two-sided 

EWMA chart proposed by Yeh et al. (2008) in terms of average number of items 

until shift, revealing its superior sensitivity. Noorossana et al. (2011) used EWMA 

control chart for monitoring rare health events based on the zero-inflated Binomial 

distribution. Patel and Divecha (2011) and Khan et al. (2017a) proposed modified 

EWMA control charts for detecting small shifts. Kawamura et al. (2012) combined 

the EWMA chart with process capability analysis in order to decide the time of 

process adjustment necessary for achieving process variability reduction when 
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monitoring time-series modeled data. Knoth and Steinmetz (2013) proposed 

EWMA p charts. Saleh et al. (2013) investigated the performance of the adaptive 

EWMA chart with estimated parameters. Haq (2014) proposed a mean deviation 

EWMA control chart for monitoring process variability with ranked set sampling. 

Qiu (2014) presented one-sided EWMA control charts with the restarting 

characteristic of the CUSUM charts. Saghir and Lin (2014a) developed a flexible 

and generalized EWMA chart for monitoring count data. Sukparungsee (2014b) 

introduced a square root transformation-based EWMA p chart. Akhundjanov and 

Pascual (2015) used moving range EWMA control charts for monitoring the shape 

parameter of the Weibull distribution. Areepong (2015b) proposed a modified 

EWMA chart for monitoring Binomial processes using square root transformation. 

Azam et al. (2015) used repetitive sampling with a hybrid EWMA chart. Haq et al. 

(2015b) studied the effect of measurement error on EWMA charts with ranked set 

sampling (RSS). Raza et al. (2015) investigated the performance of EWMA and 

DEWMA control charts for censored data. Zaman et al. (2015) discussed mixed 

CUSUM-EWMA charts for monitoring the process location. Arif et al. (2016) 

presented an EWMA np chart for monitoring Weibull data. Aslam (2016) used a 

mixed EWMA-CUSUM chart for monitoring Weibull processes. Atta et al. (2016b) 

addressed monitoring of the sample range of data from the Weibull distribution 

with an EWMA chart applying the weighted variance method. Khaliq et al. (2016) 

and Riaz and Ahmad (2016) introduced Tukey-EWMA control charts. Knoth 

(2016) compared the steady-state performance of the synthetic control chart, the 

“2 of L+1 (L≥1)” runs-rule chart and the EWMA charts with two types of control 

limits, revealing the superiority of the EWMA chart. Saeed and Kamal (2016) used 

robust estimators for process variance for EWMA charts. Zaman et al. (2016) 

proposed a mixed CUSUM-EWMA chart for monitoring process variability. Yang 

and Arnold (2016) used an ARL-unbiased EWMA-p chart for monitoring process 

variability. Abujiya et al. (2017) introduced an EWMA chart based on RSS for 

monitoring process variability. Aslam et al. (2017b) presented a HEWMA-

CUSUM chart for monitoring data from the Weibull distribution. Lu and Huang 

(2017) presented an economic-statistical design of double EWMA chart. Riaz et al. 
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(2017) proposed the mixed Tukey EWMA-CUSUM chart. Sparks (2017) discussed 

risk-adjusted EWMA p charts. Cheng and Wang (2018) studied the performance of 

EWMA median and CUSUM median control charts with measurement errors. 

Naveed et al. (2018) proposed the extended EWMA control chart and proved its 

superiority over the EWMA and Shewhart control charts. Raza et al. (2018) 

presented DEWMA control charts for monitoring censored lifetime data from the 

Rayleigh distribution. Riaz et al. (2019) introduced a mixed EWMA-CUSUM chart 

with a regression estimator for monitoring the process mean. Tayyab et al. (2019) 

proposed EWMA charts with RSS for process mean monitoring. Asif et al. (2020) 

developed a hybrid EWMA chart and studied the effect of measurement error on 

its performance. Phanthuna et al. (2021) investigated the performance of the 

modified EWMA chart for the trend stationary AR(1) model. Taboran et al. (2021) 

designed the Tukey MA-DEWMA control chart. Lee et al. (2022) proposed two-

sided EWMA conditional expected value (CEV) control charts for monitoring 

multiple censored data, showing that two-sided EWMA CEV chart is more 

effective than the combination of two one-sided EWMA CEV charts, and studied 

the performance and optimal design of the proposed chart. Haq and Woodall 

(2023) studied the effect of estimation error on the conditional false alarm rate of 

the EWMA chart based on the estimated dynamic probability control limits. 

Nawaz et al. (2023) developed np-EWMA and np-HEWMA control charts through 

Monte Carlo simulations. Yu et al. (2023) constructed a semi-parametric EWMA 

chart for highly type-I right censored lifetime data using a Kolmogorov-Smirnov 

statistic defined by the differences between the in-control cumulative distribution 

function and the empirical cumulative distribution function, where the cumulative 

distribution function was constructed using the Kaplan-Meier estimator and the 

generalized Pareto distribution to improve the tail estimation. The efficiency of the 

proposed control chart was illustrated with both simulated and real data. 
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2.14.3 Adaptive CUSUM and EWMA Control Charts 

Control charts which have variable sampling rate (VSR), including variable 

sample size (VSS), variable sampling interval (VSI) or both variable sample size 

and sampling interval (VSSI) depending on the position of the plotted statistics or 

variable design parameters are called adaptive control charts. Although adaptive 

control charts are more complicated than the non-adaptive ones, they have the 

advantage of better performance. ARL is no longer effective when dealing with 

these control charts and different performance measures are used for them. 

VSS control charts allow the sample sizes to be variable depending on the 

current sample’s observations and the performances of different charts are 

compared using ANOS or ANSS (Section 2.7) instead of ARL values. In this case, 

a large sample size is used when the plotted statistic is closer to the control limits, 

while a smaller sample size is used when the statistic is plotted closer to the 

central line of the chart. The VSS control charts can detect process shifts quicker 

than the traditional fixed sample size control charts. 

VSI control charts, on the other hand, allow the sampling interval between 

consecutive samples to be variable depending on the current sample’s observation 

and the performances of different charts are compared using the ATS instead of 

ARL values. In this case, if the statistic is plotted closer to the control limits a 

shorter sample interval is used, while a larger sample interval is used when the 

statistic is plotted closer to the central line of the chart. The VSI control charts 

detect process shifts quicker than the traditional fixed sampling interval control 

charts. 

VSI and VSS CUSUM charts were discussed by Reynolds et al. (1990), Ken 

(1997), Shu and Jiang (2006), Wu et al. (2007b,2009a), Luo et al. (2009) and 

Huang et al. (2016). VSI EWMA control charts were addressed by Shamma et al. 

(1991), Saccucci et al. (1992), Reynolds and Stoumbos (2001b), Epprecht et al. 

(2010) and Lu et al. (2017). Reynolds and Arnold (2001) discussed the EWMA 

control charts with VSS and VSIs. Tseng et al. (2010) and Su et al. (2011) dealt 

with adaptive EWMA control charts for processes with drifts. Haq et al. (2018) 

investigated the performance of an adaptive EWMA chart for monitoring the 
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process mean. Tang et al. (2018) investigated the effect of measurement error on 

the adaptive EWMA X  chart, proving that the adaptive EWMA chart performs 

better than the traditional EWMA chart even under the presence of measurement 

error. Aytaçoğlu et al. (2023) addressed the design of EWMA control charts with 

VSS using the conditional false alarm rate. 

Besides the above, dynamic sampling has been proposed, according to which 

the sampling interval for the next sample can vary randomly instead of choosing 

between just two values (a small and a large one). This random length can be 

determined by the p-value of the plotted statistic at the current time point. This 

kind of dynamic sampling was applied to CUSUM control charts by Li et al. 

(2013) and Li and Qiu (2014). 

Adaptive control charts are not only the charts with variable sampling rate, as 

mentioned at the beginning of this section. Another kind of adaptive control charts 

includes the charts with other variable design parameters. An example can be 

found in Sparks (2000) who proposed a CUSUM control chart designed for cases 

of unknown process shift magnitude δ. This kind of CUSUM chart uses an 

estimation of δ at each time point and updates the chart’s design parameters based 

on that estimate. The method proposed by Sparks (2000), however, is difficult to 

be applied to an EWMA control chart due to lack of a relationship between δ and 

the optimum value of λ. A solution to this problem was proposed by Capizzi and 

Masarotto (2003) who dealt with the choice of λ adaptively so as to obtain an 

EWMA chart with reasonable good performance in various cases. 

 

 

2.14.4 Comparisons of EWMA and CUSUM Control Charts in Relevant Literature 

Trevanich and Bourke (1993) developed two EWMA charts for attributes 

data. The first one was constructed for monitoring the fraction nonconforming 

using as observations in the EWMA statistic the number of conforming items 

between successive nonconforming ones. The second EWMA chart was 

constructed for monitoring TBE which are assumed to follow the exponential 

distribution. The proposed control charts were compared with CUSUM charts 
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revealing their superiority in detecting quickly small to moderate shifts in count-

rate. 

Perry and Pignatiello (2003) compared CUSUM and EWMA charts for 

monitoring Poisson distribution. Yeh et al. (2008) proved through simulation that 

the Geometric EWMA control chart is more sensitive than previously proposed 

control charts for high-yield processes including the Geometric CUSUM by Chang 

and Gan (2001). Mavroudis and Nicolas (2013) discussed one-sided Geometric 

EWMA charts for high-yield processes, determined their optimal design, 

investigated the performance in terms of average number of items until shift and 

used the same performance measure for comparisons with the traditional 

Geometric CUSUM charts. 

Haridy et al. (2017) developed Binomial EWMA charts with curtailment for 

monitoring the fraction nonconforming under the assumptions of known in-control 

fraction nonconforming, of Binomially distributed number of nonconforming units 

and of Rayleigh distributed random shifts of the fraction nonconforming. The 

proposed control chart was proved to have better overall performance than both 

the corresponding EWMA chart without curtailment and the CUSUM chart. 

Moreover, when compared to the CUSUM chart with curtailment proposed by 

Haridy et al. (2014b), the EWMA chart with curtailment was proved to perform 

better in most of the cases considered in that study. 

 

 

2.15 Assumptions for Control Charts and the Cases of Their Violation 

The control charts are constructed based on the assumptions of a particular 

distribution and independence of the data. The assumed distribution is the Normal 

distribution for the case of variables data and the Binomial or Poisson distribution 

for attributes data. The assumption of a Binomial or Poisson distributed process 

implies the inherent assumption of constant distribution’s parameter and, 

therefore, mean over time, which in real applications is not always the case and 

this is especially obvious with large subgroup sizes. This problem was solved by 

Laney (2002) who proposed a p-chart which uses all the variation in the data (both 
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within and between subgroups) and combines the concepts of X-chart and z-chart. 

If the sample size is variable then the p-values are converted to z-scores and 

plotted on an X chart. Attributes control charts for very large sample sizes were 

also addressed by Mohammed and Laney (2006) for the case of overdispersed data 

in health care. 

As we have already mentioned, when constructing Shewhart control charts 

the constant k is usually chosen to be equal to three based on the assumption that 

the underlying process distribution is the Normal distribution. When we have 

strong evidence of non-Normality, however, an alternative to fixing the value of k 

is to chose a specific false alarm rate α and then find the corresponding value of k. 

These are the so called “probability control limits” mentioned in Section 2.8.1, and 

can be more effective than the Shewhart control limits in cases of non-Normal 

distributions, particularly the skewed ones. One such example is the use of 3-

sigma control limits for c- and u- control charts. These control charts are based on 

the Poisson distribution which is right skewed and, therefore, the 3-sigma control 

limits increase the false alarm rate. The use of probability control limits as the 

solution to this problem was suggested among others by Ryan and Schwertman 

(1997). Other approaches have also been proposed for the improvement of the c- 

and u- control charts based on transforming the data or standardizing them or 

using an optimization of control limits approach. A review on the empirical 

evaluation of those methods was presented by Aebtarm and Bouguila (2001). A 

graphical method for checking attribute control chart assumptions was presented 

by Jones and Govindaraju (2001). 

 

 

2.15.1 The case when the Poisson distribution is inappropriate for the data 

One basic characteristic of the Poisson distribution is that the mean and variability 

are equal. If there is a strong indication of different mean and variability in our 

dataset, then the Poisson distribution is not appropriate. Such cases are when the 

defects tend to occur in clusters or when there are too many or too few zeros in our 

data. Gardiner (1987) used various discrete distributions for the detection of small 



 96  

shifts in a near-zero defect environment of integrated circuits. Kaminski et al. 

(1992) proposed control charts for counts assuming independent and identically 

distributed observations from the geometric distribution, for monitoring total or 

average number of events. Xie and Goh (1993) used probability limits instead of 

L-sigma limits for these two charts, using the Negative Binomial (or Pascal) 

distribution. Using the exact probability limits, a positive value of the LCL is easy 

to be achieved in practice. 

When dealing with the number of nonconformities, the Poisson distribution 

assumption may not be valid in some cases. Radaelli (1994) dealt with the case of 

falsely assuming Poisson distribution for data following the Negative Binomial 

distribution and presented the reduction of the in-control ARL value of the 

CUSUM control chart in that case. As Hawkins and Olwell (1998) warn, the ARL 

values of CUSUM control charts for variables which are assumed to be Poisson 

distributed are very sensitive to departures from the Poisson distribution. 

Therefore, before making a Poisson assumption a test for overdispersion should be 

performed, since the mean and variability of a Poisson distributed random variable 

are equal. 

 

 

2.15.2 Control Charts for Over-Dispersed or Under-Dispersed Data 

As previously, mentioned, the assumption of Poisson distribution is an 

assumption of equi-dispersion of the data (the parameter of the Poisson 

distribution is both its mean and its variance) which is not always the case in real 

world applications. In cases of over-dispersed or under-dispersed data, other 

distributions are more appropriate than the Poisson distribution. In case of under-

dispersion the Binomial (or Bernoulli) distribution can be used, while in case of 

over-dispersion the Negative-Binomial distribution (which has the geometric 

distribution as a special case) is more appropriate. It should be noted that 

monitoring over-dispersed data with a Poisson-based control chart can lead to 

increased false alarm rate. Monitoring of over-dispersed data was discussed, for 
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example, by Albers (2009), Albers (2011) and Zhang et al. (2013), while Sellers 

(2012) dealt with monitoring of both over- and under- dispersed data. 

Instead of using either the Binomial or the Negative Binomial distribution 

(and its special case, the Geometric distribution) for the construction of control 

charts for under-dispersed or over-dispersed attributes data, a generalized 

distribution which has both properties of under-dispersion and over-dispersion can 

be used. He et al. (2006) used the generalized Poisson distribution for the 

construction of a control chart for monitoring over-dispersed data. Famoye (2007) 

used the shifted (or zero-truncated) generalized Poisson distribution for the 

construction of control charts for monitoring the total number of events and the 

average number of events. Chen et al. (2008) dealt with attributes control charts 

constructed based on generalized zero-inflated Poisson distribution. 

 

 

2.16 Control Charts for Individual Observations Data 

As mentioned earlier in Section 2.12.4, there are situations when the data 

come available without subgrouping, such as low-rate produced items. Examples 

of monitoring such data in accounting include the monitoring of days required to 

process an invoice or the weekly payroll as presented in Walter et al. (1990). In 

such cases there is no choice of whether the data for the control charts will consist 

of individual observations or not. If, however, individual observations can be 

taken frequently enough for us to be able to group them, we should first consider if 

the shifts are either permanent or transient shifts of short duration. If the latter 

case is true, then Reynolds and Stoumbos (2004b) proved that it is better to plot 

individual observations on the control charts with those observations drawn at 

equally spaced times within a given time period rather than drawing a sample at 

the end of it and possibly miss the effect of the transient shift. If, however, the 

transient shifts are of longer duration or if the transient shifts are not of primary 

concern, then their research concluded that it would be better to use subgroups for 

the control charts. Therefore, the individual observations control charts should not 

be the first option whenever subgrouping is possible. This is in accordance with 
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the fact, mentioned earlier, that control charts are equivalent to hypothesis testing, 

because the higher the sample size gets the higher the power of a hypothesis test 

gets, too. Besides, the control limits of the means control chart are narrower than 

the control limits of the individual observations chart and this makes the means 

chart more sensitive to shifts in the process average and, thus, preferable. 

Moreover, subgrouping and, therefore, use of the mean can mitigate the effect of 

non-normality on the control charts and, consequently, it is preferred to individual 

observations when the data come from very skewed distributions, since the X 

charts are more sensitive than the mean charts to non-normality, as well as 

individual measurement abnormalities. Therefore, whenever we have a choice of 

using an individual observations control chart or a mean chart for example, it is 

preferred to choose the mean chart. We could also use both of them in cases, for 

instance, when the existence of just one large observation causes the mean of a 

subgroup to exceed the upper control limit of a means chart. The individual 

observations of that particular subgroup could be plotted on an individual 

observations chart to reveal the magnitude of the specific large observation in 

relation to the control limits and the rest of the observations in that subgroup and 

help further investigation of the cause of that out-of-control signal. Instead of 

using two different control charts together, Albers and Kallenberg (2008) 

presented a control chart which combines a chart for individual observations with 

a chart that signals when a number of consecutive observations are plotted beyond 

a threshold value. Qiu (2014) also described the case of grouping individual data 

and then using traditional Shewhart control charts for monitoring the new grouped 

data. The disadvantage of that approach is that when receiving an out-of-control 

signal from the chart, the process needs to be checked for assignable causes at all 

time points belonging to the particular created group which produced the signal. 

An alternative to the Shewhart X chart that has been suggested in the 

literature is the individual moving average chart constructed as follows: 
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where n is the number of observations for computing each moving average and 

2MR d  is the estimate of variance using moving ranges with the same moving 

window n. The individual moving average control chart has the advantage of 

smoothing the data and the same disadvantages as the MR chart, namely that the 

plotted points (especially moving averages that are less than n periods apart) are 

correlated even for independent individual observations and, therefore, they can be 

quite deceiving regarding interpretation of patterns on the control chart [Nelson 

(1983b)]. As a result, the only out-of-control indication when using those charts 

can be the presence of points beyond the control limits. Another problem with 

individual moving average control charts is that any of the first n-1 observations 

could be an indication of an out-of-control process, but they are not used until the 

next (nth) observation becomes available. Furthermore, the control limits are 

wider for the initial i<n periods than they are in the final steady state and they 

change at each sample point during this initial time, since the control limits during 

this initial period are computed as: 
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with i=1,2,…,n-1. The trouble of different control limits for each of these first 

observations can be solved by first using a simple X chart for i<n and then an 

individual moving average chart for i n≥ . Moreover, as the window (n) of the 

individual moving average increases, the width of the control limits decreases and 

this means that we need a larger value of n in order to detect a smaller shift. 

Increasing n, however, increases the bias in the estimate of the variability, too, 
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under the presence of assignable causes. More specifically, if a single observation 

is affected by an assignable cause, up to n moving ranges are affected by this 

observation while if there is a sustained shift in the process mean, up to n-1 

moving ranges will be affected by this shift. According to Wetherill and Brown 

(1991), the presence of an assignable cause can be revealed by sharply rising 

curves when plotting the estimate of variability against the number of n used in 

order to obtain that estimate. Therefore, although the individual moving average 

control chart is more effective than the corresponding Shewhart chart in detecting 

small shifts, we should always bear in mind both the risk of increasing the bias in 

variability estimation when increasing the size of the window n and the reverse 

relationship between the magnitude of shift we want to detect quickly and the span 

n of the moving averages we use, because if we use larger n in order to detect 

smaller shifts the risk of late response to large shifts increases. It should also be 

noted that although the individual moving average control chart is simpler in the 

construction, individual CUSUM or individual EWMA control charts are more 

effective in detecting small shifts than the individual moving average control 

chart. The main reason that individual observations are preferred anyway when 

using CUSUM or EWMA control charts is the need for less observations for the 

detection of a particular shift if individual observations are used instead of group 

data, as presented in Qiu (2014). 

If the moving range has some very high values, those values will affect the 

estimate of the standard deviation (through moving ranges), too, and make the 

width of the control limits very wide. A solution for that problem suggested by 

Stapenhurst (2005) is to use a median moving range chart. 

In Section 2.12.4 we mentioned that X and MR charts are usually used 

together. Sullivan and Woodall (1996) showed that the gain when combining X 

and MR charts is little and suggested a completely different alternative, namely 

the likelihood ratio test (LRT) approach. The LRT control chart is superior since it 

uses both past and recent data for the computation of the test statistics contrary to 

the Shewhart chart which plots only the current observation. Moreover, the 

statistic in LRT chart can be broken into two components whose relative 
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magnitude can suggest whether the shift occurred in the process mean or 

variability. Another advantage of this control chart is that the point at which a 

shift is detected is much closer to the actual time that the shift occurred than the 

corresponding one when using the combination of X and MR charts. The only 

disadvantage of LRT chart is that it is less effective in detecting temporary shifts 

in the process mean or variability. In that case, Sullivan and Woodall (1996) 

suggest combining the LRT chart with an X chart. 

Besides all the above, dealing with individual observations is very usual and 

has attracted a lot of attention in research literature. For example, control charts 

for individual observations were studied by Nelson (1982), while the effect of the 

sample size on estimated limits for the individual control chart was studied by 

Quesenberry (1993). Finison et al. (1993) applied the individual control charts in 

healthcare for monitoring days between infections. Reynolds and Stoumbos 

(2001b) dealt with monitoring process mean and variance when using individual 

observations and variable sampling intervals. 

Hawkins (1981) proposed a CUSUM chart for monitoring the process 

variability using individual observations, while MacGregor and Harris (1993) 

proposed an exponentially weighted moving variance chart and an exponentially 

weighted mean squared deviation chart for monitoring variability with individual 

observations. Albin et al. (1997) applied Shewhart control limits to EWMA control 

chart for monitoring individual observations in order to gain the ability to detect 

both small and large shifts. Hawkins and Olwell (1998) studied the use of CUSUM 

charts for individual observations from both symmetric and asymmetric 

distributions. Turner et al. (2001) discussed change-point detection for individual 

observations in Phase I. Vermat et al. (2003) investigated Shewhart individuals 

charts for monitoring Normal and non-Normal processes. Kan and Yazici (2005) 

studied the individuals control charts for non-Normal processes. Kan and Yazici 

(2006a,b) proposed individuals control charts with asymmetric limits for 

monitoring data from the Burr and the Weibull distribution. Braun and Park (2008) 

dealt with the estimation of variance for control charts for individual observations. 

Yeh et al. (2010) also addressed the monitoring of process variance using 
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individual observations, while Human et al. (2011) investigated the robustness of 

the EWMA control chart for the case of monitoring individual observations. Li 

(2012) presented GLR charts for monitoring individual observations from the 

Poisson distribution. Pascual (2012) studied individual control charts for 

monitoring Weibull processes. Pascual and Nguyen (2011) addressed moving 

range control charts for monitoring the shape parameter of the Weibull distribution 

using individual data. Shao and Hou (2011) proposed an EWMA chart with MLE 

for estimating the change point when monitoring individual observations from the 

Gamma distribution. Li (2012) presented a GLR chart for monitoring individual 

Poisson observations. Pascual (2012) studied individual and moving ratio charts 

for monitoring Weibull processes. Lee et al. (2013b) discussed the individual 

control chart with variable limits for monitoring the river pollution. Xin et al. 

(2015) dealt with one-sided individual control charts for monitoring data from the 

Lognormal distribution. Wang (2017) presented the MaxEWMA chart for 

individual Weibull distributed observations. Fatemi Ghomi and Sogandi (2019) 

proposed a two-sided CUSUM chart based on a log-likelihood ratio for monitoring 

autocorrelated binary individual observations. Oh and Weiß (2020) studied the 

individuals control chart with supplementary runs rules under serial dependence. If 

a CUSUM chart for monitoring the process mean is combined with a CUSUM 

chart for monitoring the process variability, for the case of individual 

observations, the two CUSUM charts are usually correlated. The formula for the 

computation of the in-control ARL is not valid in cases like that, so an algorithm 

for its computation is presented in Qiu (2014). A recent application of the 

individuals control chart for monitoring healthcare related processes was presented 

by Seoh et al. (2021). 

As far as non-parametric control charts are concerned, Hackl and Ledolter 

(1991) proposed an EWMA control chart for individual observations based on the 

observations’ ranks, which provides a significant advantage in case of non-normal 

situations that are far from normality, while Graham et al. (2011) discussed an 

EWMA sign chart for location for monitoring individual observations. 
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2.17 Assumptions for the Control Charts for Individual Observations 

The assumptions for the control charts for individual observations are the 

same as the ones for the control charts for the mean, namely normality and 

independence. In fact the normality assumption in this case is far more important 

than it is for the case of monitoring the mean, because even a slight departure from 

normality can decrease the in-control ARL value very much. On the other hand, 

the consequences of a violation of the independence assumption depend 

considerably on whether the variance is assumed to be known or not, because the 

effect of autocorrelation in case of unknown variance depends on the estimator of 

variance that we use. For example, although the moving range estimation of the 

variance should not be used even when the data are independent, the situation 

becomes much worse when the data are autocorrelated. Cryer and Ryan (1990) 

showed that ( )2 11E MR d σ ρ= − , where ρ1 is the correlation between consecutive 

observations. This relationship means that if the value of ρ1 is close to 1, then the 

control limits of the chart will be very narrow, leading to a mush smaller value of 

the in-control ARL. Using the sample standard deviation, however, for the 

estimation of the variance will not be such a serious problem for large sample 

sizes. Therefore, increasing the sample size used for the estimation of the variance 

can solve the problem of autocorrelation but it cannot solve the problem of non-

normality, since the distribution does not change by increasing the sample size. 

This is the reason why non-normality is more serious than autocorrelation when 

monitoring individual observations. The effect of non-normality on the individuals 

control chart was studied by Borror et al. (1999), while the effect of 

autocorrelation on the individual observations control chart was studied by 

Maragah and Woodall (1992). Stoumbos and Reynolds (2000) studied the effect of 

both non-normality and autocorrelation on the individual control chart. 

Maravelakis (2003) investigated the effect of non-Normality on EWMA control 

charts for monitoring process variability. Human et al. (2011) studied the 

robustness to non-normality of EWMA control charts for individual observations, 

showing that EWMA control charts are not robust for some non-Normal 
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distributions such as the symmetric bimodal and the contaminated Normal 

distribution. 

If the process presents even moderate departure from normality, then the 

Shewhart individual observations control charts should not be used. It is suggested 

that the control limits should be constructed using percentiles of the underlying 

distribution. Another approach would be to transform the data in order to get 

approximate normality [Chou et al. (1998a, 1998b)]. 

Non-normality is important for CUSUM control charts, too. The effect of 

non-normality on the CUSUM control chart for individual observations was 

studied by Hawkins and Olwell (1998) who presented some numerical results for a 

CUSUM chart for monitoring individual observations from both symmetric and 

skewed distributions and showed that the in-control ARL values can be quite small 

for some distributions and values of k (shift in standard deviation units) but can be 

compensated for with a proper choice of the combination of k and h (decision 

interval). Non-normality is also important when using an EWMA control chart for 

monitoring individual observations. Some EWMA charts for variability are 

sensitive to non-normality of individual observations as shown by Maravelakis et 

al. (2005), such as the EWMA of squared deviations discussed in Reynolds and 

Stoumbos (2005), which, therefore, Maravelakis et al. (2005) recommended not 

using in case of non-normality. 

 

 

2.18 Control Charts for Non-Normal Distributions 

One of the assumptions for the construction of the control charts is the 

underlying data distribution. This distribution is usually assumed to be the Normal 

one. In most cases in practice, however, the Normality assumption is not valid. If 

there is strong evidence of Normal assumption violation and/or the assumption 

about the underlying distribution can not be verified due to lack of adequate data, 

one solution to monitor the data properly is to use nonparametric (or distribution-

free) monitoring methods. Nonparametric control charts do not assume a particular 

underlying distribution for the data and have the advantage of constant in-control 
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performance regardless the shape of the distribution of the monitored data. 

Additionally, as proven in the relevant literature, they have good out-of-control 

performance as compared to the parametric control charts. Furthermore, they are 

not affected by outliers and sometimes do not require estimation of the process 

variance for setting up a control chart for the process mean. According to 

Chakraborti et al. (2004), however, nonparametric control charts perform better 

than the parametric ones only in certain cases such as monitoring skewed or heavy 

tailed distributions. Moreover, nonparametric control charts will be less efficient 

than the parametric ones if the correct underlying data distribution is assumed. In 

spite of its advantages, the nonparametric case is beyond the scope of this thesis 

and will, therefore, be omitted herein. In what follows, only the parametric control 

charts will be addressed. 

The case of the violation of the Normality assumption has been studied a lot 

in literature. One of the first studies on control charts for the non-Normal situation 

was the one by Gayen (1953). The effect of non-Normal distributions to the so 

called “tail probabilities” (namely the probabilities outside the traditional 3-sigma 

limits) has been studied by Schilling and Nelson (1976), showing that even for a 

significant departure from Normality the sum of the two tail probabilities 

(considered together) does not differ much from the nominal value. If the 

individual tail probabilities are investigated separately, however, then, as was 

proven by Moore (1957) and Schilling and Nelson (1976), the results are different. 

As was shown by Faddy (1996) and Ryan and Feddy (2000), the ARL values for 

CUSUM charts and especially Shewhart-CUSUM charts are affected by non-

Normality, too. These two studies, however, did not deal with reference value 

investigation. This was done later by Stoumbos and Reynolds (2004) who proved 

that it is possible to design a CUSUM chart with appropriate reference values so as 

to be robust to non-Normality. Robustness of EWMA control charts to non-

Normality was studied by Borror et al. (1999) showing that there is a possibility of 

designing the chart so as to be robust to some distributions, when choosing a small 

λ value. This, however, requires some knowledge about the shape of the 

distribution and the magnitude of the expected shift so as to design the chart 



 106  

appropriately and this knowledge may not always be available. When the 

assumption of the Normal distribution is proven to be invalid, usual control charts 

are not reliable. This have been verified by several authors, including Lucas and 

Crocier (1982b), Chan et al. (1988), Jacobs (1990), Hackl and Ledolter (1992), 

Amin et al. (1995) and Qiu and Li (2011a,b). The effect of non-normality on 

control charts was studied by Burr (1967), Balakrishnan and Kocherlakota (1986), 

Rocke (1989), Spedding and Rawlings (1994), Shore (2004), Lin and Chou (2007), 

Amhemad (2009, 2010), Chen et al. (2017), Moghadam et al. (2018). The effect of 

non-Normality on the economic design of X  charts with warning limits was 

studied by Chou et al. (2004), while the effect of non-Normality on the economic-

statistical design of X  charts with Weibull in-control time was investigated by 

Chen and Cheng (2007). Chakraborti et al. (2004) studied the robustness of 

nonparametric control charts using data from various non-Normal (skewed or 

Normal-like heavy-tailed or light-tailed) distributions, such as two Gamma 

distributions, the Student’s t distribution, the Laplace (or double Exponential) 

distribution and the Uniform distribution. The robustness of the synthetic control 

chart to non-Normality was examined by Calzada and Scariano (2001), while the 

robustness of group runs chart to non-Normality was addressed by Gadre et al. 

(2005). Horng Shiau and Hsu (2005) studied the robustness of the EWMA chart to 

non-Normality for autocorrelated processes and Kao and Ho (2007) discussed the 

robustness of the R chart to non-Normality. Lin and Chou (2011) investigated the 

robustness to non-Normality of EWMA charts and combined X -EWMA charts 

with variable sampling intervals. Lee (2012) studied the robustness of the X  chart 

to non-Normality and Saghir and Lin (2014b) dealt with the robustness of the G-

chart to non-Normality. Singh and Singh (2014) addressed the robustness of 

control charts to non-Normality and AR(2) processes. Sukparungsee (2016) 

investigated the robustness of memory-type charts to skewed processes. Lin et al. 

(2017) discussed the robustness of the EWMA median control chart to non-

Normality. 

The actual Type I error probabilities of the Shewhart charts in case of non-

Normality has proven to be different than the nominal one resulting in either too 
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many false alarms or inability of the chart to detect real process shifts. Solutions 

suggested in literature for dealing with non-Normality include the increase of the 

sample size in order to have approximate Normality of the plotted statistic due to 

the central limit theorem or the use of an appropriate transformation of the 

observations in order to achieve Normality (which however is not preferred due to 

different scale of the distribution and, therefore, invalid inferences), the use of 

nonparametric control charts and the use of robust control charts, which are 

preferred because they use the original data (and, therefore, inferences are valid 

for the original data) and they are not very affected by violation of the distribution 

assumption and outliers. Shewhart charts were applied to transformed data, for 

example, by Chou et al. (1998b), Yourstone and Zimmer (1992) and Shore (1994, 

2001). Figueiredo and Gomes (2006) proposed robust control charts for monitoring 

non-Normal data based on Box-Cox transformations. Figueiredo and Gomes 

(2009) dealt with robust control charts for monitoring industrial processes. 

Nagendra and Rai (1971) determined the optimum sample size and sampling 

interval for control charts for monitoring the mean of non-Normal processes. 

Lashkari and Rahim (1979) studied the economic design of control charts for the 

mean of non-Normal distributions taking into account the cost of process shut 

down. Lashkari and Rahim (1982) presented the economic design of CUSUM 

charts for monitoring the mean of non-Normal distributions. Rahim and Raouf 

(1983) and Rahim (1985) studied the economic design of X  charts for monitoring 

non-Normal processes with measurement or inspection errors. Rahim (1987) 

addressed the economic design of CUSUM charts for monitoring the mean of non-

Normal processes. Haridy and EI-Shabrawy (1996) presented the economic design 

of CUSUM chats for monitoring the mean of non-Normal processes. Chou and 

Cheng (1997) studied control charts for monitoring the range of non-Normal data. 

Duclos and Pillet (1997) dealt with an optimal control chart for monitoring non-

Normal processes. Sim (2000) addressed the S chart for monitoring non-Normal 

data. Chou et al. (2001a) studied the economic design of X  charts for monitoring 

non-Normal correlated data, while Chou et al. (2001b) investigated the economic 

statistical design of control charts for monitoring the mean of non-Normal 
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processes. Yi et al. (2001) compared the ARL performance of neural network 

models and X  charts for monitoring non-Normal processes. Chou et al. (2002) 

designed X  charts for monitoring non-Normally distributed correlated data with 

minimum loss. Chen (2003) investigated the economic-statistical design of X  

charts for monitoring non-Normal processes with variable sampling intervals. 

Chen (2004) presented the economic design of X  charts for monitoring non-

Normal processes with variable sampling policy. Castagliola and Tsung (2005) 

dealt with monitoring autocorrelated non-Normal processes. Chou et al. (2005) 

addressed acceptance control charts for non-Normal data. Lin and Chou (2005) 

investigated VSS and VSI X  charts for monitoring non-Normal processes. 

Çetinyürek (2006) constructed control charts with various estimators for 

symmetric non-Normal distributions (both long-tailed and short-tailed) and studied 

their robustness. Yeh and Chen (2006) dealt with the economic design of X  charts 

for monitoring non-Normal data with Weibull shock models. Chou and Lin (2007) 

studied the variable parameter X  charts for non-Normal processes. Li et al. (2008) 

presented the economic design of X  charts for non-Normal data with Gamma (λ, 

2) failure models. Torng and Lee (2008) investigated the performance of the 

Tukey’s control chart for non-Normal distributions, showing that this chart is not 

sensitive to shifts detection when the process exhibits large departures from the 

Normality assumption. Tsai and Chiang (2008) addressed the design of acceptance 

control charts for non-Normal data. Chen and Yeh (2009) studied the economic 

statistical design of X  charts with non-uniform sampling scheme for monitoring 

non-Normal processes with Gamma shock. Li et al. (2009) dealt with the 

restrictions in the economic design of X  charts for monitoring non-Normal data 

with Weibull shock model. Torng and Lee (2009) studied the performance of X  

charts with double sampling for monitoring non-Normal processes. Chen and Yeh 

(2010) investigated the economic design of X  charts with variable sampling 

interval for monitoring non-Normal processes with Gamma (λ, 2) failure models. 

Lin et al. (2010) addressed adaptive X  charts with sampling at fixed times for 
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monitoring data from non-Normal distributions. Schoonhoven and Does (2010) 

discussed the X  charts in case of non-Normality. Torng et al. (2010) investigated 

the performance of X  charts with combined double sampling and variable 

sampling interval for monitoring non-Normal processes. Wang et al. (2010) 

discussed the economic-statistical design of control charts with a Gamma shock 

model and correlated data. Yeh and Chen (2010) proposed an economic design of 

X  charts for monitoring non-Normal data with Gamma failure models. Chen and 

Pao (2011) studied the joint economic-statistical design of X  and R charts for 

monitoring non-Normal processes. Chen and Yeh (2011) addressed the economic 

statistical design of X  charts for monitoring non-Normal processes with Weibull 

in-control time. Yeh et al. (2011) discussed the economic design of X  charts for 

monitoring non-Normal processes with Weibull shock models. Abbasi and Miller 

(2012) studied the choice of control chart for monitoring process variability for 

Normal and non-Normal processes. Yin and Chong (2012) investigated the effect 

of non-Normality on the performance of some DEWMA charts. Niaki et al. 

(2013a,b, 2014) addressed the economic and economic-statistical design of X  

charts with variable sampling interval for monitoring non-Normal autocorrelated 

processes. Noorossana et al. (2013) dealt with statistical optimization of VSI X  

charts for monitoring non-Normal processes with the presence of multiple 

assignable causes. Santiago and Smith (2013b) addressed control charts with runs 

rules for monitoring non-Normal processes. Aichouni et al. (2014) presented 

control charts for non-Normal distributed data for the construction industry 

business. Abbasi et al. (2015) dealt with monitoring process variability with 

EWMA charts for Normal and non-Normal processes. Caballero-Morales and 

Rahim (2015) investigated the economic-statistical design of X  control charts 

under the effect of non-Normality. Emura and Lin (2015) compared Normal 

approximation rules for attribute control charts. Panthong and Pongpullponsak 

(2015) discussed the economic design of fuzzy X  charts for monitoring non-

Normal processes. Patil and Shirke (2015) dealt with the economic design of 

variable sampling interval moving average charts for monitoring non-Normal 
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processes. Aslam et al. (2016c) studied X  charts for monitoring non-Normal 

correlated data with repetitive sampling. Noorossana et al. (2016) investigated the 

performance of EWMA charts with estimated parameters when monitoring non-

Normal distributions. Saeed and Kamal (2016) proposed an EWMA control chart 

for monitoring the mean of a non-Normal process based on a robust estimator for 

the process variance. Patil and Shirke (2017) studied the economic design of MA 

charts for monitoring non-Normal processes. Huberts et al. (2018) investigated the 

performance of X  charts for monitoring large datasets from non-Normal 

distributions. Saeed and Kamal (2019) developed EWMA control charts for 

monitoring non-Normal processes using repetitive sampling scheme. 

 

 

2.18.1 Control Charts for Skewed Distributions 

Burrows (1962) studied X̄  control charts for skewed distributions. One way 

of handling skewed distributions in control charts is to adjust control limits so as 

to take the distribution’s skewness into consideration. Choobinek and Ballard 

(1987) adjusted the control limits according to the direction of the distribution’s 

skewness using the weighting variance method in order to obtain two symmetrical 

distributions instead of a skewed one. Abel (1989) also addressed the control 

limits for monitoring skewed distributions using weighted variance. Tagaras 

(1989) considered the economic design of X  charts with asymmetric control 

limits. DuBois (1991) studied control charts for skewed distributions and dealt 

with their application in monitoring health-related processes. Shore (1991) 

introduced control charts with asymmetric control limits corresponding to the 

distribution’s skewness. Schneider and Kasperski (1994) and Schneider et al. 

(1995) addressed control charts for data positively skewed and censored from 

below. Bai and Choi (1995) proposed mean and range control charts for 

monitoring skewed distributions and presented computations and tables useful for 

the implementation of the weighted variance chart proposed by Choobineh and 

Ballard (1987). Choi (1996) studied control charts for monitoring skewed 

processes. Mandraccia et al. (1996) dealt with the design of control charts for 
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monitoring data from skewed distributions. Wu (1996) introduced an X  chart with 

asymmetric control limits for monitoring data from skewed distributions. 

Woodward (1997a,b) discussed control charts for skewed distributions. Zhang and 

Qinan (1997) addressed the optimization of joint X  and S control charts with 

asymmetric control limits. Castagliola (2000), improving the method by 

Choobineh and Ballard (1987), used the scaled weighted variance method for 

taking into account the skewness of distributions when using X ̄ control charts. 

Shore (2000) constructed Shewhart-type control charts for attributes taking into 

account the first three moments of the plotted statistic along with an inflated 

skewness measure during the computation of the control limits, thus making these 

charts useful for skewed attributes distributions for which traditional Shewhart 

charts fail to perform well. Chang and Bai (2001a) dealt with monitoring 

positively-skewed distributions using weighted standard deviations, while Chang 

and Bai (2001b) used median control charts for monitoring skewed distributions. 

Marcellus (2001, 2006) studied X ̄ charts with asymmetric control limits. Dou and 

Sa (2002) addressed one-sided control charts for monitoring the mean of positively 

skewed distributions. Yang (2002) studied the effects of imprecise measurement 

on economic asymmetric control charts. Chan and Cui (2003) proposed a skewness 

correction method for constructing X̄ and R charts for skewed distributions. Khoo 

(2004b) dealt with the problems of the X̄  chart for monitoring data from skewed 

distributions. Pongpullponsak et al. (2004, 2007) compared the performance of 

various methods of constructing control charts for skewed distributions. Samanta 

and Bhattacherjee (2004) introduced a mode chart and a weighted variance chart 

for monitoring skewed distributions, compared them with the Shewhart charts and 

illustrated them with an application to data from a surface mine. Chen and Kuo 

(2007a,b, 2010) conducted comparisons of the symmetric and asymmetric limits 

for X̄  and R charts. Wang and Xu (2007) addressed control charts for monitoring 

small shifts in skewed distributions. Khoo et al. (2008) introduced a synthetic 

control chart for monitoring the mean of skewed distributions combining the 

weighted variance method by Bai and Choi (1995) with the synthetic chart by Wu 

and Spedding (2000). Khoo and Atta (2008) developed a weighted variance 
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EWMA chart for monitoring the mean of skewed distributions. Tsai and Wu 

(2008) proposed an adjusted weighted standard deviation R chart for monitoring 

processes following skewed distributions. Brill and Bzik (2009) dealt with control 

charts for skewed and left-censored data. Castagliola and Khoo (2009) presented 

the synthetic scaled weighted variance control chart for monitoring the process 

mean of skewed distributions combining the scaled weighted variance control 

chart proposed by Castagliola (2000) with the synthetic control chart proposed by 

Wu and Spedding (2000). Hai-Yu (2009) proposed EWMA control charts for 

skewed distributions. Khoo et al. (2009) developed X  and S charts for monitoring 

data from skewed distributions. Lin and Chou (2009) addressed the economic 

design of adaptive X  charts for monitoring skewed distributions. Pongpullponsak 

et al. (2009) studied the economic design of X  charts for skewed distributions. 

Wang (2009b,c) addressed EWMA charts for monitoring skewed distributions. 

Wang (2009d) dealt with skewness and kurtosis correction for X  and R charts. 

Yang and Rahim (2009) considered the minimum loss design of asymmetric X  

and S charts with two independent Weibull shocks. Yazici and Kan (2009) 

discussed control charts with asymmetric control limits for monitoring data with 

small samples. Teh and Khoo (2009, 2010, 2012) and Teh et al. (2014) studied the 

influence of skewed distributions on various weighted moving average-based 

control charts. Ong and Ooi (2010) investigated the influence of skewed 

distributions on the performance of statistical and neural network control charts 

for monitoring the process mean. Yin and Chong (2010) discussed the effect of 

skewed distributions on the performance of some DEWMA charts. Chen et al. 

(2011) studied one-sided control charts for monitoring the mean of positively 

skewed distributions with truncated saddlepoint approximations. Lee (2011) 

discussed the Tukey’s control chart with asymmetrical limits. Kao (2012) 

introduced a range control chart for skewed distributions using the probability 

density function of the distribution of the range. Karagöz and Canan (2012) 

developed control charts for some skewed distributions (Weibull, Gamma and 

Lognormal). Sukparungsee (2012) investigated the robustness of Tukey’s control 
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chart in detecting parameter changes for the case of skewed distributions. Hsieh 

and Chen (2013) examined the economic design of the VSSI X  chart for 

monitoring positively skewed distributions. Lee et al. (2013c) dealt with the 

economically optimum design of Tukey’s control chart with asymmetrical limits 

for monitoring the mean of skewed distributions. Sukparungsee (2013) considered 

asymmetric Tukey’s control chart robust to skewed and non-skewed processes. 

Liew et al. (2014) studied the effect of skewness on the performance of EWMA 

and MA charts. Mekparyup et al. (2014a) discussed adjusted Tukey’s control 

charts and Mekparyup et al. (2014b) investigated the performance of the adjusted 

Tukey’s control charts for monitoring skewed distributions. Karagöz (2015) dealt 

with robust X  and R charts for skewed distributions. Khaparde and Rajput (2015) 

discussed control charts with skewness correction for random queue length. Lukin 

and Yaschenko (2015) developed parametric bootstrap control charts for 

monitoring data from skewed distributions. Atta et al. (2016a) proposed a scaled 

weighted variance control chart for monitoring the standard deviation of skewed 

distributed processes. Karagöz (2016) addressed robust X  charts for skewed and 

contaminated processes. Riaz et al. (2016) studied control charts with skewness 

correction for monitoring contaminated and non-Normal processes. Kao (2017) 

developed X  and R charts for monitoring skewed distributions using weighted 

variance with left-right tail-weighted ratio. Teoh et al. (2016) investigated the 

performance of the double sampling X  chart for monitoring skewed distributions 

with estimated parameters. Atta et al. (2017) introduced a control chart for 

monitoring the standard deviation of data from skewed distributions using 

skewness correction. Yang et al. (2017) proposed a median loss control chart for 

monitoring quality loss with data from skewed distributions. Iqbal and Hassan 

(2018) discussed robust control charts for monitoring process variability for 

skewed distributions. Karagöz (2018) studied control charts with asymmetric 

control limits for monitoring the range of non-Normal distributions with robust 

estimator. Noiplab and Mayureesawan (2019) considered modified EWMA chart 

for monitoring skewed distributions and contaminated processes. Atta et al. (2020) 
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proposed a skewness correction control chart for monitoring process variability for 

skewed distributions and illustrated it with application in healthcare. 

 

 

2.18.2 Control Charts for Specific Non-Normal Distributions, Families and 

Mixtures 

Control charts have been proposed in the relevant literature for various non-

normal distributions, families and mixtures. This subsection presents a brief 

overview of control charts for all of them exept the Pareto and Pareto-related 

distributions, which the next subsection is specially dedicated to, since they are 

greately connected to Chapter 9 of this thesis. This subsection also pays special 

attention to EWMA control charts for the distributions mentioned here, since 

EWMA control charts are the core of Part II of this essay.  

Control charts for Bernoulli distribution have been discussed among others 

by Steiner et al. (1999), Borror and Champ (2001), Steiner et al. (2001), Weiß and 

Atzmüller (2010), Rossi et al. (2012, 2014), Lee et al. (2013a), Dexter et al. 

(2014), Martínez-Rego et al. (2015), Noskievičová et al. (2015), Zhang and 

Woodall (2015,2017a,b), Aminnayeri and Sogandi (2016), and Fatemi Ghomi and 

Sogandi (2019). Control charts for Binomial distribution have been addressed by 

many researchers including Quesenberry (1991a,1995a), Bourke (2001a), Morais 

and Pacheco (2006), Wu et al. (2008a), Fatahi et al. (2010), Areepong and 

Sukparungsee (2011), Chakraborty and Khursid (2011a,b), Huang et al. (2012), 

Haridy et al. (2014b) and Aytaçoğlu and Woodall (2020). Papayanopoulos (1997) 

introduced control charts for monitoring data from the weighted Binomial 

distribution. Fatahi et al. (2010) presented control charts for monitoring rare health 

events with truncated zero-inflated Binomial distribution. Chakraborty and 

Khursid (2011c) dealt with one-sided CUSUM charts for the zero-truncated 

Binomial distribution. Ho and Alencar (2013) introduced an overdispersed 

Binomial distribution including the common correlation between the individual 

Bernoulli variables, estimated its parameters with the methods of moments and 

MLE and developed Shewhart-type np and EWMA-type np charts for the proposed 
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distribution and compared their performances with each other and with the 

conventional np and EWMA charts. Khurshid and Chakraborty (2014) investigated 

the effect of measurement error on the power of the control chart for monitoring 

data from the zero-truncated Binomial distribution. Rakitzis et al. (2014, 2016c) 

dealt with control charts for monitoring data from zero-inflated Binomial 

distribution. 

Control charts for the exponential distribution have been studied for example 

by Vardeman and Ray (1985), Gan (1989b,1992b,1994,1998), Alwan (2000), Xie 

et al. (2002b), Scariano and Calzada (2003), Zhang et al. 

(2005,2006,2011a,2014a), Liu et al. (2006a,b,2007), Busaba et al. (2012a), 

Sukparungsee (2014a), Sun et al. (2017) and many others. EWMA control charts 

for the Exponential distributions have been discussed by Gan and Chang (2000), 

Ozsan et al. (2010), Pehlivan and Testik (2010), Suriyakat et al. (2012), 

Polunchenko et al. (2014), Aslam et al. (2015a,b,2017a,c,d), Khan et al. (2016), 

Suriyakat (2016) and Arif et al. (2017). Subba and Kantam (2008) addressed 

control charts for monitoring the mean of double exponential distribution. Busaba 

et al. (2012b) examined the performance of CUSUM charts for negative 

exponential data. Rao (2013) introduced one-sided CUSUM charts for the Erlang-

truncated Exponential distribution. Luguterah (2015) developed a CUSUM chart 

for monitoring the parameters of the Erlang-truncated Exponential distribution. 

Mukherjee et al. (2015) discussed control charts for simultaneous monitoring of 

the parameters of a shifted exponential distribution. Narayana Murthy and Akhtar 

(2017) dealt with the optimization of CUSUM charts for the truncated Hyper-

Exponential distribution. Kavitha and Gunasekaran (2020) presented an attribute 

control chart for Exponentiated Exponential distribution under type-I censoring. 

Control charts for the Gamma distribution have been covered by several 

authors including Gonzalez and Viles (2000,2001), Sim (2003a), Lu and Torng et 

al. (2009), Chen (2016), Yang et al. (2016) and Khan et al. (2017b). Regula (1975) 

dealt with optimal CUSUM charts for the detection of a change in distribution for 

the Gamma family. Tsai (2008) developed EWMA charts for monitoring type-I 

censored data from the Gamma distribution. Ali et al. (2023) discussed one-sided 
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EWMA charts for the detection of upward or downward shifts in the mean of a 

process following a truncated Gamma distribution. 

Control charts for the Geometric distribution have been addressed among 

others by Calvin (1983), Kaminsky et al. (1992), Xie et al. (2000a,b), Bourke 

(2001b,2018), Yang et al. (2002a,b), Zhang et al. (2004,2013), Hong and Lee 

(2015) and Morais (2017). Control charts have also been considered for the 

Geometric Poisson distribution [for example Chen (1999), Chen et al. (2005) and 

Saghir et al. (2015)]. Chen et al. (2006) used Geometric Poisson EWMA charts for 

the detection of small quality level shifts. Chen (2012) dealt with Geometric 

Poisson EWMA charts for compound Poisson processes. 

Topalidou and Psarakis (2009) provided a review of control charts for the 

Multinomial distribution. More recently, Lee et al. (2017) discussed the 

Generalized Likelihood Ratio (GLR) chart for monitoring the Multinomial 

distribution, while Lee and Woodall (2018) noted the advantages of GLR charts as 

far as change point detection is concerned, since these charts offer estimates of the 

process change-point and shift size for post-signal diagnosis for a wide range of 

shifts of process parameters. The GLR statistic, however, can sometimes be 

undefined when monitoring count processes, such as those following Binomial, 

Bernoulli, Poisson and Multinomial distributions. For cases like these, Lee and 

Woodall (2018) introduced a modified GLR statistic so as to be well defined in 

every situation. 

Control charts for the Negative Binomial distribution were approached by 

several authors among which Xie and Goh (1993), Yun and Youlin (1996), 

Schwertman (2005), Albers (2008,2010b), Sparks et al. (2010a), Willem (2010), 

Cheng and Yu (2015), Albarracin et al. (2017) and many others. Control charts 

were also investigated for the case of zero-truncated Negative Binomial 

distribution for example by Khurshid and Chakraborty (2013,2016), Chakraborty 

et al. (2017a) and Khurshid (2017). EWMA control charts for the Negative 

Binomial distribution were studied by Sparks et al. (2010b,2011), Yu et al. (2011) 

and Saghir and Lin (2015c). 
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Control charts for the case of monitoring data from the Poisson distribution 

have been discussed among others by Quesenberry (1991b,1992,1995b), Kim et al. 

(1992), Kenett and Pollak (1996), Singh and Sayyed (2001), Herberts and Jensen 

(2004), Perry et al. (2007a,b), Weiß (2007,2009a), Weiß and Testik (2009,2011), 

Ryan and Woodall (2010), Zhao et al. (2015a,b), Abbasi (2017), Pollard et al. 

(2018) and Mou et al. (2023). EWMA control charts for the case of Poisson 

distribution were considered by Borror et al. (1998), Testik et al. (2006) EWMA 

control charts for autocorrelated Poisson processes were addressed by Weiß 

(2009b), Weiß (2011) and Zhang et al. (2014b). Sparks et al. (2009) discussed 

EWMA charts for the detection of unusual increases in Poisson counts, while Shu 

et al. (2012) considered EWMA charts for detecting increases in Poisson rate. 

Perry and Pignatiello (2011) dealt with estimation of the time of a step change in 

CUSUM and EWMA charts for the Poisson distribution. Abujiya (2017) used 

combined Shewhart and EWMA charts for monitoring Poisson data. EWMA 

control charts for the Poisson distribution were studied by Zhou et al. (2012), 

Abujiya et al. (2013,2016a) and Zhou et al. (2016).  

Famoye (1994) proposed control charts for shifted generalized Poisson 

distribution. White and Keats (1996) investigated the performance of the Poisson 

CUSUM chart, while White et al. (1997) compared the use of Poisson CUSUM and 

c charts for monitoring defect data. He et al. (2003) considered the estimation 

error in control charts for zero-inflated Poisson distribution, while Fatahi et al. 

(2012) used an EWMA chart for monitoring rare health events with zero-inflated 

Poisson distribution. Bhattacharjee and Das (2010) discussed the use of the 

generalized Poisson II distribution for the construction of control charts for 

monitoring the number of defects per unit instead of using the traditional Poisson 

distribution. Control charts for monitoring Poisson rates were covered for example 

by He et al. (2014a), Han et al. (2010) and Assareh et al. (2016). Richards et al. 

(2015) studied control charts for nonhomogenous Poisson processes. Control 

charts for zero-inflated Poisson distribution were addressed among others by Xie 

et al. (2001), He et al. (2012a,2014c), He and Li (2012), Katemee and 

Mayureesawan (2012), Areepong (2015a) and Mukherjee and Rakitzis (2019). 
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Control charts were also studied for the case of the COM-Poisson distribution 

among others by Sellers (2012), Saghir et al. (2013), Saghir and Lin (2014c) and 

Aslam et al. (2016a). EWMA control charts in particular were presented for the 

COM-Poisson distribution by Aslam et al. (2016b,2016e,2017e), Alevizakos and 

Koukouvinos (2019) and Leong and Tan (2015). Balamurali and Kalyanasundaram 

(2013) used CUSUM control charts for monitoring data from a truncated Poisson 

distribution. Chakraborty and Khurshid (2013a) and Chakraborty and Khurshid 

(2013b) investigated the effect of measurement error on the power of control chart 

for the ratio of two Poisson distributions and the zero-truncated Poisson 

distribution, respectively. Katemee and Mayureesawan (2013) studied CUSUM 

charts for monitoring data from the zero-inflated generalized Poisson distribution. 

Rakitzis et al. (2016a) introduced CUSUM charts for monitoring data from 

geometrically inflated Poisson distribution and applied them to monitoring data 

related to infectious disease, while Rakitzis et al. (2016b) discussed monitoring of 

general inflated Poisson processes. Rakitzis et al. (2016d) presented control charts 

for monitoring zero-inflated correlated Poisson data. Areepong (2018) dealt with a 

MA control chart for monitoring autocorrelated zero-inflated Poisson processes. 

Control charts for the Lognormal distribution have been studied for example 

by Morrison (1958), Joffe and Sichel (1968), Maravelakis et al. (1999), Shibo et 

al. (2008) and Huang et al. (2016b,2017). Areepong and Sukparungsee (2010) used 

the EWMA for monitoring Lognormal distributed processes. 

Control charts for the Skew-Normal distribution have been addressed among 

others by Tsai (2007), Figueiredo and Gomes (2013a,b) and Li et al. (2014,2019). 

Control charts have also been developed for the case of the truncated Normal 

distribution, such as for example by Rai (1966), Cox (2009), Chakraborty and 

Khurshid (2015a,b) and other researchers. Control charts for the Inverse Gaussian 

distribution have been investigated among others by Edgeman (1989a,b,1996), 

Nabar and Bilgi (1994), Hawkins and Olwell (1997), Sim (2001,2003b), Lio and 

Park (2008) and Guo et al. (2014). Johnson (1963) proposed CUSUM charts for 

the Folded Normal distribution, while Rao et al. (2015) developed control charts 

for the Half Normal distribution and Rao et al. (2018) introduced control charts for 
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the two-piece Normal distribution (useful for asymmetric data) using both single 

and repetitive sampling and compared the proposed charts’ efficiency through 

simulation. 

One of the distributions for which a vast amount of research has been done 

regarding control charts is the Weibull distribution. Examples include Johnson 

(1966), Nelson (1979), Ramalhoto and Morais (1995), Nichols and Padgett (2005), 

Erto and Pallotta (2006,2007,2008), Erto et al. (2008,2015,2018), Huang and 

Pascual (2011a,b), Chen (2014), Chan et al. (2015), Erto (2015), Wang et al. 

(2015), Wang et al. (2017a,2018b), Khan et al. (2017c,2018a,b), Zhang et al. 

(2017) and Pascual and Park (2018). EWMA control charts for the Weibull 

distribution have been discussed by Ramalhoto and Morais (1996), Ramalhoto and 

Morais (1999), Zhang (2004), Xie et al. (2008), Pascual (2010) and Black et al. 

(2011). Pascual et al. (2017) used EWMA charts for monitoring Weibull quantiles. 

Wang and Cheng (2017a) discussed a likelihood ratio test-based EWMA chart for 

monitoring the mean and variance of Weibull distributed processes. Wang and 

Cheng (2017b) proposed EWMA charts for monitoring a Weibull process with 

subgroups. Wang et al. (2018a) developed a Bayesian EWMA chart for monitoring 

Weibull percentiles with or without type II censoring. 

Control charts have also been constructed for the Birnbaum-Saunders 

distribution [e.g. Lio and Park (2008), Leiva et al. (2011,2015), Khan et al. 

(2018c)], the Burr distributions (of various types) [e.g. Yourstone and Zimmer 

(1992), Chou et al. (2000), Chen and Yeh (2006), Lio et al. (2014), Chen and Chou 

(2017), Malela-Majika et al. (2018)], the Power Function distribution [Zaka et al. 

(2021a)], the Reflected Power Function distribution [Zaka et al. (2021b)], the 

Weighted Power Function distribution [Jabeen and Zaka (2021)], the Transmuted 

Power function and Survival Weighted Power Function distributions [Zaka et al. 

(2022)], the Rayleigh distribution [e.g. Raza and Riaz (2013), Raza and Butt 

(2016), Tyagi and Singh (2016)] and the Inverse Rayleigh distribution [e.g. Ali 

and Riaz (2014), Nanthakumar and Kavitha (2017)]. Sindhu et al. (2016) dealt 

with Bayesian cumulative quantity control charts for monitoring a mixture of 

Rayleigh distribution. Control charts have also been proposed for the Dagum 



 120  

distribution [Gadde et al. (2019)], the Erlang distribution [Knoth (1998a,b)], the 

Katz family of distributions [Fang (2003)], the Generalized Lambda distribution 

[Fournier et al. (2006), Das (2012)], the Gompertz distribution [Adewara et al. 

(2020)], the Log-Logistic distribution [Kantam and Rao (2006), Kantam et al. 

(2006), Mehmood and Awais (2021)], the Half Logistic distribution [Rao and 

Kantam (2012)], the Maxwell distribution [Hossain et al. (2017)] and the Inverse 

Maxwell distribution [Omar et al. (2021)]. 

Sim and Wong (2003) discussed R charts for monitoring data from the 

exponential, Laplace and Logistic distributions. Haynes et al. (2008) developed 

control charts with probability limits for non-Normal distributed data using g-and-

k distributions, investigated their performance, the effect of non-Normality on the 

control limits and the robustness to non-Normality (error in confidence resulting 

from incorrect assumption of Normality) and illustrated them with real data 

applications using Bayesian and non-Bayesian estimation for the parameters of the 

distribution. Chattinnawat (2009) proposed a control chart for monitoring demerits 

when the process follows a Trinomial distribution. Srinivasa Rao et al. (2010) 

dealt with the economic statistical design of control chart for a quality 

characteristic following a Johnson distribution and process in-control times 

following generalized Pareto distribution and investigated the sensitivity of the 

design regarding the parameters and costs. Sant’Anna and ten Caten (2012) 

proposed Beta control charts for monitoring fraction data. Boyapati et al. (2015) 

constructed control charts for the new Weibull-Pareto distribution using 

percentiles of various sample statistics such as mean, median, midrange, range and 

standard deviation and evaluated the power of the proposed control charts in 

comparison with those using the traditional Shewhart control limits. Rao and 

Kumar (2015) introduced control charts for monitoring Exponential-Gamma 

processes. Saghir and Lin (2015b) extended the work by Saghir and Lin (2014b) 

and Riaz and Saghirr (2007) and developed a control chart with probability limits 

for monitoring the process variability based on Gini’s mean difference for the 

Exponential, t(5), Logistic and Laplace distributions and compared the performance 

of the proposed control charts with the 3σ-limits control charts discussed in Saghir 
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and Lin (2014b) and the traditional R and S charts. They also designed the 

corresponding X̄ chart for the process mean related to the Gini-chart for 

variability, following Schoonhoven and Does (2010). Ahangar and Chimka (2016) 

proposed an attribute control chart for monitoring count data processes optimally 

designed so as to minimize the total cost of a linear function of Type I and Type II 

errors and applied it to the Poisson, Geometric and Negative Binomial 

distributions. Rao et al. (2016) proposed skewness corrected control charts for 

monitoring the mean and range of data from the Inverse Rayleigh and Inverse Half 

Logistic distributions. Raza and Siddiqi (2016) and Raza et al. (2016) presented 

EWMA and DEWMA charts for monitoring censored data from the Poisson-

Exponential distribution. Rao (2018) introduced a control chart for the 

Exponentiated Half Logistic distribution. Rosaiah et al. (2018) developed an 

attribute control chart for monitoring truncated life test data from the 

exponentiated Fréchet distribution. Shafqat et al. (2018) investigated and 

compared the performances of Shewhart-type attribute control charts under 

truncated life test for the Burr X, Burr XII, inverse Gaussian and Exponential 

lifetime-truncated distributions, revealing the superiority of the inverted Gaussian 

distribution over the others. Shruthiand Deepa (2018) discussed control charts for 

failure times following the Exponentiated Gamma, Exponentiated Lomax, Beta 

Weibull and Log Logistic distributions under truncated life test. 

Aslam et al. (2019b) introduced the median absolute deviation control chart 

for monitoring process capability indices for Weibull, Gamma and Lognormal 

distributions. Lee Ho et al. (2019) presented control charts with probability limits 

for monitoring rates and proportions for data from the Beta, the Simplex and the 

Unit Gamma distributions. Elrazik (2020) constructed attribute control chart for 

the new Weibull Pareto distribution under truncated life tests and used the ARL to 

evaluate its performance and compare it with the inverse Gaussian. Naseri et al. 

(2020) showed that, when applying a control chart on the deviation of the actual 

from the nominal size of each part of a short-run process, differences between the 

control limits of various deviations can generate a heavy-tailed distribution. 

Therefore, they suggested the use of a corrected numbers method obtained from 
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Phase I and applied in Phase II and illustrated the proposed method with an 

example from the Cauchy distribution. Demertzi and Psarakis (2024) discussed 

control charts for the two-parameter Lindley distribution by Shanker et al. (2013a) 

using the skewness correction by Chan and Cui (2003) as part of this essay. All the 

details on these charts will be presented in sections 7.2-7.8 below. 

 

 

2.18.3 Control Charts for the Pareto and Pareto-Related Distributions 

Petcharat et al. (2012) investigated the performance of CUSUM charts by 

fitting Pareto distribution with hyperexponential. Prasad et al. (2013) studied the 

performance of Pareto type II control charts for software reliability. Kumari et al. 

(2014) constructed control chart for the Pareto-II distribution using an order 

statistic for monitoring software failures and improving software reliability and 

compared through control charts this distribution with the Half Logistic 

distribution taking into account time domain data based on non homogenous 

Poisson process. The parameters were estimated by the MLE method. Guo and 

Wang (2015) discussed control charts for monitoring separately each of the 

parameters of the Pareto distribution based on ordered statistics and investigated 

the effect of estimating the parameters on the performance of the charts. Aslam et 

al. (2016d) proposed a control chart for time truncated life tests when the data 

follow the Pareto-II distribution with known or unknown shape parameter and 

investigated its performance through simulation. Nasiru (2016) introduced one-

sided CUSUM charts for monitoring the shape parameter of the Pareto 

distribution. Baba and Maahi (2017) and Baba and Luguterah (2018) used CUSUM 

control charts for monitoring shifts in the parameters of the Pareto distribution. 

Jeyadurga et al. (2017) developed an np chart with repetitive group sampling for 

monitoring truncated life test data, under the assumption of Pareto-II distributed 

lifetime. Shei and Tuahiru (2017) considered a CUSUM chart for monitoring the 

parameters of the Pareto distribution. Bizunet and Wang (2018) proposed a 

likelihood ratio based double EWMA chart for monitoring the shape parameter of 

the inflated Pareto distribution discussed in Figueiredo et al. (2015). Burkhalter 
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(2020) discussed bootstrap control charts based on MLE, modified moment method 

and least squares estimation for monitoring generalized Pareto percentiles. 

Burkhalter and Lio (2021) constructed bootstrap control charts for the generalized 

Pareto distribution percentiles using the estimation methods of least squared error 

and maximum likelihood and a modified moment method and compared the 

performances of the proposed bootstrap charts and the Shewhart-type control 

charts through Monte Carlo simulation revealing the superiority of the bootstrap 

control chart based on the maximum likelihood estimator over all the other control 

charts. 

 

 

2.19 Conclusion 

This chapter has presented some parts of the literature on parametric SPC 

charts beginning with Shewhart control charts and including other major control 

charts proposed as alternatives or enhancements. Advantages and problems of 

existing control charts have been mentioned. Control charts for non-normal 

distributions and individual observations have been presented in special sections 

of this chapter since they constitute the motivation for the next chapters of this 

thesis. 
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CHAPTER 3 

 

OVERVIEW OF LINDLEY DISTRIBUTION 

 

 

 

3.1 Introduction 

The Lindley distribution is an asymmetric one-parameter continuous 

distribution with right asymmetry which has some nice properties to be used in 

lifetime data analysis such as closed forms for the survival and hazard functions 

and good flexibility of fit. It was introduced by Lindley (1958, 1965) in the 

context of Bayesian statistics as a counter example of fiducial distributions 

(distributions which are opposite to known distributions) to illustrate the 

difference between fiducial distribution and posterior distribution. 

The statistical properties of the distribution itself remained relatively 

unstudied until a publication by Ghitany et al. (2008) and a study by Hussain 

(2006), but since then, the Lindley distribution has been generalized, extended, 

mixed, modified (transmuted, transformed), discretized and used to describe the 

lifetime of a process or device and to model many types of real-world data such as 

waiting times of customers in queues until receiving service [e.g. Al-Mutairi et al. 

(2013)], human mistakes and various accidents [e.g. Ghitany and Al-Mutairi 

(2009)], failures and repair times of airborne systems and communications [e.g. 

Abdi et al. (2019)], stress-strength reliability [e.g. Al-Mutairi et al. (2015), Hassan 

(2017a,b), Joukar et al. (2020)], engineering, life testing and survival analysis 

[e.g. Al-Babtain et al. (2015), Shanker and Shukla (2016), Shanker et al. (2016a, 

2017, 2019), Dey and Nassar (2020)]. It can be used in a wide variety of fields, 

including medicine, biology, genetics, epidemiology, finance and actuarial 

sciences, ecology, sociology and demography, agriculture, reliability and 

engineering, hydrology, etc. and has been generalized so as to model a wide 

spectrum of phenomena including cancer patient survival, carbon retained by plant 
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leaves, stress-strength reliability and miscellaneous lifetime data, survival times 

and group mortality data and many other fields which are more likely out of the 

scope of interest of statistical process control. A recent extensive work on Lindley 

distribution with many lifetime applications can be found in Sharon Varghese 

(2018), while a review of some of Lindley distribution’s generalizations can be 

seen in Tomy (2018). What follows below is a review of the Lindley distribution. 

More specifically, section 3.2 presents the definition and some useful information 

for the Lindley distribution, section 3.3 deals with the studies on the classical one-

parameter Lindley distribution and section 3.4 is dedicated to a specific two-

parameter extension of the Lindley distribution by Shanker et al. (2013) for which 

control charts are going to be constructed in Chapter 7. 

 

 

3.2 Useful Information for the Lindley Distribution 

The Lindley distribution is an asymmetric continuous distribution with right 

asymmetry which has some nice properties to be used in lifetime data analysis 

such as closed forms for the survival and hazard functions and good flexibility of 

fit.  

The one-parameter Lindley distribution was introduced by Lindley (1958 and 

1965) in the context of Bayesian statistics as a counter example of fiducial 

distributions (distributions which are opposite to known distributions) to illustrate 

the difference between fiducial distribution and posterior distribution. 

The probability distribution function (p.d.f.) of the one-parameter Lindley 

distribution is given by 

( ) ( )
2

; 1 , 0, 0
1

θxθ
f x θ x e x θ

θ
−= + > >

+
    (3-1) 

while its cumulative distribution function (c.d.f.) is given by 

( ) 1
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θ
−+ +

= − > >
+

       (3-2) 

Figures 3-1 and 3-2 show the probability density of the Lindley distribution for 

various values of the distribution’s parameter. 
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Figure 3 - 1: Probability plot of the Lindley distribution for various values of its 

parameter 

 

 

The first four moments about origin of the Lindley distribution are given by  
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. The coefficient of skewness 

( )1β  of the Lindley distribution is given by  
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while its coefficient of kurtosis ( )2β  is 
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Figure 3 - 2: Probability plot of the Lindley distribution for various values of its 

parameter 

 

 



 129  

3.3 One-Parameter Lindley Distribution 

Hussain (2006) studied the Lindley distribution with respect to its statistical 

and sampling properties, dealt with parameter estimation and applied the 

distribution to stress-strength reliability of both a single component and a system 

of two identical components connected either in parallel or in series. Ghitany et al. 

(2008) studied various properties of the Lindley distribution and applied it to 

waiting times before service of bank customers. 

Jodrá (2010) presented the computer generation of random variables 

following the Lindley distribution based on the fact that the quantile functions of 

both the aforementioned distributions can be written in closed form using the 

Lambert W function. Based on that, Mazucheli et al. (2016) introduced an R 

language package for the Lindley distribution and many other generalizations and 

modifications of the Lindley distribution. 

Krishna and Kumar (2011) studied the one-parameter Lindley distribution as 

a useful reliability model, investigated its properties and reliability measures and 

dealt with the estimation of the distribution’s parameter and other reliability 

features using both the classical maximum likelihood method and the Bayesian 

approach. Mazucheli and Achcar (2011) proposed the Lindley distribution as the 

distribution of competing risks for data sets of death or failure of individuals. 

Okwuokenye (2012) dealt with the size and power of tests of hypotheses on 

parameters when modelling time-to-event data with the Lindley distribution for the 

case of both complete and incomplete data with or without covariates. Covariate 

information was integrated using the Cox’s proportional hazard model with the 

Lindley distribution as the time dependent component. Ali (2013) investigated the 

properties of Lindley distribution under different loss functions using the Bayesian 

approach. Ali et al. (2013) investigated the mathematical properties of the Lindley 

distribution by means of Bayesian approach under various loss functions and 

presented a real-life application to waiting time data at the bank comparing the 

results in view of the posterior risk. Gupta and Singh (2013) investigated and 

compared the classical and Bayesian analysis of the hybrid censored lifetime data 

assuming that the data follows the Lindley distribution. Athar et al. (2014) 
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determined some recurrence relations between moments of progressively Type-II 

right censored order statistics from the Lindley distribution. Saran et al. (2014) 

presented the L-moments and TL-moments of the Lindley distribution, used them 

for parameter estimation and presented the recurrence relations for higher 

moments of order statistics for the untruncated Lindley distribution or the doubly 

truncated Lindley distribution. Singh et al. (2014) proposed the upper, lower and 

double truncated versions of the Lindley distribution and estimated their 

parameters. Zaninetti (2019) presented the truncated Lindley distribution with 

scale and double truncation and estimated its parameters. Saran et al. (2015) 

presented recurrence relations for the moments of generalized order statistics from 

the Lindley distribution. Shanker et al. (2015) compared the Lindley distribution 

to the Exponential distribution when used for modeling lifetime data. Bakouch and 

Popović (2016) dealt with a stationary first-order autoregressive process with 

Lindley marginal distribution and estimated its parameters with tree different 

methods. El-Din et al. (2016a) dealt with optimal plans of constant-stress 

accelerated life tests for failure data from the Lindley distribution and illustrated 

their analysis with real data sets which they also used for comparison purposes 

between the Lindley distribution and the exponential distribution. They also 

presented the optimal proportion of test units allocated to each stress level based 

on two optimality criteria which they compared with each other and with the 

traditional optimal plan with two different methods. El-Din et al. (2016b) dealt 

with point and interval estimation for the parameter of the Lindley distribution in 

step-stress accelerated life testing with progressive first failure censoring. Kwon 

and Kim (2016) studied a comparative software development cost model based on 

the hazard function of the Lindley distribution. Metiri et al. (2016) dealt with 

Bayesian estimation for the Lindley distribution under Linear-exponential (Linex) 

loss function using informative and non-informative priors. Okwuokenye and 

Peace (2016) performed a comparison of the inverse transform and the 

composition methods for simulating data from the Lindley distribution and 

compared some statistical properties of the estimates of the distribution’s 

parameters based on the data they generated using those two methods. Shanker and 



 131  

Fesshaye (2016a) studied the properties and parameter estimation of (among 

others) the Lindley distribution and compared it to other distributions commonly 

used for modeling lifetime data. Shanker and Fesshaye (2016b) studied the 

relationships of Lindley distribution and other lifetime data distributions and their 

distributional properties and parameter estimation. Shanker et al. (2016b) applied 

the Lindley distribution among other distributions for modeling lifetime data from 

various fields such as medical science and engineering. Sultan and Al-Thubyani 

(2016) presented the exact explicit expressions for the higher order moments of 

order statistics from the Lindley distribution and used them to find the best linear 

unbiased estimates of the distribution’s parameters based on Type-II right-

censored samples. Asgharzadeh et al. (2017) studied the estimation of the 

parameter of the Lindley distribution with a Bayesian and two classical approach 

methods based on Type II censored data. Ayesha (2017) proposed a size biased 

Lindley, while Messaadia and Zeghdoudi (2018) introduced a distribution obtained 

by means of biased technique under Lindley distribution studied its properties and 

dealt with parameter estimation. Joshi et al. (2017) studied a single change point 

model for a sudden change in the hazard rate of Lindley distribution under right 

censoring of survival data and estimated the parameters of the change point model. 

Ahsanullah et al. (2017) presented two characterizations of the Lindley 

distribution based on relations between left and right truncated moments and 

failure rate and reverse failure rate functions, respectively. Kilany (2017) 

presented a characterization of the Lindley distribution based on truncated 

moments of order statistics, as well as a simulation study which illustrates the 

usefulness of the characterization results for practitioners who want to verify that 

the data in hand come from the specific distribution. Pak (2017) dealt with 

parameter estimation for the Lindley distribution with both the classical maximum 

likelihood method and the Bayesian one for the case of having fuzzy data. Akgül 

et al. (2018) dealt with point and interval estimation of stress-strength reliability 

based on ranked set sampling when stress and strength are random variables 

following the Lindley distribution and compared through simulation the 

performances of their proposed methods with the corresponding ones based on 
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simple random sampling. Asgharzadeh et al. (2018) dealt with the estimation of 

the parameter of the Lindley distribution and the prediction of unobserved records 

based on record statistics from the Lindley distribution with both the Frequentist 

and the Bayesian approach. Gómez-Déniz (2018) introduced a generalization of 

the exponential distribution which can be derived as the natural conjugate prior 

distribution of the one-parameter Lindley distribution. This distribution was used 

by Gómez-Déniz and Calderín-Ojeda (2016) who derived a two-parameter discrete 

distribution as a mixture of the Poisson distribution by mixing its parameter with 

the generalized exponential distribution proposed by Gómez-Déniz (2018). Irshad 

and Maya (2018) presented suitable U-statistics from a sample of any size for the 

estimation of the parameters of the Lindley distribution without the evaluation of 

moments of order statistics. Maiti and Mukherjee (2018) dealt with the estimation 

of the probability density function and the cumulative density function of the 

Lindley distribution with two different methods. Sharon Varghese (2018) dealt 

with the application of the Lindley lifetime distribution with special reference to 

accelerated life testing. This article also studied the properties of the distribution 

and presented a method for discrimination between the Exponential distribution 

and the Lindley distribution and one for calculation of the minimum sample size 

needed for this discrimination. Moreover, this paper presented a step-stress 

accelerated life testing model for the Lindley distribution under Type I censoring 

and dealt with its parameter estimation, extended the aforementioned model in the 

case of competing risk and dealt with the estimation of its parameters. Sharon 

Varghese (2018) studied the Morgenstern type bivariate extension of the Lindley 

distribution, too, and estimated its parameters. 

Besides Sharon Varghese (2018), other papers dealing with selection between 

Lindley and other distributions are the following: Raqab et al. (2017) dealt with 

model selection between Lindley distribution, Weibull distribution and Gamma 

distribution for modeling positively skewed lifetime data, evaluated the closeness 

of the Lindley distribution to the other two distributions with three different 

methods and calculated the probability of correct selection between those three 

distributions through Monte Carlo simulation for various values of parameters and 
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sample size. Sen et al. (2018) addressed the issue of selecting either Lindley or 

xgamma distribution with unknown parameter for a particular data set. The 

xgamma distribution has p.d.f. which is similar to the p.d.f. of the Lindley 

distribution and properties analogous to the Lindley distribution but its random 

variables are stochastically larger that the ones from the Lindley distribution. 

These two distributions are both useful for analyzing skewed non-negative data 

and in modeling time-to-event data sets. The study in Sen et al. (2018) presented 

the minimum necessary sample size for selecting one of those two distributions. 

Vaidyanathan and Sharon Varghese (2019) dealt with discrimination between the 

Exponential distribution and the Lindley distribution and presented a method 

based on the ratio of the maximum likelihoods and obtained the asymptotic 

distribution of the test statistic as well as the minimum sample size needed for this 

discrimination. 

Nie and Gui (2019) dealt with parameter estimation for the case of 

progressive type-II censored data with Binomial removals when the product’s 

lifetime under a single risk follows the Lindley distribution. This parameter 

estimation was obtained by both the maximum likelihood and the Bayesian 

method. Prasad et al. (2019) dealt with reliability analysis of symmetrical columns 

with eccentric loading from the Lindley distribution, presented the hazard rates 

and mean time to failure and studied the relationship between reliability and the 

scale parameter of the distribution. Hafez et al. (2020) studied the Lindley 

distribution under step-stress accelerated life tests when having progressive type II 

censored samples and dealt with parameter estimation with both the maximum 

likelihood and the Bayesian method under symmetric loss function. Khan et al. 

(2020) derived the formulas for the single and product moments of the Lindley 

distribution based on generalized order statistics including progressive type-II 

censoring. Khan et al. (2020) used their results for obtaining the best linear 

unbiased estimators for the location and scale parameters of the Lindley 

distribution. Krishna and Goel (2020) addressed the issue of sample inference for 

the case of two independent processes following the Lindley distribution under 

joint type-II censoring scheme for the two samples simultaneously and presented 
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the joint density for the two Lindley-distributed populations. They dealt with 

parameter estimation with both the maximum likelihood and the Bayesian method. 

Panda (2020) derived the exact formulas for the single and product moments of 

order statistics for the Lindley distribution in the presence of multiple outliers in 

the data and investigated the robustness of the sample moments in the presence of 

outliers. Safari et al. (2020) obtained a robust and efficient estimator for the 

parameter of the Lindley distribution based on the probability integral transform 

statistic in order to avoid the sensitivity of the most commonly used maximum 

likelihood estimator to the presence of outliers. Athar et al. (2023) provided 

characterizations of the Lindley distribution based on doubly truncated moments. 

 

 

3.4 The Two-Parameter Lindley Distribution by Shanker et al. (2013) 

This special section is dedicated to the two-parameter Lindley distribution 

proposed by Shanker et al. (2013), because this distribution will be used later in 

Chapter 7 and, therefore, more details are required to be offered for this 

distribution. The two-parameter Lindley distribution proposed by Shanker et al. 

(2013) is an asymmetric continuous distribution with right skewness. The 

graphical representation of the distribution’s probability density function for some 

values of the distribution’s parameters can be seen in Figure 3-3, where it is 

obvious that the two-parameter Lindley distribution is positively skewed and its 

shape changes as the values of the process parameters change. The probability 

density function of the two-parameter Lindley distribution is given by 

( ) ( )
2

; , 1 , 0, 0,θxθ
f x θ r rx e x θ r θ

θ r
−= + > > > −

+
  (3-6) 

with θ being the scale parameter. The cumulative distribution function is given by 

( ); , 1 , 0, 0,θxθ r rθx
F x θ r e x θ r θ

θ r
−+ +

= − > > > −
+

  (3-7) 

The moments of the two-parameter Lindley distribution in (3-6) are computed 

using the following formulas: 
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The coefficient of skewness of the two-parameter Lindley distribution in (3-6) is 

given by 
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It should be noted that he original one-parameter Lindley distribution is just a 

special case of the two-parameter Lindley distribution when r=1, in which case all 

five equations (3-6)-(3-10) reduce to the corresponding ones for the one-parameter 

Lindley distribution.  

 

Figure 3 - 3: Probability density function of the two-parameter Lindley 

distribution for various values of the parameters. 
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3.5 Conclusion 

Lindley distribution receives increasing attention in research and has many 

applications in various fields. In this chapter, an attempt has been made to briefly 

review the work done in the field of Lindley distribution. Special subsections have 

been dedicated to the original one-parameter Lindley distribution and the two-

parameter Lindley distribution proposed by Shanker et al. (2013), since they are 

going to be used in Chapters 6 and 7, respectively, for the construction of control 

charts for individual observations from these two distributions. 
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CHAPTER 4 

 

OVERVIEW OF LOGARITHMIC DISTRIBUTION 

 

 

 

4.1 Introduction 

The Logarithmic distribution is an asymmetric one-parameter discrete 

distribution with right asymmetry. It was first introduced by Fisher et al. (1943) 

and was obtained as the limit of a zero-truncated negative Binomial distribution in 

connection with an investigation of the frequency distribution of number of 

species of animals obtained from random samples. The distribution’s properties 

were discussed in particular by Anscombe (1950) and Patil (1962). Logarithmic 

distribution was also further studied by Ahuja (1968). More details about this 

distribution can be found in Chapter 7 of the book by Johnson et al. (2005). 

Recurrence relations, random number generation and computational algortihm for 

the probabilities were presented in Chapter 8 of the book by Krishnamoorthy 

(2006). 

Logarithmic distribution has many applications in biology and ecology 

(Khang and Ong (2005), Williams (1944), Darwin (1960), Boswell and Patil 

(1970), etc.) and biology (Corbet (1941), Williams (1947), etc.), since it can be 

used to describe and model the number of individuals per species or the number of 

species per genus. It is also applied in purchase studies (Williamson and 

Bretherton (1964), Chatfield et al. (1966), etc.) and other economic applications, 

since it can be used for fitting the number of products requested per order from a 

retailer, which makes it a very useful distribution particularly for companies 

selling products by phone or mail when they want to check whether the quantities 

demanded per order changes after a period of time or not. The Logarithmic 

distribution can also be used in various fields, such as population growth and 

human ecology (Clark et al. (1964), etc.), computer science, information systems, 
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electrical and electronic engineering, telecommunications, nanoscience and 

nanotechnology (Kyriakoussis and Papadopoulos (1990), etc.), soil science (Jones 

and Mollison (1948)), meteorology and atmospheric sciences (Rambhadran (1954), 

Williams (1952), etc.), climatology (Agnese et al. (2014), etc.), physics and 

physical chemistry (Ostojic and Sasic (2006), Ross (1978), etc.), applied 

chemistry, food science and technology (Parvathy et al. (2007), etc.), and other 

scientific areas. A lot of extensions, mixtures, modifications and generalizations of 

the Logarithmic distribution can be found in the literature with lots of applications 

in various fields of our everyday lives, including survival and reliability analysis 

(Taketomi et al. (2022), etc.), number of publications (Famoye (1997), etc.), risk 

theory (Hansen and Willekens (1990), etc.), digital software testing and 

verification to describe the distribution of the total number of observed failures 

(Şahinoğlu (2003), etc.), biological, medical and ecological applications 

(Papageorgiou and David (1995), Mishra and Shanker (2002), Wani et al. (2016), 

etc.), hydrology (Lawal et al. (1997), etc.) and many other areas. What follows in 

the next sections is an attempt to provide a review of the Logarithmic distribution. 

More specifically, section 4.2 presents the definition and useful information for 

the Logarithmic distribution, section 4.3 deals with the literature on investigation 

of the Logarithmic distribution and estimation of its parameters and section 4.4 

provides the literature on applications of the Logarithmic distribution. 
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4.2 Useful Information for the Logarithmic distribution 

The Logarithmic distribution is an asymmetric continuous distribution with 

right skewness. The graphical representation of the distribution’s probability mass 

function for some randomly chosen values of the distribution’s parameter can be 

seen in Figure 1, where it is obvious that the Logarithmic distribution is positively 

skewed and its shape changes as the value of the process parameter changes. 

 

 

Figure 4 - 1: Probability mass function of the Logarithmic distribution for various 

values of the parameter. 
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The probability mass function of the Logarithmic distribution is given by 
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The moments of the Logarithmic distribution in (4-1) are computed using the 

following formulas: 
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The coefficient of skewness of the Logarithmic distribution in (4-1) is given by 
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4.3 Studying the Logarithmic distribution and Estimation of Its Parameters 

Levin (1966) investigated the structure and statistics of the Logarithmic 

Series distribution. Engen (1974) investigated and compared various estimation 

methods for the Logarithmic Series distribution. Böhning (1983) dealt with MLE 

of the parameter of the Logarithmic Series distribution. Shanmugam and Singh 

(1984) provided a characterization for the Logarithmic Series distribution and 

based on that they proposed a statistic for testing whether a random sample 

follows a Logarithmic Series distribution. The usefulness of the proposed statistic 
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over the usual goodness-of-fit test was discussed and illustrated with a numerical 

example. Panaretos and Xekalaki (1986) introduced a Logarithmic Series 

distribution as a limiting form of the distribution resulting from inverse sampling 

scheme. Wani and Lo (1986) presented three characterizations of the Logarithmic 

distribution and other members of the class of Power Series distributions, two of 

which can be used to choose between the five member distributions of the Power 

Series family of distributions. Devroye (1987) developed a short algorithm for 

generating random integers form the Logarithmic Series distribution. Aki and 

Hirano (1989) discussed the MLE of the parameter of the Logarithmic Series 

distribution of order k based on independent observations and the asymptotic 

properties of estimator using the method of moments. Famoye and Consul (1989) 

dealt with confidence interval estimation of the parameter for the Logarithmic 

Series distribution considering both small and large sample sizes. Kyriakoussis 

and Papadopoulos (1990) studied the Logarithmic Series distribution as a failure 

model from the Bayesian point of view and provided Bayes estimators for the 

location parameter and reliability function. Kyriakoussis and Papageorgiou (1991) 

provided characterizations for the distributions of two random variables following 

the Logarithmic Series distribution based on the regression function of one of 

those random variables over the other and the conditional distribution of the 

second random variable given the first one. Papp and Izsák (1997) investigated the 

relationship between the Lognormal and Logarithmic Series distributions and 

bimodality through simulations and numerical examples based on the truncated 

Lognormal and Logarithmic Series distributions. Adamidis (1999) introduced a 

bivariate distribution defined by a pair of independent random variables following 

the Logarithmic Series distribution and a related Exponential distribution 

truncated to (0,1) and used it to derive an EM algorithm which gives the M-step in 

closed form without the need for additional iterative processes. This algorithm was 

used for estimating the parameters of the Negative Binomial distribution using the 

result by Quenouille (1949) that the Negative Binomial distribution can be viewed 

as a Poisson sum of Logarithmic Series distributed variables. Hall and Temido 

(2007) investigated the limiting distribution (after appropriate normalization) of 
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the maximum term of integer-valued stationary MA and max-AR models for 

marginal distributions with a quasi-stable limiting behaviour such as, among 

others, the Logarithmic distribution. Ameli et al. (2014) addressed the discrete 

likelihood ratio order for the Power Series distribution family (which includes the 

Logarithmic Series distribution as a special case) as well as the discrete version of 

the proportional likelihood ratio as an extension of the likelihood ratio order. 

Ahmad (2016) obtained the Bayes estimators of functions of parameters of the 

size-biased Logarithmic Series distribution under squared error loss function and 

weighted square error loss function. Nasiri and Esfandyarifar (2016) dealt with E-

Bayesian parameter estimation (expectation of Bayesian estimation) for the 

Logarithmic Series distribution. Eryilmaz (2017) computed the optimal number of 

units and replacement time minimizing the mean cost rate for a parallel system 

having a random number of units from a Power Series class of distributions 

including distributions such as the such as modified or truncated Poisson and 

Logarithmic distributions. Mayster and Tchorbadjieff (2019) investigated the 

transition probability and Lévy measure of a Lévy process with representative 

random variable from the Logarithmic Series distribution, as well as the Lévy 

measure of a subordinated Logarithmic Lévy process directed by a Poisson process 

and compared the properties of the processes under study. Alshkaki (2020) 

provided characterizations of the Logarithmic Series distribution based on linear 

differential equation for the probability generating function. Chattamvelli and 

Shanmugam (2020) dealt with the Logarithmic Series distribution in chapter 8 and 

presented a theorem to find moments of Logarithmic distribution using moments 

of zero-truncated geometric distribution. Kirtland et al. (2020) used a moment 

preserving finitization called the Negative Taylor Series Finitization method for 

the Power Series family of discrete distributions along with the method of aliasing 

in order to improve infinitely supported discrete random variate generation speed 

with certain limitations and illustrated their proposed method with an application 

to the Logarithmic Series distribution. They also compared various algorithms for 

random variates generation from a Logarithmic distribution to the aliasing method 
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of random variate generation from a Negative Taylor Series Finitization version of 

the Logarithmic distribution in terms of accuracy and speed of all these methods. 

 

 

4.4 Literature on Applications of the Logarithmic distribution 

Kendall (1948) discussed some modes of population growth leading to 

Fisher’s Logarithmic Series distribution. Bond (1952) applied the Logarithmic 

Series distribution to studies of plants. Williams (1952) described sequences of 

wet and dry days with Logarithmic Series distributions. Cooke (1953) used the 

Logarithmic Series distribution to model the duration of wet and dry spells at 

Moncton, New Brunswick. Roessler (1965) suggested the Logarithmic Series 

distribution as a model for the number of individuals per species of fish population 

in Biscayne Bay, Florida. Kobayashi (1966) discussed the use of the Logarithmic 

distribution for describing the distribution of eggs laid per visit of cabbage 

butterfly. Holgate (1969) studied the Logarithmic Series distribution as a model 

describing a random species in a sample in studies of distribution of species 

abundance in a population. Paster et al. (1974) fitted the Logarithmic distribution 

to trace elements of the Skaergaard layered series, which is the classic example of 

a layered silicate intrusion, for six rocks and twelve mineral separates analyzed by 

neutron activation. Besides using the Logarithmic distribution for trace element 

partitioning, they also used it for describing the behaviour of the elements during 

solidification of the layered series. Watterson (1974) presented the Logarithmic 

distribution as a model for the species abundance distributions used to describe 

evolving populations of selectively neutral genotypes and provided statistical 

inference methods and measures of diversity for this distribution. Dunn and Hardy 

(1980) applied the Logarithmic Series distribution to modelling the number of 

transient ischemic attacks per cluster with a cluster of transient ischemic attacks 

being the transient ischemic attacks occurring during a single period of abnormal 

arterial activity. Coleman (1981) used the Logarithmic Series distribution to 

describe the number of individuals from a particular species belonging to a 

collection of individuals from several species living in a region. Berger and 
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Goossens (1983) and Goossens and Berger (1984) investigated the Logarithmic 

Series distribution for modelling the sequences of dry and wet days in studies of 

rainfall persistence at Belgian stations. Rao (1984) considered probability 

problems in epidemiology (useful for public health officials for ensuring that only 

a given proportion of the community is infected with the disease) when assuming 

that the number of infected individuals in the community follows a Binomial 

distribution and the total community size follows the Logarithmic Series 

distribution. Andreassen and Hoque (1986) showed that the Logarithmic Series 

distribution can adequately describe the distribution of accident frequencies and 

developed a new test in order to evaluate that adequacy by subdividing the data by 

the functional classes of the intersecting roads, proving that the Logarithmic Series 

distribution described well the distributions of accident frequencies in all road 

classes. Chatfield (1986) discussed the use of the Logarithmic Series distribution 

for describing distributions of purchase noting, however, that the fit is not always 

very good for some heavily-bought products. Barker and Smith (1987) used the 

Logarithmic Series distribution to model the number of insect species per sample 

in the Prairie Provinces. Wright (1988) fitted the Logarithmic Series distribution 

to abundance species data and discussed their relationship to the species-area 

relations. Branson (1991, 2000) discussed the Logarithmic Series distribution for 

the abundance of families of a particular size when modelling inhomogeneous 

birth-death and birth-death-immigration processes. Mekjian (1991) presented 

application of the Logarithmic Series distribution in the physical and biological 

sciences. Mason et al. (1997) showed that the relative abundance of families and 

species of spiders followed the Logarithmic Series distribution. Lavenda (2000) 

used the Logarithmic Series distribution to describe quantum noise contribution. 

Angeja et al. (2004) studied packet arrival and loss for wireless indoor 

communications environments and used the Logarithmic Series distribution to 

model the burst lengths of received and lost real time packets. Lonardi et al. 

(2007) showed that the number of longest matches in a Lempel-Ziv’77 data 

compression scheme follows a Logarithmic Series distribution with mean equal to 

the inverse of the source entropy (plus some fluctuations). Agterberg and Liu 
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(2008) used the Logarithmic Series distribution to describe fossil events in 

stratigraphic study for the North Sea Basin. Ferreira and Petrere (2008) discussed 

some aspects of the Logarithmic Series distribution for describing species 

abundance models in order to contribute to the analysis of the empirical patterns of 

species abundance and indicate the resources which are important in the 

structuring of biological communities. Wilson (2008a) applied the Logarithmic 

Series distribution to the species proportions in seafloor samples from an area off 

south-east Trinidad. Wilson (2008b) used the Logarithmic Series distribution to 

describe the epiphytal population structure in shallow water in two bays around 

Nevis, NE Caribbean Sea. Carling (2009) presented the use of Logarithmic 

distribution to describe tidal current velocities in studies of current speed with 

height above the bed from a sandy intertidal zone in South Wales, UK. De Aguiar 

et al. (2009) studied the global patterns of biodiversity and showed that the tail of 

the distributions of species abundance can be approximated by the Logarithmic 

Series distribution. Neumann (2009) applied the Logarithmic Series distribution to 

the generation of behavior-based recommendations for market baskets found in e-

commerce, library environments or social network sites in order to show which co-

purchases or co-inspections of products reveal an underlying relationship between 

those items. Cheli et al. (2010) used the Logarithmic Series distribution to 

describe the distribution of abundance data for both the family and the species of 

ground-residing arthropods in Península Valdés in Patagonia, Argentina. 

Dolgonosov et al. (2010) showed that the statistical distributions of phytoplankton 

cell concentration follow the Logarithmic distribution during the vegetation period 

and this was demonstrated with various empirical data that confirmed the 

theoretical forecasts and provided the possibility of predicting the probabilities of 

various phytoplankton concentration values of a large range, including large 

values, which “are of greatest hazard in terms of water quality, water treatment 

processes, and aquatic ecosystem well-being”. Chowdhury and Beecham (2013) 

fitted the Logarithmic Series distribution to the dry and wet periods while studying 

rainfall events and inter-event periods with data on daily rainfall sequences for 

Adelaide and Melbourne in Australia. Bertoli-Barsotti and Lando (2015) 
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considered the Logarithmic distribution for describing the distribution of 

individual authors’ papers’ citations and compared it with other distributions fitted 

to the same data such as the Pareto and Geometric distributions. Doumas and 

Papanicolaou (2018) used the Logarithmic distribution to describe coupon 

probabilities for the coupon collector’s siblings problem. Visintin et al. (2022) 

described the mosquito abudance distribution at the southern coast of Mar Chiquita 

Lake, Argentina, by the Logarithmic Series distribution. Saila et al. (2023) 

provided an overview of the application of the Logarithmic Series distribution to 

the temporal and spatial changes assessment of the composition of exploited 

tropical multispecies fish communities within the Samar Sea in Philippines. 

 

 

4.5 Conclusion 

Logarithmic distribution has received an increasing attention in research 

especially lately and has many applications in various fields as presented earlier in 

this chapter. Here an attempt has been made to present a review of most of the 

literature on the Logarithmic distribution and its applications. Useful information 

for the distribution has been presented in a special section for easy access, since it 

will be useful for the constrction of control charts for the distribution in Chapter 8. 
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CHAPTER 5 

 

OVERVIEW OF PARETO DISTRIBUTION 

 

 

 

5.1 Introduction 

The Pareto distribution was introduced by Pareto (1964) to assess the 

allocation of wealth among individuals and describe the distribution of income on 

the basis that a high proportion of the people in a society have low income and/or 

a small portion of the wealth of that society, while only a few people have very 

high incomes and/or a huge amount of that wealth. The Pareto distribution as the 

distribution of income was further studied by Creedy (1977), while Faber et al. 

(1985) studied a model leading to the Pareto wealth distribution. In economics, its 

threshold parameter is some minimum income, and the large value of the shape 

parameter means the high equality of the allocation of income, which indicates 

that the shifts in the Pareto distribution means the changes of the allocation of 

wealth among individuals. More recently, Pareto distribution for describing 

income and wealth was discussed by Nirei and Aoki (2016) and Abd Raof et al. 

(2022). Other financial applications have been addressed, for example, in Ball 

(2003), Fernandes et al. (2008) and Jones (2015). 

Since the Pareto distribution is a heavy tailed distribution, it has many 

applications in various fields where quantities are distributed according to certain 

statistical distributions with very long right tails, such as modeling income above a 

theoretical value and the distribution of insurance claims above a threshold value. 

Newman (2005) discussed applications of the Pareto distribution in physics, 

biology, earth and planetary sciences, economics and finance, computer science, 

demography and the social sciences. For instance, the distributions of the sizes of 

cities, firms, earthquakes, forest fires, solar flares, moon craters and people’s 

personal fortunes all appear to follow the Pareto distribution. Chattamvelli et al. 
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(2021) mention the following applications: “luminosity of stars and other celestial 

objects in astronomy, size of various sorts (like firm sizes or headcount in 

management, size of stored files in computing, size of cities within large countries 

in sociology, extreme ocean wave heights in ocean engineering, size (area) of 

aegean islands in geography, species size and abundance in zoology, blackout 

sizes and restoration times of power grids in power transmission engineering, size 

or area of a region destroyed by natural calamities like forest fires, oil spills in 

seas in environmental science, oil-and-gas field-size and reserves distribution in 

petroleum engineering), frequencies (like frequency of occurrence of family names 

in a country or in telephone directories, frequency of comet visits in astronomy, 

frequency of replenishment of perishable items in inventory systems), vibrational 

amplitudes in mechanical engineering, data faults, or error clusters in 

communications engineering, position errors in global positioning systems (GPS) 

and sonar-based rescue and repair missions, durations (like time to complete 

medical procedures or surgical operations, quarantine periods, duration between 

major calamities like earthquakes or tsunamis, time to fix bugs in very large and 

complex software systems, etc.), and costs of commodities (like boats and yachts, 

air planes, and so on). It is also used for size-frequency modeling studies in 

aquatic and environmental sciences, epidemiology, microbiology, and 

semiconductor defects modeling.” 

Pareto distribution is used in bibliometrics to describe word frequency 

rankings and ranking scientists by number of publications, in geology, 

geochemistry and geophysics, metallurgy, limnology and oceanography, ecology 

and environmental sciences, physics, sports, biosciences, computer sciences, 

telecommunications, engineering, astronomy and astrophysics, actuarial science, 

insurance and risk management, archaeology and software testing. It has been used 

to describe metal deposits, natural resources, weather forecasting, wildfires, 

blackouts, terrorism, words, surnames and web links. It has been applied to studies 

of spatial behavior and structure of cities, size distribution of cities and 

distribution of urban population, urban luminosity and nighttime light intensity, 

queuing systems, mortality after diagnosis of a disease, bank sizes and bank’s 
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operational risk, accident occurrence, number of films produced and the sum of 

box office revenue earned by a movie producer, software failures or reliability, 

aircraft systems, survival and lifetime data, failures and service times, traffic, 

pollution, wildfire sizes and absorption capacity in studies of flood forecasting. It 

has also been used to describe firm size, size distribution of trade unions, global 

extend and size distribution of surface water areas, planktonic and phytoplanktonic 

size distributions, low-flow frequencies in rivers, temperatures, distribution of 

earthquake seismic moment, earthquake slip distribution and energy released by 

earthquakes, rainfall depth and duration, duration of drought, occurrence of strong 

mine tremors, biomass size distribution, waiting time of solar flares and coronal 

mass ejections, distribution and size of water particles, density of polyamide 

clusters on the surface of liquids, data from radar systems and radar sea clutter, 

COVID-19 infectivity and other epidemics and many other applications. Husband 

(1975) and Husband and Schofield (1976) also used the Pareto distribution for 

management salary structuring. Bhaskar and Dillard (1983) presented an objective 

method for assigning weights to questions on examinations using cognitive science 

and applied the Pareto distribution to assign the relative weights. Holman (1983) 

used Pareto distributions with different scale parameters to describe the 

survivorship curves for genera and families on their respective time scales. 

Fujimoto et al. (2001) applied the Pareto distribution to the tail part of packet 

transmission delay for streaming applications. Alsbih et al. (2011) used different 

Pareto distributions to describe indicators of the Internet traffic patterns with data 

from a German digital cable TV based Internet provider. Benavides et al. (2011, 

2012) fitted the Pareto distribution to data related to personal social contact 

networks such as device-device proximity, duration, and location. Karimova et al. 

(2011) used a Pareto type distribution for the probability density of recurrence 

intervals for failures on satellites of various types as presented by the US National 

Geophysical Data Center. Karpischek et al. (2012) fitted the Pareto distribution to 

user requests in usage analysis of a mobile bargain finder application. Engler et al. 

(2019) fitted the Pareto distribution to the number of cattle on farm above a certain 

threshold in studies of factors affecting the farm size and stocking rate in 
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Namibian commercial cattle farming. Taketomi et al. (2022) reviewed the use of 

Pareto-I, Pareto-II and Pareto-IV distributions for survival and reliability analysis 

and illustrated them with a real dataset. Abdullah et al. (2023) presented the Pareto 

distribution in studies of quality of inbound and outbound internet application 

services on the Local Area Network campus Metro-E network. 

The Pareto distribution has also been extensively used in the analysis of 

extreme events [Pickands (1975)] in the fields of hydrolody, climatology and other 

environmental studies (dealing, for example, with rainfall, water levels and sea 

surface or air temperatures), natural hazards such as (tsunamis, floods and 

earthquakes) and many more fields outside the scope of interest of statistical 

process control. Regarding this aspect, however, there are a lot of interesting 

applications of the Pareto distribution in the literature. For example, Pareto 

distribution has been used to describe service time in queuing system [Harris 

(1967,1968), Aalto and Ayesta (2007)] as well as interarrival times in queuing 

systems [Rodriguez-Dagnino (2004)] and has been a useful model for survival 

populations associated with business lifetimes [Nigm et al. (2003), Hong et al. 

(2007,2008,2009)], reliability studies, lifetime data analysis and life testing 

problems and experiments [e.g. Nigm and Hamdy (1987), Soliman (2000), Wu et 

al. (2007a), Amin (2008), Mahmoudi (2011)]. It has also been applied in computer 

science and communications to model among others error clustering in 

communication circuits and hard disk drive error rates [Nadarajah and Kotz 

(2008)], data traffic [Bae et al. (1999), Silva and Mateus (2002, 2003), Ghani 

(2011), Ghani and Iradat (2011)], memory traffic [Tudor and Teo (2013)], flow 

lengths [Addie and Yevdokimov (2008)], network delays [Jeske and Chakravartty 

(2006)], file sizes [Kang et al. (2008)], downloads and page views [Liu et al. 

(2013)], network packet inter-arrival time distribution [Garsva et al. (2014)] and 

inter-arrival times and occurrence of errors in data transmission over telephone 

circuits [Berger and Mandelbrot (1963), Sussman (1963), Richters (1965)]. 

Moreover, it has been used in population studies [Dimitrov et al. (1998)], process 

safety performance evaluation [Henselwood (2009)], mechanics, metallurgy and 

engineering [Zagorski and Wnek (2007), Castillo et al. (2004)] and studies of 
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tensile strength [Reed and Jorgensen (2004)], ozone levels [Villasenor-Alva and 

Gonzalez-Estrada (2010), Eastoe and Tawn (2009)], high concentrations in short-

range atmospheric dispersion [Mole et al. (1995)], industrial accidents [Maguire et 

al. (1952)], etc. Recently, Pareto distribution has also been used in quality control 

[Prasad et al. (2013)] and control charts for monitoring the distribution’s 

parameters [Nasiru (2016), Aslam et al. (2016d), Baba and Maahi (2017), Baba 

and Luguterah (2018)]. More details on control charts for the Pareto distribution 

can be found in Section 2.18.3 herein. 

Pareto-related distributions, as well as the non univariate case, however, are 

beyond the scope of this thesis. What follows is an attempt to present a brief 

review of the vast literature on the Pareto distribution. More specifically, the 

structure of this chapter is as follows: Section 5.2 presents useful information for 

the Pareto I distribution, which will be used for the construction of control charts 

for the distribution in Chapter 9. Section 5.3 provides a brief review of the 

literature on Pareto and Pareto-related distributions and their applications. Section 

5.4 focuses on further investigation of the Pareto distribution in the relevant 

literature. 

 

 

5.2 Useful Information for the Pareto Distribution 

Pareto distribution is an asymmetric continuous power law probability 

distribution. The graphical representation of the distribution’s probability density 

function for some values of the distribution’s parameters is shown in Figure 5-1, 

where it is obvious that the Pareto distribution is positively skewed and its shape 

changes as the values of the process parameters change. The probability density 

function of the Pareto distribution is given by 

( ) ( )1 , , 0, ,
dd

Xf x dr x r d x r− += > ≥     (5-1) 

where r is the scale parameter (also called threshold parameter or cutoff value) and 

d is the shape parameter (also called tail index, Pareto index, or Pareto exponent. 

It is also called income inequality parameter in economics and finance.). This 
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version of the Pareto distribution is more properly known as Pareto distribution of 

the first kind. Its cumulative distribution function is given by 

( ) 1 , , 0,

d

X

r
F x r d x r

x
 = − > ≥ 
 

    (5-2) 

The moments of the Pareto distribution in (5-1) are computed using the following 

formulas: 

( ) ( ) 1
1 , 1,E X dr d d
−

= − >      (5-3) 

and 

( ) ( ) ( )2 12 1 2 , 2.V X dr d d d
− −

= − − >     (5-4) 

The coefficient of skewness of the Pareto distribution is given by 

( )3
2 1X µ 2

sk=E
σ 3

  +− −  =   −   

d d

d d
, d > 3    (5-5) 

 

 

 

Figure 5 - 1: Probability density function of the Pareto distribution for various 

values of the parameters 



 153  

 

 

 

5.3 Brief Overview of the Literature on the Pareto Distribution 

Before we proceed, it should be noted that a lot of research has been done on 

the Pareto and Pareto-related distributions and there have been presented four 

types of the Pareto distribution. The first one is defined later in equation (5-2) and 

it is the type we will deal with in Chapter 9. The second type is also known as the 

Lomax distribution [Lomax (1954)] and is defined as 

( )
( )

1 , 0
a

a

C
F x x

x C
= − ≥

+
. 

It has been used for reliability modeling and life testing in engineering as well as 

in survival analysis and in the biological sciences, and has been applied to the 

sizes of computer files on servers. The Pareto distribution of the third kind [which 

was further studied by Bottazzi (2022)] has a cumulative distribution function 

given by 

( )
( )

1 , 0
bx

a

Ce
F x x

x C

−

= − >
+

. 

The cumulative distribution function of the Pareto distribution of the fourth kind is 

defined by 

( )
1

1 , , , , 0

α
γx µ

F x x µ α γ σ
σ

−
 −  = + > > 

   
 

Harris (1968) showed that the Pareto distribution can result from the mixture 

of an exponential distribution with the inverse of its parameter following a Gamma 

distribution and with origin at zero. Hürlimann (2003) studied the Pareto 

distribution as an exponential transform. Kopperer (2003) discussed the genesis of 

Pareto distributions, definitive Pareto-formulae, Pareto distributions’ synthetic 

generation and a method for fine-fitting of Pareto curves and presented a 

visualization of the interconnections between Normal, Lognormal and Pareto 

distributions. Arnold (2014) studied univariate and multivariate Pareto 
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distributions by representing them in terms of independent components following 

the Gamma distribution, while multivariate Pareto distribution was also discussed 

in Kotz et al. (2005). 

Pareto distribution has received huge attention in the literature. Many 

researchers have dealt with goodness-of-fit tests [e.g. Marlin (1984), Porter et al. 

(1992), Rizzo (2009), Obradović (2015), Obradović et al. (2015), Allison et al. 

(2022) and Ndwandwe et al. (2023a,b)] and stress-strength reliability studies for it 

[including for example Dargahi-Noubary (1988), Nadarajah (2003), Nadarajah and 

Kotz (2003), Odat (2010), Gunasekera (2015), Juvairiyya and Anilkumar (2019) 

and Mahapatra et al. (2021)]. A lot of research has also been dedicated to Bayesian 

methods for the Pareto distribution. Some examples include Arnold and Press 

(1983, 1989), Soliman (2000, 2001), Mousa (2001), Ali Mousa (2003), Ahmadi 

and Doostparast (2006), Jeevanand and Abdul-Sathar (2006), Amin (2008), 

Balakrishnan and Shafay (2012), Mahajan et al. (2015), Renjini et al. (2016), Patel 

and Patel (2019), Shukla et al. (2020), Savita and Kumar (2022), Shafay (2022), 

Andrade and Rathie (2023) and many others. 

A huge amount of literature has also been dedicated to various (Bayesian and 

non-Bayesian, as well as non-parametric) methods of estimation and prediction of 

parameters, quantiles and other related to the Pareto distribution quantities based 

on either complete or censored data. Examples of these include Quandt (1966), 

Moore and Harter (1967, 1969), Kulldorff and Vännman (1973), Ashour et al. 

(1994), Dunsmore and Amin (1998), Bickel (2003), Wu (2003,2010), Wu et al. 

(2004,2012), Ahmadi et al. (2009), Bhatti et al. (2018), Brazauskas and Upretee 

(2019) and Hussain et al. (2021). Examples of literature dealing with both classical 

and Bayesian methods for estimation and prediction include Raqab et al. (2007), 

Asgharzadeh et al. (2014), Prakash (2021), Hassan et al. (2023) and Sobhanan and 

Sathar (2023). Hossain and Zimmer (2000) compared estimation methods for the 

Pareto-I distribution’s parameters for the case of censored data with two different 

type of censoring (type II censoring and multiple random censoring). Rahman and 

Pearson (2003) also compared various estimation methods for the two-parameter 

Pareto distribution. 
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A great deal of research has also addressed estimation of the tail index of the 

Pareto distribution, which represents the degree of fatness of the tail distribution 

and is an important component of extreme value theory since it dominates the 

asymptotic distribution of extreme values such as the sample maximum. Examples 

of this kind of research include Reiss (1987), Beirlant et al. (1996, 2006), 

Brazauskas and Serfling (2000,2001), Wagner and Marsh (2004), Gardes and 

Girard (2008), Ghosh (2017) and Ocran et al. (2022). Mora (2011) compared 

through simulation various methods of estimating the tail index of Pareto type 

distributions and applied them to Danish Fire data, while Fedotenkov (2021) 

reviewed Pareto tail index estimators, concentrating on univariate estimators for 

non-truncated data and presented their analytical expressions along with non-

technical explanations of the methods. They also presented the estimators’ 

strengths and weaknesses and compared lots of estimators through Monte Carlo 

simulation. 

Beirlant et al. (2018) reviewed the available tail estimators of the extreme 

value index and introduced a bias reduced estimator for Pareto-type distributed 

censored data. They showed the usefulness of shrinkage estimation in keeping the 

MSE under control, developed a bootstrap algorithm for deriving confidence 

intervals, compared the proposed estimators with other estimators in the literature 

and illustrated the usefulness of the new estimators through a real long-tailed and 

heavy censored car insurance portfolio. Nicolau et al. (2023) discussed the 

estimation of the conditional tail index of Pareto and Pareto-type distributions in a 

time series framework and illustrated their study with the analysis of stock returns’ 

tail risk dynamics. 

Besides the vast amount of literature on the Pareto distribution itself and its 

applications (in all of its forms) a great deal of research has been done on its 

discretization, extensions, mixtures, modifications and generalizations and their 

applications. Fang et al. (2012), for example, discussed the double Pareto 

Lognormal distribution and presented an overview of complex networks and 

natural phenomena described by the double Pareto Lognormal distribution, such as 

the number of friends in social networks, the number of downloads on the Internet, 
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Internet file sizes, stockmarket returns, wealth in human societies, human 

settlement sizes, oil field reserves and areas burnt from forest wildfire. Pareto-

related distributions have been used in studies of sea level, river discharge, 

precipitation, wind speed, wave height, temperature maxima and minima, 

avalanche activity, earthquake magnitude and seismic moment, wildfire sizes, 

floods, storms, magnitude and frequency of landslides following a rainstorm, 

tsunamis and other natural disasters, metals deposits, electricity demand, banking 

systems, carbon dioxide emissions, surface ozone and nitrogen dioxide 

concentrations, injuries or fatal accidents, blood pressure or cholesterol 

measurements, traffic, growth rates (such as annual gross domestic product, stock 

prices, foreign currency exchange rates and company sizes), city and firm sizes, 

oil and gas fields, article citations and number of publications, sports performance 

and records, financial and market risks, bank operational risk and radar 

background clutter information for object recognition. They have also been applied 

in climatology, hydrology and atmospheric science, meteorology, environmental 

sciences, limnology and oceanology, ecology, geology and geophysics, breaking 

strength and other fatigue life and reliability studies, survival and lifetime data, 

failures and service times, waiting times, demography, COVID-19 infectivity and 

other epidemics, medicine, genetics, health care, biology and bioinformatics, 

pharmaceutics and pharmacokinetics, economics and finance, insurance and 

actuarial sciences, telecommunications, computer science, network traffic, energy, 

physics and chemistry, food industry, astronomy and astrophysics, engineering, 

archaeology and many other fields. 

A vast amount of literature has been dedicated to the generalized Pareto 

distribution, dealing with applications or with various methods of estimation of 

parameters, quantiles and other quantities [e.g. Davis and Feldstein (1979), 

Hosking et al. (1987), Singh and Guo (1995a,b), Fitzgerald (1996), Castillo and 

Hadi (1997), Salvadori (2003, 2021), Juárez et al. (2004), Madi and Raqab (2008), 

You et al. (2010), Zhang (2010), Guégan and Zhao (2014), He et al. (2014b), 

Askari et al. (2016), Chen et al. (2019), From and Ratnasingam (2022), Martín et 

al. (2022)], prediction [e.g. Rosbjerg et al. (1992), Raqab et al. (2018)] or 
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reparameterization [e.g. Jonathan and Ewans (2010), Hunter et al. (2017)], 

reliability [e.g. Rezaei et al. (2010), Chacko and Mathew (2021)] and moments 

[e.g. Balakrishnan and Ahsanullah (1994), Mahmoud et al. (2005), Kim (2010), 

Kumar et al. (2023)] of the generalized Pareto distribution and several other 

related studies. Many researchers have also addressed the issue of choosing or 

estimating the appropriate threshold value for the generalized Pareto distribution 

[e.g. Tancredi et al. (2006), Coelho et al. (2008), Miranda (2014), Beirlant et al. 

(2022), Benito et al. (2023)] or focused on censored data from the generalized 

Pareto distribution [e.g. Lin and Wang (2000), Hu and Gui (2018), Pham et al. 

(2018), Sauer et al. (2020), Kumar et al. (2023)]. 

A review of quantile estimation methods for the generalized Pareto 

distribution was provided by Jocković (2012) along with their application in 

finance for estimating the value at risk. de Zea Bermudez and Kotz (2010a,b) 

reviewed the methods for estimating the parameters of the generalized Pareto 

distribution concentrating on the methods with simple and easy application in 

hydrological and other practical situations, as well as robust methods and Bayesian 

methods easily applied to real data. Kang and Song (2017) compared (through 

simulation) six estimation methods for the parameters and quantiles of the 

generalized Pareto distribution combined with the peaks-over-threshold method. 

Pels et al. (2020) compared the performances of twenty-one estimation methods 

for the generalized Pareto distribution with the peaks-over-threshold method. 

Gamet and Jalbert (2022) presented extensions of the generalized Pareto 

distribution with positive and finite density at the threshold and proved that these 

extensions produce better upper tail index estimates for low thresholds and they 

are also suitable for high thresholds because then they reduce to the generalized 

Pareto distribution. 

The sum, product and ratio of two variables one of which follows a Pareto or 

Pareto-related distribution and the other one follows some other distribution (or 

sum of Pareto related distributions) have also been studied by various authors, 

such as Nadarajah and Kibria (2006), Nadarajah (2010) and Hamedani et al. 

(2022), for example. Many researchers have dealt with censored data from the 
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Pareto distribution, including but not limited to Bilikam and Moore (1978), 

Akritas (1988), Crato (2000), Fernández (2007, 2008), Shafay (2016) and 

Mahmoud et al. (2021). 

Several reasearchers have also provided various characterizations of the 

Pareto distribution, such as for instance Samanta (1972), Fakhry (1996), Ahmad 

(2001), Wu and Lee (2001), Xekalaki and Dimaki (2005), Ahsanullah and Shakil 

(2012), Kumar and Singh (2018), Tzavelas (2019), Jin (2023) and many others. 

Characterizations for the generalized Pareto distribution were provided among 

many others by Falk (1990), Asadi and Ebrahimi (2000), Dimaki and Xekalaki 

(2006), Tavangar and Asadi (2012) and Kumar and Singh (2023). 

Many researchers have compared Pareto and Lognormal distributions for 

various applications. Examples include Fisk (1961), Attanasi and Charpentier 

(2002) and Fazio and Modica (2015). Several studies have also considered order 

statistics from the Pareto distribution, such as the ones by Malik 

(1966,1967,1970), Kabe (1972), Kamps (1995), Kamps and Cramer (2001), Athar 

et al. (2008), Adler (2011), Ling and Fang (2019) and Abd Elgawad et al. (2021). 

Sampling plans for Pareto distributions were discussed among others by Aslam et 

al. (2011), Mughal and Ismail (2013), Sathya Narayanan and Rajarathinam (2013), 

Mughal et al. (2015a,b,c,d,2016), Aslam et al. (2019a), Zain and Aziz (2019) and 

Saranya et al. (2022). 

Besides the univariate case, there is also a great amount of literature dealing 

with bivariate and multivariate Pareto distributions including but not limited to 

Hutchinson (1979), Arnold (1983,1990,2015), Jeevanand (1997), Nadarajah and 

Kotz (2005), Zografos and Nadarajah (2005), Navarro et al. (2007,2008), 

Tsoukalas and Agrafiotis (2013), Sankaran and Kundu (2014), Paul et al. (2018) 

and Michael and Dang (2022). Examples of literature on bivariate and multivariate 

generalized Pareto distribution include Falk and Reiss (2001), Rootzén and Tajvidi 

(2006), Salvadori and De Michele (2006), Aulbach et al. (2012a,b), Park et al. 

(2019) and Li and Tang (2022). 
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5.4 Further investigation of the Pareto Distribution 

Hagstroem (1960) discussed the properties, convolutions and risk theory for 

the case of the Pareto distribution. Malik (1970) studied the distribution of product 

statistics from the Pareto distribution. Wallis et al. (1974) obtained the distribution 

functions for the mean, standard deviation and coefficient of skewness of the 

Pareto type I distribution for small samples using the Monte Carlo method. 

Thomas (1976) derived the reciprocal moments of a linear combination of 

exponential variates and used the resulting formula to obtain the moments of 

quantile and other similar estimators for the shape parameter of a Pareto 

distribution and proved that, although these estimators are more biased and less 

precise than the Monte Carlo estimates of the moments, they are “potentially 

useful in linear models and in studying models of the variation in the rate of births 

in a pure birth process”. Thorin (1977) proved that the Pareto distribution belongs 

to a subclass of the class of infinitely divisible distributions by showing that it can 

be viewed as a generalized T-convolution. Goovaerts et al. (1977) presented a set 

of sufficient conditions that should be met for a distribution function to be a 

generalized T-convolution, generalizing the results for the Pareto distribution by 

Thorin (1977). Alvo (1978) addressed the sequential estimation of the parameter 

of a Uniform distribution using the Pareto distribution as a prior distribution for 

the parameter. Lorah and Stark (1978) used the Mellin transform with its 

convolution and exponentiation properties in order to derive the distribution of 

some functions of Pareto variables and provided expressions for products, 

quotients, and sums of products of Pareto variables including the distribution of 

the geometric mean and the product of minimum values of Pareto variables. 

Goovaerts and de Pril (1980) and Seal (1980) studied survival probabilities 

based on Pareto claim distributions. Berg (1981) provided a new short proof of the 

result in Thorin (1977) that the Pareto distribution belongs to the class of 

generalized T-convolutions. Dyer (1981) obtained the structural distribution 

function of the strong Pareto law using the structural density function of the 

parameters of a Pareto distribution, computed its fractiles for special cases, 

presented the results through graphs from which structural one-sided probability 
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bounds may be found and showed that these graphs may be used to find structural 

tolerance bounds for the Pareto distribution as well. Jasso (1982) studied a 

measure of inequality defined as the ratio of the geometric mean to the arithmetic 

mean for the Pareto distribution. Aggarwal and Singh (1984) presented exactly 

optimum boundaries for optimum stratification with proportional allocation for a 

class of Pareto distributions arising from the representation of the Lorenz curve in 

Wang and Aggarwal (1984). Dharmadhikari and Gupta (1984) presented the 

relationship between the Power Function distribution and the Pareto distribution. 

Wang and Aggarwal (1984) discussed optimum determination of strata boundaries 

for a positively skewed stratification variable following a Pareto type distribution 

and extended the method in order to include the case when stratification and 

estimation variables are different but related by a simple regression model. 

Engelhardt et al. (1986) addressed the Pareto-II distribution, expressed as a two-

parameter mixed (or compound) Exponential failure distribution, estimated its 

parameters with MLE method, discussed small-sample means and variances, 

presented hypotheses tests for each parameter considering the other as an unknown 

nuisance parameter and constructed confidence limits. Ocana et al. (1986) 

discussed the ECOGEN simulation language algorithm and underlying theory for 

random deviate generators for the Pareto distribution. Teugels and Van Assche 

(1986) discussed the exact calculation of the decision boundaries for sequential 

probability ratio tests for simple hypotheses and alternatives in the case of a Pareto 

distribution. Ahsanullah and Houchens (1989) studied record values for Pareto 

distributions. Berrebi and Silber (1989) obtained a measure of the sharpness or 

kurtosis of the Pareto distribution from the Gini Index of Income Inequality by 

dividing the population into two subgroups of equal size. 

Hwang and Hu (1990) presented exact expressions of the asymptotic expected 

deficiency of the maximum likelihood estimator relative to the uniformly 

minimum variance unbiased estimator for a given one-parameter estimable 

function for the case of the Pareto distribution. Ahsanullah (1991) investigated the 

distributional properties of record values for a sequence of i.i.d. random variables 

following the Lomax (Pareto II) distribution and derived moments up to the second 
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order and estimators of the distribution’s parameters based on a series of observed 

record values. Mahmoud and Maswadah (1992) discussed the stractural densities 

of the parameters of the two-parameter Pareto distribution based on complete and 

censored samples and the corresponding shortest confidence intervals of the 

parameters. Wagner and Geyer (1995) presented a maximum entropy method for 

inverting Laplace transforms of density functions of positive random variables 

following the Pareto distribution. Asmussen and Klüppelberg (1996) dealt with 

random walk or Lévy processes with heavy-tailed upwards jumps following the 

Pareto distribution. Balakirsky (1996) proved that the number of computations in 

the first incorrect path in the code tree of sequential decoding for discrete 

memoryless multiple-access channels follows a Pareto distribution with its 

parameter being estimated similarly to the parameter for systems of information 

transmission with one source. Chen (1996) presented a method for exact joint 

confidence region for the parameters of Pareto distribution, which can be used for 

both complete and type-II censored samples. Drees and Reiss (1996) considered 

the mean residual life function (MRLF) for the Pareto distribution and proved that 

the empirical MRLF is an innacurate estimator of the true MRLF of a Pareto 

distribution with its shape parameter being close to 1. As a result they studied 

alternatives such as the median and trimmed mean residual life functions and 

investigated their asymptotic properties for large age values. Adamidis and Loukas 

(1998) introduced a two-parameter lifetime distribution (the Exponential-

Geometric distribution) with decreasing failure rate and presented its relationship 

with the Pareto II distribution. Jeevanand and Nair (1998) proposed a method for 

determining the number of outliers in Pareto samples, using the predictive interval 

approach. 

Abate and Whitt (1999) used numerically inverted Laplace transforms for 

deriving the probability density function and cumulative density function of the 

Pareto distribution which they used to describe the distribution of service time in 

queues. Feuerverger and Hall (1999) developed two semiparametric methods for 

describing departures from a Pareto distribution when estimating a tail exponent 

by fitting the distribution to extreme observations. Those two methods were based 
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on approximate likelihood and least squares with the latter being more robust to 

departures from usual extreme-value approximations but leading to estimators with 

greater variance. The proposed methods were proved to reduce bias compared to 

the assumption of an exact Pareto distribution beyond a threshold and were 

illustrated with application to extreme data regarding community sizes. Pawlas and 

Szynal (1999) provided recurrence relations for single and product moments of k-

th record values from the Pareto distribution. Sengupta and Nanda (1999) dealt 

with the class of log-concave distributions and the subclass of concave 

distributions for reliability studies (because most common lifetime distributions, 

including the Pareto distribution, are log-concave while the remaining life of 

maintained and old units tend to have a concave distribution), investigated the 

properties of these two classes as well as their closure under various reliability 

operations and presented sharp reliability bounds for nonmaintained and 

maintained units having life distribution belonging to these classes. 

Jurečková (2000) developed a test of the Pareto-type tail of the distribution of 

errors in the linear regression model, based on the extreme regression quantiles. 

Badía et al. (2001) derived the optimum inspection policy in terms of minimizing 

cost per unit of time for an infinite time interval when the time to failure follows 

the Pareto distribution. Manas (2001) discussed the function relating percentile 

ranks to density ordinates in continuous distributions, which also provides a 

likelihood based estimation method which asymptotically yields the frequency 

moment estimators and illustrated it with various distributions including the Pareto 

distribution. Gerchak and He (2002) dealt with the probability of a specific 

random variable taking the smallest value among a set of random variables for the 

case of the Pareto distribution. Hall et al. (2002) investigated the effect of 

extrapolation on coverage accuracy of prediction intervals computed from Pareto-

type data and proved that, in a way which can be defined theoretically and 

confirmed numerically, it is possible to make predictions exponentially far into the 

future without serious errors. Marazzi (2002) presented bootstrap methods for 

testing equality of robust means in the one-, two-, and multi-sample problems for 

asymmetrically distributed data with unequal shapes and applied them to various 
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distributions including the Pareto distribution. Abdel-All et al. (2003) studied the 

geometrical properties of the Pareto distribution, defined its parameter space using 

the Fisher’s matrix and described the relationship between the differential 

geometry and the statistics for the Pareto distribution. Brazauskas (2003) provided 

the exact form of information matrix for Pareto-IV and related distributions. 

Landsman and Makov (2003) developed a sequential quasi-credibility formula for 

the scale dispersion family which includes the Pareto distribution. André (2005) 

addressed limit theorems for weighted sums of the ratios of randomly selected 

pairs of adjacent order statistics from the Pareto distribution with a prior 

distribution on choosing each of these possible pairs. Zaliapin et al. (2005) 

discussed five approximation methods for the sums of independent random 

variables with common Pareto distribution and focused on the median and the 

upper and lower quantiles of the distribution of the sums. The proposed methods 

were illustrated with application to the approximation of the observed cumulative 

seismic moment in California. 

Balakrishnan and Stepanov (2006) presented the Fisher information contained 

in record values as well as in record values and record times for the Pareto 

distribution and the Fisher information in record statistics obtained from a new 

inverse sampling plan and introduced some new estimators based on records and 

weak records. Cuadras et al. (2006) expanded a Pareto distributed random variable 

as a series of principal components, conducted a comparison with the exponential 

distribution and presented an inequality regarding a function and its derivative and 

the asymptotic distribution of some statistics related to Rao’s quadratic entropy. 

Gay (2006) discussed tail-ratios of the Pareto distribution with application to 

insurance, proving that the consecutive ratios of the largest Pareto claims are 

independent and that the minimum-variance unbiased maximum likelihood 

estimator for the Pareto tail-index is equivalent to Hill’s estimator. The analysis 

was illustrated with both simulated and real data. Kaiser and Brazauskas (2006) 

investigated the performance of interval estimators of various actuarial risk 

measures and constructed confidence intervals for them with various methods 

(MLE, trimmed means-based estimation and empirical and bootstrap 
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nonparametric methods). The average lengths and coverage proportions of the 

intervals were compared through Monte Carlo simulation for both clean and 

contaminated data. For the case of clean data several distributions were used, 

including the Pareto distribution, while for the contaminated data case, the clean 

Pareto-distributed data were mixed with a small fraction of outliers. The intervals 

resulting from a sufficiently robust estimator designed for the specific distribution 

were proved to have satisfactory performance under both data conditions. Singh 

(2006) constructed simultaneous confidence intervals for the successive ratios of 

scale parameters of Pareto distributions when assuming that scale parameters 

satisfy a simple ordering (as is the case, for example, when the populations are the 

outcome of successive runs of a production process). 

Huang et al. (2007) introduced a randomized quasi-Monte Carlo method for 

estimating the mean and variance of the Pareto distribution. They developed a 

randomized quasi-random number generator of random samples from the Pareto 

distribution, such that the sample mean and sample variance estimators become 

more efficient. The generator’s efficiency was investigated through simulation and 

compared with a usually used generator in terms of mean square errors. The study 

also presented comparison of the results of the Kolmogorov-Smirnov goodness-of-

fit tests using these two sample generators. Jones (2007) studied a class of 

distributions, which includes the Pareto distribution as a special case, with its 

members’ density function and distribution function defined by a specific 

relationship. The study presented the family’s symmetry, modality, tail behaviour, 

order statistics, shape properties based on the mode, L-moments and 

transformations between members of the family. Ladoucette (2007) investigated 

the asymptotic behaviour of the moments of the ratio of the random sum of squares 

to the square of the random sum for a sequence of independent and identically 

distributed positive random variables of Pareto-type. 

Agarwal and Pant (2008) obtained the expectations of the trimmed mean and 

the winsorised mean for the Pareto distribution and L-moments which are 

expectations of linear combinations of order statistics. Klüppelberg and Resnick 

(2008) presented a transformation of a multivariate distribution leading to the 
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Pareto distribution for the marginals and discussed the use of the resulting 

distribution (which they called the Pareto copula). Nadarajah and Ali (2008) 

presented the distribution of the sum, product and ratio of two independent Pareto 

distributed random variables useful for hydrological problems and applied them to 

extreme rainfall data from Florida. Ramsay (2008) presented the distribution of 

sums of i.i.d. Pareto distributed random variables with arbitrary shape parameter. 

Sarabia and Sarabia (2008) presented the Leimkuhler curve of the classical Pareto 

and Lomax distributions. 

Asmussen (2009) addressed importance sampling for failure probabilities in 

computing and data transmission with a Pareto distributed conditional limit of the 

ideal time that a job needs to be restarted after a failure given that the total time of 

this job exceeds a specific value. Balakrishnan et al. (2009a) discussed the issue of 

reconstructing past records from the known values of future records when the 

underlying distribution is the Pareto distribution deriving and comparing several 

reconstructors and illustrated the proposed method with application to a real data 

set of the record values of average July temperatures in Neuenburg, Switzerland. 

Benguigui and Blumenfeld-Lieberthal (2009) developed and studied a framework 

for classifying income distributions with the help of a positive index, a special 

value of which corresponds to Pareto distribution. Kim and Lee (2009) dealt with 

testing for a change in the tail index of stationary time series data with Pareto-type 

marginal distribution. 

Alfons et al. (2010) compared, through simulation, different robust methods 

for Pareto tail modelling in order to reduce the influence of outliers in the upper 

tail of the income distribution in the case of Laeken indicators. Balakrishnan et al. 

(2010) provided a relation between the Leimkuhler curve and the mean residual 

life for the Pareto distribution as well as relationships with other reliability 

concepts. Das et al. (2010) proposed a Pareto regression model with an unknown 

shape parameter for studying extreme drinking in patients with alcohol dependence 

using a generalized linear model framework and the log-link to incorporate the 

covariate information through the scale parameter of the generalized Pareto 

distribution. They also used a Bayesian method with Ridge prior and Zellner’s g-
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prior for the regression coefficients and proved its superiority over likelihood-

based inference through simulation. Dierckx and Teugels (2010) noted that the 

limit distribution of the absolute excesses of the data over a high threshold is a 

generalized Pareto distribution and that the relative excesses of the data over a 

high threshold in case of a positive extreme value index can be described in the 

limit by a Pareto distribution with this index as parameter. Therefore, in order to 

deal with change-point detection of extreme values, they focused on testing 

changes in the value of the extreme value index and/or the scale parameter of the 

distribution using the likelihood method for independent data. They investigated 

the asymptotic properties of the proposed test statistics, provided critical values 

and illustrated their analysis with application to both simulated and real data. 

Grandits et al. (2010) addressed the compound-Poisson distribution with Pareto-

type claims in the case of non i.i.d. claims with the scale and location parameters 

of the Pareto distribution following a specific trend and studied the effect of this 

trend (and its misspecification or neglect) on parameter estimation and on the 

value-at-risk. Jørgensen et al. (2010) proposed a class of extreme generalized 

linear regression models for analysis of extremes and lifetime data and noted that 

the set of quadratic and power slope functions characterize distributions such as 

the Pareto distribution. Therefore, they proved a convergence theorem for slope 

functions, which is useful for expressing the classical extreme value convergence 

results in terms of asymptotics for extreme dispersion models. Riabi et al. (2010) 

presented the β-entropy for Pareto-type and related distributions and some 

weighted versions of those distributions, order statistics, proportional hazards, 

proportional reversed hazards, probability weighted moments, upper record and 

lower record. Stehlík et al. (2010) discussed the exact distribution of the 

likelihood ratio tests of homogeneity and simple hypothesis on the tail index of a 

two-parameter Pareto distribution. 

Bansal et al. (2011) developed a multi-sample test for Gini indices against 

simple-ordered alternatives and presented the exact critical points (obtained 

through simulation) for the case of the Pareto distribution. They also constructed 

simultaneous one-sided confidence intervals and computed the power of the test. 
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Benbya and McKelvey (2011) developed Pareto rank/frequency distributions as 

well as methods for using them at various points on Pareto distributions for 

obtaining practical knowledge about managerial problems. Blanchet and Shi 

(2011) discussed the cross entropy method for rare event simulation which 

requires the selection of a suitable parametric family for the successful application 

of the method and suggested two properties necessary for such a selection. They 

presented parametric families for which the proposed properties are satisfied for a 

large class of heavy-tailed distributions including Pareto and proved the proposed 

estimators’ efficiency. Corbellini and Crosato (2011) discussed a stepwise fitting 

of the Pareto-II distribution based on the forward search method. According to 

their method, the observations added at each iteration are decided taking into 

account the results of the estimation at the previous step (instead of their rank, as 

is the case with the sequential fitting). Cramer and Bagh (2011) developed 

minimum and maximum entropy plans for the Pareto distribution using 

expressions for the entropy and the Kullback-Leibler information for distributions 

of progressively Type-II censored order statistics. Gerrard and Tsanakas (2011) 

discussed the computation of failure probabilities in risk analysis for loss 

distributions such as the Pareto distribution in the presence of parameter 

uncertainty and obtaining an exact measure of the effect of that parameter 

uncertainty on failure probability. 

Barranco-Chamorro and Jiménez-Gamero (2012) presented asymptotic 

confidence intervals for quartiles for several Pareto distributions and proved their 

superiority over asymptotic intervals based on sample quartiles in terms of smaller 

length with similar coverage probability. Shahi (2012) addressed hypothesis 

testing for the scale parameter of the Pareto distribution by constructing the test 

statistics based on ranked set sampling and extreme ranked set sampling and 

compared their powers with the power of the uniformly most powerful test 

revealing the superiority of the test based on the extreme ranked set sampling. 

Gagolewski (2013) addressed a hypothesis test for the equality of probability 

distributions based on the difference between Hirsch’s h-indices of two i.i.d. 

random samples of equal length and investigated its performance with application 
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to data from the Pareto distribution. Gunasekera (2013) discussed hypothesis 

testing and interval estimation of the availability of a series system with several 

renewable components with Pareto-distributed failure and repair times. Hubert et 

al. (2013) noted that estimators of the extreme value index of Pareto-type 

distributions (like the Hill estimator) tend to overestimate it in the presence of 

outliers. Therefore, they constructed the empirical influence function plot which 

presents the effect of each datapoint on the Hill estimator, basing the empirical 

influence function on a new robust GLM estimator (for the extreme value index) 

which was used to obtain high quantiles of the distribution and marking datapoints 

exceeding those high quantiles as unusually large. Kostal et al. (2013) introduced 

the Shannon entropy-based and Fisher information-based dispersion measures for 

the case of the Pareto distribution, investigated the relationships between them and 

discussed their properties and applications. Kuş et al. (2013) discussed the optimal 

decision of the number of test units, the number of inspections and the length of 

inspection interval under the restriction of prespecified limited budget such that 

the asymptotic variance of the maximum likelihood estimator of the Pareto 

parameter is minimum when the life test is progressively group censored. Luo 

(2013) addressed the issues of parameter estimation for the Pareto distribution 

with partially missing data, testing equality of two Pareto populations and 

presenting its limit. Zhang (2013) simplified joint confidence regions for the 

parameters of the Pareto distribution proposed by Chen (1996) and Wu (2008). 

Balbás et al. (2014) developed a method for obtaining coherent risk measures 

for risks with infinite expectation, such as those characterized by some Pareto 

distributions, presented extensions of the conditional value at risk and the 

weighted conditional value at risk and illustrated the proposed method with 

actuarial applications such as extensions of the expected value premium principle 

when expected losses are unbounded. Barakat et al. (2014) provided general 

recurrence relations between the single and product moments for the upper and 

lower current records based on Pareto and negative Pareto distributions, 

respectively, as well as asymptotic results for general current records. Saeidi et al. 

(2014) dealt with hypotheses testing with fuzzy concepts based on records from 
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the Pareto distribution for applications related to weather, sports, economics and 

life testing and illustrated the analysis with real annual wage data. Tudor (2014) 

discussed chaos expansion and asymptotic behavior of the Pareto distribution. 

Barik (2015) dealt with a linearly constrained probabilistic fuzzy goal 

programming problem with the right hand side parameters in some constraints 

following the Pareto distribution with known mean and variance. Gagolewski 

(2015) constructed Sugeno integral-based confidence intervals for the theoretical 

h-index of a sequence of i.i.d. random variables following the Pareto distribution 

and compared them with the ones based on other estimators. Kämpke and 

Radermacher (2015) discussed the one-parametric version of the Pareto 

distribution which results as a unique solution of a differential equation for Lorenz 

curves and the Pareto distribution derived from an iterative process considering 

every Lorenz curve as a distribution function. They also provided the parameter 

values of the best fit Pareto distributions for empirical income data and proved 

that the Pareto distribution is the unique distribution to result from a certain 

proportionality law and from self-similarity of Lorenz curves. Nakagawa (2015) 

presented a sufficient condition for a non-negative random variable to follow a 

Pareto type distribution by investigating the Laplace-Stieltjes transform of the 

cumulative distribution function. Nguyen and Robert (2015) presented infinite 

series expansions for convolutions of Pareto distributions with non-integer tail 

indices, where the Pareto distributions may have different tail indices and different 

scale parameters. Their series expansion was not asymptotic and, therefore, was 

used for the computation of quantiles of the distribution of the sum as well as 

other risk measures such as the tail value at risk. 

Beirlant et al. (2016) presented bias reduced estimators for the tail index and 

tail probabilities of Pareto-type distributions based on randomly right censored 

data. Jasiulewicz and Kordecki (2016) presented the multiplicative parameters and 

their properties for distribution with financial and insurance applications, among 

which the Pareto distribution, and applied them to the modelling of large losses. 

They illustrated their analysis with application to data from the Warsaw Stock 

Exchange and data from a bid of treasury bills in Poland. Kamalov and Leung 
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(2016) discussed the receiver operating characteristic curve graphical tool for 

analyzing the performance of a binary classifier in the case of Pareto distribution. 

They also computed the corresponding area under the receiver operating 

characteristic curve (which is a scalar measure of the classifier’s performance) and 

investigated the optimal threshold for the classifier performance. López-Blázquez 

and Salamanca-Miño (2016) discussed the distribution of the geometric records of 

a sequence of i.i.d. observations from a Pareto distribution. Nechval et al. (2016) 

dealt with lower and upper tolerance limits on order statistics in future samples 

from the Pareto distribution, useful for describing time to failure in reliability 

studies. Their method can be applied to cases of having either complete or type-II 

censored past data. 

Ahmadi and Wu (2017) introduced a unified cost structure for joint 

optimization of inspection frequency and replacement time for parallel systems in 

reliability engineering with the lifetime of a component following the Pareto 

distribution. Baker (2017) introduced a method for blunting cusped distributions 

and applied it to the double-sided asymmetric Pareto distribution. The method was 

illustrated with an example of fitting the resulting blunted asymmetric Pareto 

distribution to real data. Banik and Chaudhry (2017) dealt with queue length 

distributions and performance measures (such as probability of loss for the first, 

an arbitrary, and the last customer of a batch, mean queue lengths, and mean 

waiting times) for queuing systems with Pareto service time distribution. 

Nadarajah et al. (2017) presented conditions for stochastic, hazard rate, likelihood 

ratio, reversed hazard rate, increasing convex and mean residual life orderings of 

Pareto distributions with different shape and scale parameters. Shafiei et al. (2017) 

dealt with interval estimation and hypotheses testing for the generalized Lorenz 

curve under the Pareto distribution and illustrated the analysis with application to 

real data representing the median income of the 20 occupations in the United 

States Census of Population. Shafiq (2017) dealt with classical and Bayesian 

inference for the Pareto distribution for fuzzy observations of life time. Wu and Lu 

(2017) used MLE for the lifetime performance index under progressive type I 

interval censoring for the one-parameter Pareto distribution and investigated the 
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estimator’s asymptotic distribution. They also used the estimator to introduce a 

hypothesis testing algorithmic method (under the assumption of known lower 

specification limit) which they illustrated with two real data applications for 

deciding whether the process is capable. 

Al-Mosawi and Khan (2018) dealt with the case of independent random 

samples from populations described by Pareto distributions with the same known 

shape parameter but different scale parameters and the selection of one of those 

populations related to the largest value among a set consisting of the smallest 

observation of each of those samples. The moments of the selected population 

were estimated under asymmetric scale invariant loss function and risk-

unbiasedness and consistency of the estimators for those moments were 

investigated and their risk and risk-bias were computed. Balkema and Embrechts 

(2018) compared the performance of several estimators of the regression line in 

the simple linear regression when the explanatory variable has a Pareto 

distribution and the error has a symmetric Student distribution or a one-sided 

Pareto distribution through simulation for various tail indices. Grahovac (2018) 

presented distributions of different ruin-related quantities and their tail behaviour 

for Pareto-distributed claim sizes using the Cramér-Lundberg risk model. The 

study also included investigation of the effect of the Pareto distribution tail index 

on the tails of the distribution of the ruin-related quantities. Kamlşllk et al. (2018) 

considered a class generated by intersection of two important subclasses of heavy-

tailed distributions (the long-tailed distributions and dominated varying 

distributions) trying to obtain some results on renewal functions generated by this 

class. Their main focus was on the Pareto distribution which is a special case of its 

subclass of heavy-tailed distributions. They derived asymptotic results for the 

renewal function generated by the Pareto distribution from this class and applied 

them to renewal reward processes. They illustrated the analysis with an application 

to an inventory model with demands following the Pareto distribution from this 

class. Mohd Safari et al. (2018) investigated the presence of outliers in the upper 

tail of Malaysian income distribution under the assumption that the data follow the 

Pareto distribution using the generalized boxplot which was chosen after 
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comparing (through simulation) the performances of three types of boxplots. 

Vernic (2018) studied risk measures and capital allocation for the Pareto 

distribution depending on parameters with interval or fuzzy uncertainty. 

Fader et al. (2019) discussed the differences, similarities and equivalence of 

the Beta-Geometric and Pareto-II distributions. Jabbari Nooghabi (2019) proposed 

two statistics for detecting outliers in the Pareto distribution. The power of the 

proposed statistics was compared with the power of other statistics for outliers 

detection for the Pareto distribution. The performance of the test was illustrated 

through application to different insurance claims. Jordanova and Stehlík (2019) 

discussed logarithms of ratios of two order statistics of a sample of independent 

observations from Pareto distribution with regularly varying tails and transformed 

the function so as to derive unbiased, asymptotically efficient, and asymptotically 

normal estimator for the tail parameter of the Pareto distribution. The proposed 

estimator was proved, through simulation, to be superior to several other 

estimators. Sarabia et al. (2019) further investigated the new Pareto-type 

distribution proposed by Bourguignon et al. (2016) and illustrated their analysis 

with applications to real income data. Baratnia and Doostparast (2020) compared 

Pareto distributions with a one-way classification analysis with random effects, 

provided exact expressions for several characteristics of the Pareto response 

variable such as marginal distribution and hazard functions, mean, variance and 

intraclass correlation coefficient, as well as estimations of the proposed model 

parameters and predictions with the minimum mean square error loss and 

introduced a method for testing homogeneity of the distributions. Buitendag et al. 

(2020) discussed confidence intervals for extreme quantiles of Pareto-type 

distributions and investigated their small-sample properties and usefulness through 

simulation and real insurance data application. Gouet et al. (2020) discussed δ-

records in the linear drift model (defined as observations which are greater than all 

previous observations, plus a fixed real quantity δ) and illustrated them with 

application to specific distributions, including the Pareto distribution, and with 

real data regarding summer temperatures in Spain. Jiang et al. (2020) determined 

the restricted minimum volume confidence region for the parameters of the Pareto 
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distribution, for both complete and (left, right or doubly) censored data. Jordanova 

and Stehlík (2020) discussed estimators of the index of regular variation for the 

Pareto distribution based on central order statistics and presented the conditions 

which insure unbiasedness, consistency and asymptotic Normality for these 

estimators. Urzúa (2020) developed a test for Pareto behaviour proving that it is 

locally optimal if the possible alternative distributions are members of the Pareto 

IV family and applied it to data on the frequency of unique words in an English 

text (Moby Dick), the human populations of U.S. cities, the frequency of U.S. 

family names and the peak gamma-ray intensity of solar flares, proving existence 

of Pareto behaviour evidence only for the second and fourth dataset. 

Eugene et al. (2021) proposed the Gini Shortfall as a risk measure, studied its 

advantages compared to other risk measures, presented exact formulas for its 

computation in the case of the Pareto distribution and applied it to real stock data. 

Lala Bouali et al. (2021) introduced a robust estimator of conditional tail 

expectation of Pareto-type distribution using the extreme value index estimator. 

Yoshida (2021) studied an additive model for extremal quantile regression for 

estimating conditional quantiles in the tail of Pareto-type distributions and 

investigated the properties of the intermediate-order and extreme-order quantile 

estimators by combining the asymptotic and extreme value theories. The 

estimators’ perfromance was investigated through simulation and illustrated with 

real data application. 

Bakoban and Aldahlan (2022) used the Pareto distribution as a non-

informative prior for Bayesian estimation of the shape parameter of the 

generalized inverted exponential distribution with quadratic loss function in the 

case of complete samples. Blanchet et al. (2022) used extreme value theory to 

obtain optimal thresholds for the cases of the utility distribution being Pareto and 

correlated Pareto distribution, showing that when the right tails of the utility 

distribution become heavier, the threshold level becomes higher. Hassan et al. 

(2022) estimated the extropy (considered to be a complementary dual of the 

Shannon’s entropy) and the cumulative residual extropy of the Pareto distribution 

using MLE (in the presence of outliers) and Bayesian estimation (based on 
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symmetric and asymmetric loss functions) methods, using MCMC for complex 

computations. They investigated and compared the estimators’ precision through 

simulation and real data. Josaphat et al. (2022) proposed a copula-based 

conditional tail moment of target loss related to another loss, called Dependent 

Tail Value-at-Risk, for the case of the new Pareto-type distribution. They also 

introduced the Dependent Conditional Tail Variance risk measure, as a special 

case of copula-based conditional tail central moment of target loss related with 

another loss, for measuring the variance of the tail of loss distributions and 

illustrated their analysis through real data application. 

 

 

5.5 Conclusion 

The Pareto distribution, as was made obvious in this chapter, has received 

huge attention in research and has many applications in various fields. A lot of 

extensions, mixtures, modifications and generalizations have been proposed and 

investigated and this chapter presented only a very brief overview of them. A 

special subsection offered some useful information for the distribution which is 

going to be useful for the construction of control charts for the Pareto I 

distribution in Chapter 9. 
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PART 2 

 

 

 

Introduction to Part 2 

This part of the thesis contains new contributions to the existing literature on 

control charts for non-Normal distributions which were presented in Section 2.29 

earlier. As it is clear after studying that section, there are still some distributions 

for which control charts have not yet been constructed at all (e.g. Logarithmic and 

Lindley-related distributions) or have not been addressed in the proper extend (e.g. 

Pareto-related distributions). This was the motivation for this thesis and that gap is 

going to be filled herein. 

As pointed out in section 2.12.4 there are many situations in which samples 

from a process consist of just one observation, such as cases of automated 

inspection of all manufactured products or multiple measurements on the same 

unit of a product, cases when the production rate is low or the data comes 

available relatively slowly (e.g. accounting data), situations where successive 

observations differ only due to measurement error or errors during the analysis 

(e.g. chemical processes) and circumstances when quality testing leads to the 

destruction of the product or the cost measurement is high. In all those instances, 

control charts for individual observations are really useful. Therefore, in this 

study, the interest lays on individual observations from the distributions mentioned 

above [Lindley-related (one-parameter and two-parameter Lindley), Logarithmic 

and Pareto distributions]. 

To begin with, the construction of the individual control charts is going to be 

done in two ways. First, the control limits of the chart will be derived in terms of 

the probability of type I error or false alarm rate, α, using the distribution of 

interest (see for example, Chang and Gan (1999) for the case of the modified 

geometric distribution). Another way of constructing the individual control chart 

for each of the desired distributions will be based on the Shewhart-type individual 
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control charts using the skewness correction method in Chan and Cui (2003), since 

the distributions of concern are asymmetric and this method, as also mentioned in 

Chan and Cui (2003), enhances the performance of the control chart and is better 

than other methods for considering the distribution’s skewness when constructing 

control charts for asymmetric distributions in terms of Type I risk. The 

performance of the proposed control charts is investigated and illustrated with 

both simulated and real datasets. As it will be proved below, the performance of 

the Shewhart-type control chart with the skewness correction is better than the 

probability-type control chart, for all the distributions considered. Then EWMA 

control charts for individual observations from the distributions of concern are 

constructed and their performance is investigated and illustrated with the same 

simulated and real data as the previous control charts for the shake of comparison. 

Afterwards, Shewhart-type and EWMA control charts for monitoring 

individual observations from the distributions of concern are improved by using 

another method for taking into account each distribution’s skewness, namely the 

scaled weighted variance method proposed by Castagliola (2000). Performance 

investigation and illustration of the proposed control charts through application to 

the same simulated and real data as the rest of the charts reveals the superiority of 

using this method for the construction of the charts. Last but not least, suggestions 

for future research regarding the control charts considered in this part are also 

provided. 

More specifically this second part of the current thesis is organized as 

follows: Chapter 6 deals with all the aforementioned charts for the case of 

individual observations from the original one-parameter Lindley distribution. 

Chapter 7 discusses the corresponding control charts for monitoring individual 

observations from the two-parameter Lindley distribution which was proposed by 

Shanker et al. (2013) as an extension to the one-parameter Lindley distribution. 

Chapter 8 addresses the control charts for individual observations from the 

Logarithmic distribution, while Chapter 9 covers the case of the Pareto I 

distribution. Part 2 is completed with chapter 10, which offers conclusions and 

suggestions for further research. 
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CHAPTER 6 

 

CONTROL CHARTS FOR INDIVIDUAL OBSERVATIONS FROM 

THE ONE-PARAMETER LINDLEY DISTRIBUTION 

 

 

 

6.1 Introduction 

As mentioned in Chapter 3, Lindley distribution is a continuous distribution 

with various applications some of which are in medicine, genetics, epidemiology, 

biology, finance and actuarial sciences, ecology, meteorology, sociology, 

demography, agriculture, hydrology, geosciences, reliability and engineering, life 

testing and survival analysis, airborne systems and communications, 

environmental studies and modeling and describing of human mistakes, strikes, 

accidents, behavioural and emotional or IQ test scores and waiting times of 

customers in queues until service etc. Due to its variety of applications, it appears 

to be important that control charts for detecting shifts in a process should be 

constructed under the assumption that the quality characteristic of interest follows 

the Lindley distribution. 

Here we construct probability-type, as well as Shewhart-type and EWMA 

control charts (and deal with the optimal choice of its parameters) for individual 

observations from the one-parameter Lindley distribution, considering two 

different types of skewness correction for taking into account the distribution’s 

skewness in the construction of the Shewhart-type and EWMA charts. The 

performance of all the proposed control charts is investigated and illustrated using 

examples with both simulated and real data (same for all the charts for the shake 

of comparison). The whole analysis reveals the superiority of using skewness 

correction for the construction of the control charts against not using it, as well as 

the superiority of the scaled weighted variance method for taking into 

consideration the distribution’s skewness. 



 178  

The structure of the present chapter is the following: Section 6.2 presents the 

construction of probability-type control charts for individual observations from the 

one-parameter Lindley distribution, while section 6.3 deals with the construction 

of the corresponding Shewhart-type control charts using the skewness correction 

method proposed by Chan and Cui (2003). The investigation and comparison of 

the performances of the proposed control charts of the previous two sections is 

addressed in section 6.4. Section 6.5 describes the construction of EWMA control 

charts for one-parameter Lindley-distributed individual observations using the 

skewness correction, followed by Section 6.6 which discusses the performance 

investigation for these charts including comparison with the corresponding EWMA 

control charts without skewness correction. Section 6.7 addresses the optimal 

design of the control charts proposed in section 6.5. The three types of control 

charts presented so far (probability-type, Shewhart-type and EWMA charts) for 

individual observations from the one-parameter Lindley distribution are illustrated 

with both simulated and real data in section 6.8. Section 6.9 presents the use of 

another skewness correction method for the construction of the Shewhart-type and 

EWMA charts for individual one-parameter Lindley observations. This section 

uses the scaled weighted variance method proposed by Castagliola (2000) and 

presents the construction (subsections 6.9.1 and 6.9.3) and performance 

investigation (subsections 6.9.2 and 6.9.4) of the two proposed control charts with 

this skewness correction method and compares them with those based on the 

skewness correction method by Chan and Cui (2003) presented in the previous 

sections. Examples are also presented for illustration of the proposed charts based 

on the same simulated (subsection 6.9.5) and real data (subsection 6.9.6) as in 

subsections 6.8.1 and 6.8.2 for comparison purposes. Last but not least, section 

6.10 presents conclusions and further research recommendations regarding the 

control charts discussed in this chapter. 
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6.2 Probability-Type Control Charts for Individual Observations from the One-

Parameter Lindley Distribution 

The control limits of the one-parameter Lindley individual probability-type 

control chart will be derived in terms of the probability of type I error or false 

alarm rate, α, using our distribution of interest (see for example, Chang and Gan 

(1999) for the case of the modified geometric distribution). For this procedure we 

will need the quantile function of the one-parameter Lindley distribution, which is 

derived in the following subsection. 

 

 

6.2.1 The Quantile Function of the One-Parameter Lindley Distribution 

For the case of using the probability of type I error to obtain the control 

charts for the one-parameter Lindley distribution we need the distribution’s 

quantile function. Applying the methodology in Theorem 1 of Jodrá’s (2010) 

paper, we can find a formula for the required quantile function in terms of the 

Lambert’s W function [Corless et al. (1996)] as presented here. 

The quantile function in general, is given by ( ) ( )-1
X XQ u F u= , with u such as 

0<u<1. For the case of the one-parameter Lindley distribution under study, we 

have: 

( )
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= − − − − + θθ
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θ θ

   (6-1) 

It should be noted that we use the negative brunch of the Lambert’s W 

function in the formula above, considering its properties as presented in Section 2 

of Jodrá’s (2010) paper. 
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6.2.2 Control Limits of the Probability-Type One-Parameter Lindley Individual 

Control Charts 

This subsection is dedicated in finding the control limits of the chart in terms 

of the probability of type I error or false alarm rate, α. In order to do that we need 

to use the cumulative probability of the one-parameter Lindley distribution as 

presented in equation (3-7). The construction procedure is as follows. 

For a significance level α, we have 

 

( )
2

α
P X LCL< =  

and 

( ) 1
1 , 0, 0

1

θ LCLθ θ LCL
P X LCL e LCL θ

θ
− ⋅+ + ⋅

< = − > >
+

, 

from which using equation (6-1) we obtain 

( ) ( )1
1

1 1 1
1 1 1

1 2 2

θθ LCLθ θ LCL α θ α
e LCL W θ e

θ θ θ
− +− ⋅

−

+ + ⋅ +   − = ⇒ = − − − − +  +   
, 

where ( )1W x−  is the negative branch of the Lambert W function. 

Similarly, for the upper control limit, we have 

( )
2

α
P X UCL> =  

and 

( ) ( ) 1
1 , 0

1

θUCLθ θUCL
P X UCL P X UCL e θ

θ
−+ +

> = − ≤ = >
+

, 

from which, using equation (6-1) once again, we get that 

( ) ( )1
1

1 1 1
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1 2 2
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Similarly for the central line we obtain 

( ) ( )( )1

1

1 1
0.5 1

θθ
CL W θ e

θ θ
− +

−

+
= − − − +  

As a result from all the above, the control limits of the chart in terms of the 

probability of type I error, α, are as follows. 
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6.3 Shewhart-Type Control Charts for Individual Observations Coming from the 

One-Parameter Lindley Distribution 

In this subsection, the construction of the individual one-parameter Lindley 

control charts is going to be done based on the Shewhart-type individual control 

charts using the skewness correction as in Chan and Cui (2003). More specifically, 

following equation (2-1), the construction procedure according to this method is as 

follows: the central line is placed at the mean of the one-parameter Lindley 

distribution, which is computed using equation (3-3), while the control limits are 

placed around the mean at L times its standard deviation (the square root of the 

quantity computed by equation (3-4)) plus *
4c  times its standard deviation, where 

( )
( )

( )
*
4 2

4

3

1 0.2

sk x
c x

sk x

  
=

 +  

 is the skewness correction and sk(X) is the distribution’s 

skewness coefficient computed from equation (3-5). This means that the skewness 

correction for the one-parameter Lindley distribution will be 

( )
( ) ( )

( ) ( )

3
3 3 2 2

*
4 23 3 3

8 2 1 - 4 2

3 4 2 0.24 2 1 -

θ θ θ θ
c x

θ θ θ θ

 + + + =
 + + + + 

           (6-3) 

As a result, the central line (CL) and the upper and lower control limits (UCL and 

LCL, respectively) of the one-parameter Lindley control chart are as follows. 
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6.4 Performance Investigation for the Individual One-Parameter Lindley Control 

Charts 

As a performance measure of the charts we constructed above, we can use 

either the out-of-control average run length (ARL) value, which is noted by ARL1, 

or the in-control ARL, which is noted by ARL0. ARL1 is defined as the average 

number of observations needed in order to detect an out-of-control situation given 

that the process of concern is indeed in an out-of-control state (presence of an 

assignable cause), while ARL0 is defined as the average number of observations 

needed in order to have an indication of an out-of-control situation given that the 

process of concern is actually in an in-control state (case of false alarms). This 

means that we prefer a control chart with a large value of ARL0 and a small value 

of ARL1.  

Using the aforementioned definitions for the computation of the in-control 

and out-of-control ARLs, we have 

0

1
ARL

α
=  and 1

1

1
ARL

β
=
−

 or 

( ) ( )0

1

1 in in

ARL
F UCL F LCL

=
− +

      (6-5) 

where ( )inF x  is the cumulative distribution function of the one-parameter Lindley 

distribution in equation (3-2) with in-control parameter and control limits as 
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computed with equation (6-2) for the probability-type control charts or equations 

(6-3) and (6-4) for the Shewhart-type control charts and 

( ) ( )1

1

1 out out

ARL
F UCL F LCL

=
− +

      (6-6) 

where ( )outF x  is the cumulative distribution function for the distribution of 

concern with out-of-control parameter and same control limits as before. For the 

out-of-control case we assume that the shift of the process mean is in terms of the 

process standard deviation. In other words, the new mean is assumed to be of the 

form 1 0µ µ kσ= + . Using this relationship, the new parameter of the distribution 

with the shifted mean will be computed by solving equations (3-3) and (3-4) in 

terms of the distribution’s parameter. The resulting value is given by 

( ) ( ) ( )
( )

2

0 0 0

0

1 6 1

2
new

µ kσ µ kσ µ kσ
θ

µ kσ

− + ± + + + +
=

+
. 

Using the above formulas we obtain Table 6-1 and Table 6-2, which show the in-

control and out-of-control ARL values for the individual probability-type and 

individual Shewhart-type control chart, respectively, for the one-parameter 

Lindley distribution for various values of the parameter θ of the distribution of 

concern and for various values of k which, as mentioned before, shows the shift we 

want to detect in the process mean in terms of the process standard deviation. For 

the probability-type control charts we have chosen a significance level equal to the 

most commonly used value of 0.27%, which corresponds to 0.27% probability of 

falsely rejecting the null hypothesis that our process is in control. 

Comparison of Tables 6-1 and 6-2 reveals the improvement in the 

performance of the chart when the skewness corrected limits are used instead of 

the probability-based ones. The difference in ARL values between Shewhart-type 

and probability-type control charts is greater than 5% for all shift sizes. 
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k θ=48 θ=57 θ=62 θ=75 θ=84 θ=93 θ=100 θ=120 

-3 2.8061 2.8461 2.9546 3.1094 3.1280 3.2871 3.2953 3.4087 

-2.8 4.1059 4.2830 4.4378 4.5461 4.6123 4.7946 4.8160 4.9481 

-2.6 5.1271 5.3028 5.5064 5.5121 5.5269 5.5936 5.7720 5.8321 

-2.4 6.0661 6.1661 6.1885 6.1949 6.3240 6.5082 6.7639 6.8290 

-2.2 7.1877 7.2748 7.3254 7.3534 7.4901 7.5180 7.7251 7.8996 

-2 9.1215 9.4195 9.5742 9.6405 9.6449 9.6612 9.8802 9.9577 

-1.8 12.0417 12.2951 12.4646 12.6126 12.7609 12.7628 12.8977 12.9005 

-1.6 13.0072 13.5659 13.6026 13.6059 13.7269 13.7536 13.7626 13.9251 

-1.4 15.0724 15.1262 15.3542 15.3724 15.4801 15.5157 15.6912 15.8296 

-1.2 19.0140 19.2727 19.3716 19.3913 19.4309 19.6325 19.7468 19.8143 

-1 26.0496 26.0255 26.0553 26.2706 26.2945 26.5760 26.7359 26.7804 

-0.8 48.7265 48.6767 48.6575 48.6240 48.6091 48.5982 48.5917 48.5788 

-0.6 46.6756 46.6448 46.6368 46.6227 46.6164 46.6128 46.6090 46.6035 

-0.4 141.3919 141.3967 141.3985 141.4015 141.4029 141.4038 141.4044 141.4055 

-0.2 163.7400 163.7783 163.7930 163.8190 163.8306 163.8390 163.8442 163.8543 

0 369.8338 369.9099 369.9132 369.9320 370.0328 370.0433 370.0549 370.0905 

0.2 192.9531 192.9193 192.9063 192.8831 192.8727 192.8651 192.8605 192.8513 

0.4 101.2999 101.2715 101.2604 101.2408 101.2320 101.2256 101.2216 101.2139 

0.6 59.1338 59.1253 59.1081 59.0953 59.0895 59.0853 59.0827 59.0776 

0.8 38.2053 38.1939 38.1894 38.1815 38.1780 38.1754 38.1738 38.1706 

1 26.7509 26.7440 26.7413 26.7365 26.7344 26.7328 26.7319 26.7300 

1.2 19.9238 19.9198 19.9183 19.9155 19.9143 19.9134 19.9129 19.9128 

1.4 15.5625 15.5605 15.5598 15.5584 15.5578 15.5573 15.5570 15.5565 

1.6 12.6166 12.6159 12.6157 12.6152 12.6150 12.6149 12.6148 12.6146 

1.8 10.5345 10.5348 10.5349 10.5351 10.5352 10.5353 10.5354 10.5355 

2 9.0074 9.0084 9.0087 9.0095 9.0098 9.0101 9.0102 9.0105 

2.2 7.8523 7.8538 7.8544 7.8555 7.8560 7.8564 7.8566 7.8571 

2.4 6.9557 6.9576 6.9584 6.9598 6.9604 6.9609 6.9612 6.9618 

2.6 5.2444 5.2466 5.2475 5.2492 5.2499 5.2505 5.2508 5.2515 

2.8 4.6694 4.6719 4.6729 4.6747 4.6756 4.6762 4.6766 4.6774 

3 3.3970 3.3997 3.4008 3.4027 3.4036 3.4043 3.4048 3.4056 

Table 6 - 1: ARL values for individual probability-type control charts for the one-

parameter Lindley distribution, with α = 0.0027. 
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k θ=48 θ=57 θ=62 θ=75 θ=84 θ=93 θ=100 θ=120 

-3 2.4122 2.3160 2.2689 2.2407 2.2314 2.1878 2.1228 2.0599 

-2.8 3.9348 3.9308 3.9089 3.8236 3.7908 3.6484 3.6443 3.5434 

-2.6 4.5317 4.4057 4.3182 4.2816 4.2484 4.2375 4.0379 4.0123 

-2.4 5.9797 5.8287 5.7519 5.6872 5.6304 5.5727 5.3250 5.2126 

-2.2 6.9784 6.8731 6.8016 6.6437 6.6319 6.5957 6.4846 6.2193 

-2 7.6998 7.5573 7.4442 7.4068 7.2815 7.1788 7.1081 7.0952 

-1.8 8.9790 8.6090 8.5991 8.4371 8.3969 8.1612 8.0596 8.0150 

-1.6 9.7937 9.7368 9.6481 9.5097 9.3175 9.2842 9.1237 9.0231 

-1.4 10.6873 10.5936 10.5048 10.3488 10.3200 10.2641 10.2421 10.2284 

-1.2 14.7810 14.5506 14.5062 14.4044 14.2808 14.1727 14.1227 14.0416 

-1 19.8408 19.8181 19.7128 19.5390 19.4648 19.4333 19.3372 19.2688 

-0.8 26.9348 26.8054 26.7781 26.7126 26.5417 26.2343 26.2302 26.0968 

-0.6 40.9304 40.8860 40.8648 40.6436 40.5408 40.3363 40.0693 40.0188 

-0.4 68.7363 68.6120 68.5715 68.5544 68.3364 68.2577 68.2121 68.0312 

-0.2 138.6431 138.5450 138.5039 138.3306 138.2370 138.2024 138.1522 138.0826 

0 370.1248 370.1433 370.1648 370.2079 370.2406 370.2595 370.2848 370.3690 

0.2 138.1506 138.1757 138.1898 138.1933 138.2127 138.2148 138.2312 138.2416 

0.4 68.3289 68.3424 68.3488 68.3548 68.3593 68.3735 68.3736 68.3751 

0.6 40.2888 40.3054 40.3091 40.3148 40.3148 40.3225 40.3245 40.3248 

0.8 26.7254 26.7284 26.7302 26.7302 26.7314 26.7345 26.7348 26.7393 

1 19.2408 19.2432 19.2444 19.2457 19.2464 19.2484 19.2484 19.2486 

1.2 14.7048 14.7063 14.7070 14.7071 14.7080 14.7084 14.7093 14.7100 

1.4 10.7531 10.7532 10.7534 10.7540 10.7541 10.7544 10.7548 10.7551 

1.6 9.7212 9.7223 9.7230 9.7232 9.7237 9.7239 9.7243 9.7248 

1.8 8.2609 8.2628 8.2631 8.2641 8.2643 8.2648 8.2648 8.2648 

2 7.1737 7.1751 7.1752 7.1786 7.1786 7.1787 7.1787 7.1788 

2.2 6.3403 6.3428 6.3431 6.3455 6.3457 6.3459 6.3460 6.3463 

2.4 5.6845 5.6881 5.6884 5.6910 5.6914 5.6916 5.6918 5.6932 

2.6 4.1602 4.1630 4.1636 4.1640 4.1644 4.1648 4.1681 4.1684 

2.8 3.7314 3.7343 3.7348 3.7370 3.7373 3.7373 3.7377 3.7393 

3 2.3759 2.3788 2.3796 2.3821 2.3828 2.3833 2.3836 2.3842 

Table 6 - 2: ARL values for individual Shewhart-type control charts for the one-

parameter Lindley distribution 

 

Comparison of the ARL values for positive and negative shifts shows that, 

although the control charts can detect both positive and negative shifts well, there 

are some slight differences with the values for the negative shifts being a little 

higher than those for the corresponding positive ones for smaller values of the 
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parameter. This holds for either the probability-type or the Shewhart-type control 

chart. The only differences (in either direction) that are above 5% concern the 

shifts corresponding to values of k between 0.2 and 0.8 and 1.6 and 1.8 for the 

probability-type control charts and values of k between 1.8 and 2.8 for the 

Shewhart-type control charts for small or large parameter values. 

 

 

6.5 Construction of the EWMA Control Charts for Individual Observations from 

the One-Parameter Lindley Distribution 

As mentioned in Section 2.14.2, one other control chart useful for monitoring 

processes besides the Shewhart chart is the EWMA chart. When dealing with 

individual observations EWMA control charts are a better alternative to the 

Shewhart-type control charts. Moreover, when we are interested in detected small 

shifts in the process, EWMA charts are preferable. Therefore, besides the 

Shewhart-type control charts, it is useful to also construct EWMA control charts 

for individual observations from the one-parameter Lindley distribution. 

We will construct the individual EWMA control chart, as generally, by 

plotting the exponentially weighted moving average of our observations xi defined 

by equation (2-2) with the constant λ reflecting the weight we assign to each of the 

past values of our observations and smaller values of λ being chosen for the 

detection of smaller shifts, while the starting value being defined as 0 0z µ=  when 

the process target is known or 0z x=  when using the average of an initial dataset. 

The central line and control limits of the EWMA chart will be constructed based 

on the EWMA control charts (2-3) using the skewness correction as in Chan and 

Cui (2003), since the distribution of concern is asymmetric and, as also mentioned 

in Weiß and Atzmüller (2011), this is an easily applied method for taking the 

distribution’s skewness into consideration and leads to a better ARL performance 

of the resulting control chart. In the next section, where we deal with the 

performance investigation of the constructed control chart, we will further 

demonstrate the need for this adjustment considering the asymmetry of the 

distribution and the improvement in the performance of the chart when using the 



 187  

skewness correction contrary to not using it but using the traditionally used 

symmetric EWMA control limits instead. 

More specifically, the procedure for the construction of the proposed control 

chart is as follows: in equation (2-3) we will replace L by L plus *
4c , where 

( )
( )

( )
*
4 2

4
sk

3

1 0.2 sk

x
c x

x

  
=

 +  

 is the skewness correction and sk(X) is the distribution’s 

skewness coefficient. EWMA control charts for individual observations from one-

parameter Lindley distribution are constructed using the mean of the one-

parameter Lindley distribution, which is computed using equation (3-3), its 

standard deviation (the square root of the quantity computed by equation (3-4)) 

and the distribution’s skewness coefficient computed from equation (3-5). This 

means that the skewness correction for the mean of the one-parameter Lindley 

distribution will be 
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            (6-7) 

As a result, the central line (CL) and the upper and lower control limits (UCL and 

LCL, respectively) of the one-parameter Lindley EWMA control chart are as 

follows. 
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   (6-8) 

 

The plotting statistic will be the one in equation (2-2) with xi being the 

observations from our one-parameter Lindley distribution. 
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6.6 Performance Investigation for the EWMA Control Charts for Individual 

Observations from the One-Parameter Lindley Distribution 

Once again, as a performance measure of the charts we constructed above, we 

can use the in-control and out-of-control ARL. According to Lucas and Saccucchi 

(1990) the ARL of the EWMA control chart is computed by means of the Markov 

chain method and discretization of the control statistic. More specifically, the 

region between the upper and lower control limits is divided into 2m+1 

subintervals. Each subinterval Sj (j=1,2,…,2m+1) is taken to be represented by its 

midpoint sj and then, if δ is the half size of each subinterval, which means that 

( )2 2 1

UCL LCL
δ

m

−
=

+
, then whenever j i js δ Z s δ− < < +  the process is in a transient state. 

Otherwise, the process is in the absorbing state. Therefore, the in-control 

transition probability from one transient state Sj to another transient state Sk is 

given by 
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 (6-9) 

The ith-stage transition probability matrix Pi is, then, defined as 

( )
1

i i
i

T

 −
=   
 

R I R 1
P

0
, where R is the (2m+1, 2m+1) matrix of the transient 

probabilities pkj mentioned in (6-9) above and 0T=(0,0,…,0), i.e. 0T is the 

transpose of 0 which is a vector of 2m+1 zeros. The ith-stage transition probability 

matrix Pi contains the probabilities that the control statistic goes from one 

transient state to another in i steps and is used for the computation of the ARL of 

the EWMA control chart, which is given by 

( ) 1TARL
−

= −p I R 1      (6-10) 
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where ( )1 1, , ,
T

m m m mp p p p− − + −=p …  is the vector of the initial probabilities related to 

the 2m+1 transient states. 

For the transient probabilities in (6-9) the cumulative distribution function 

for the one-parameter Lindley distribution, i.e. equation (3-2), is going to be used 

with either in-control parameters for the case of computing the in-control ARL 

value or the out-of-control parameters for the case of the out-of-control ARL, with 

the asymptotic control limits as computed with equations (6-8) and (6-7) for 

i→∞ . This means that the control limits that will be used for the computation of 

ARL will be of the form 

( )
( )

( )

( )
( )

( )

2 2
*
4 22

2 2
*
4 22

2 4 2

2

2 4 2
-

2

θ r θ θr r λ
UCL L c x

θ θ r λθ θ r

θ r θ θr r λ
LCL L c x

θ θ r λθ θ r

+ + +
 = + + + −+

+ + +
 = + + + −+

    (6-11) 

For the out-of-control case we assume that the shift of the process mean is in terms 

of the process standard deviation. In other words, the new mean is assumed to be 

of the form 1 0µ µ kσ= + . Using this relationship, the new parameter of the 

distribution with the shifted mean will be computed by solving equations (3-3) and 

(3-4) in terms of its parameter, as for the Shewhart-type control chart. 

Using those formulae we get Tables 6-3, 6-4, 6-5, which show the in-control 

and out-of-control ARL values for the individual EWMA control chart for the one-

parameter Lindley distribution for various values of the parameter θ of the 

distribution of concern and for various values of k which shows the shift of the 

process mean in terms of the process standard deviation. More specifically, Table 

6-3 contains the ARL values for λ=0.3 and L=6.932 (combination which gives in-

control ARL value close to 370) for various values of the m for the subintervals 

into which the region between the upper and lower control limits is divided, as 

mentioned earlier. From this table we see that when keeping λ and L the same, the 

ARL value increases as the number m of subintervals increases and the rate of this 

increase is high until the value of about m=50, above which ARL increases very 

slightly. Consequently, the suggested value of m for the computation of ARL in 
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the formulae above is m=50. Therefore, Tables 6-4 and 6-5 show the ARL values 

for m=50 for various values of L and λ for positive and negative shifts, 

respectively. 

Comparing those two tables, we observe that the proposed control chart can 

detect both positive and negative shifts well, but there are some slight differences 

in ARL values between those two tables, with most of the differences being in 

favour of the ARL values for negative shifts. The only differences (in either 

direction) that are less than 5% concern values of k=0.2 for values of λ greater 

than 0.08 and values of k between 2 and 2.5 for all values of λ. Moreover, 

comparing Table 6-4 and Table 6-5 we observe that as the value of λ increases 

ARL values for negative shifts are smaller than the corresponding ones for the 

positive shifts for large values of k and large values of the parameter. Large 

negative shifts present smaller ARL values than the large positive ones for small 

values of λ. Furthermore, for k=0.2 negative shifts give smaller ARL values than 

the corresponding positive ones for very small λ values. 

The need for using the skewness correction for the construction of the 

individual EWMA control charts for the one-parameter Lindley distribution is 

justified by the fact that if we had used the traditional symmetric EWMA control 

limits without the skewness correction term ( )*
4c x  in equation (6-11) above, the 

ARL performance of the chart would have been worse, as can be seen when 

comparing the results in Table 6-6 for the case of not using the skewness 

correction term against the results in Table 6-4 for the case of using it. It should be 

noted that the ARL values in Table 6-6 have resulted from using the same values 

for λ and L as the ones in Table 6-4 for the shake of making comparisons between 

the two tables easier. The differences between the ARL values in Tables 6-4 and 6-

6 are almost all higher than 5%. The only values for which the difference is less 

than 5% concern absolute values of k less than 1 for values of λ equal to 0.05 and 

equal to or greater than 0.12. Comparison is similar for the case of negative shifts 

so the corresponding table is omitted for space reasons. 
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m k θ=48 θ=57 θ=62 θ=75 θ=84 θ=93 θ=100 θ=120 

0 371.2500 370.8238 370.6635 370.3867 370.2657 370.1780 370.1255 370.0227 
0.2 124.6383 124.4293 124.3500 124.2122 124.1514 124.1073 124.0807 124.0286 

0.5 42.3069 42.2238 42.1921 42.1367 42.1121 42.0942 42.0834 42.0621 

1 14.9888 14.9634 14.9537 14.9365 14.9288 14.9232 14.9198 14.913 

1.5 8.4665 8.4570 8.4534 8.4469 8.4439 8.4418 8.4405 8.4379 

2 6.0234 6.0200 6.0186 6.0162 6.0151 6.0143 6.0138 6.0128 

2.5 4.8648 4.8640 4.8637 4.8631 4.8628 4.8626 4.8625 4.8622 

5 

3 4.2360 4.2364 4.2366 4.2368 4.2370 4.2371 4.2371 4.2373 

0 417.8972 417.4598 417.2951 417.0105 416.8858 416.7955 416.7415 416.6355 
0.2 135.5535 135.334 135.2508 135.1058 135.0419 134.9954 134.9675 134.9125 

0.5 44.7216 44.6351 44.6021 44.5443 44.5187 44.5000 44.4887 44.4664 

1 15.5363 15.5103 15.5003 15.4826 15.4747 15.4689 15.4654 15.4585 

1.5 8.7317 8.722 8.7183 8.7116 8.7086 8.7063 8.7050 8.7023 

2 6.2160 6.2123 6.2108 6.2082 6.2071 6.2062 6.2057 6.2046 

2.5 5.0338 5.0327 5.0323 5.0315 5.0311 5.0308 5.0307 5.0304 

10 

3 4.3976 4.3976 4.3976 4.3976 4.3976 4.3977 4.3977 4.3977 

0 432.6378 432.1973 432.0314 431.7446 431.619 431.5279 431.4734 431.3668 
0.2 138.8909 138.6684 138.584 138.437 138.3721 138.3249 138.2966 138.2408 

0.5 45.4520 45.3646 45.3312 45.2728 45.2468 45.2279 45.2165 45.194 

1 15.7166 15.6905 15.6804 15.6626 15.6547 15.6488 15.6453 15.6383 

1.5 8.8336 8.8238 8.82 8.8133 8.8102 8.808 8.8066 8.8039 

2 6.2996 6.2958 6.2943 6.2916 6.2904 6.2895 6.289 6.2879 

2.5 5.1129 5.1116 5.1111 5.1102 5.1098 5.1095 5.1093 5.1090 

20 

3 4.4766 4.4764 4.4763 4.4762 4.4761 4.4761 4.4761 4.4760 

0 435.6139 435.1729 435.0067 434.7196 434.5938 434.5026 434.448 434.341 
0.2 139.5612 139.3382 139.2535 139.1061 139.0411 138.9938 138.9654 138.9094 

0.5 45.602 45.5145 45.481 45.4225 45.3965 45.3775 45.3661 45.3435 

1 15.7592 15.733 15.7229 15.7051 15.6972 15.6913 15.6878 15.6808 

1.5 8.8618 8.852 8.8482 8.8414 8.8384 8.8361 8.8348 8.8321 

2 6.3251 6.3212 6.3197 6.317 6.3158 6.3149 6.3144 6.3133 

2.5 5.1382 5.1369 5.1363 5.1354 5.135 5.1346 5.1345 5.1341 

30 

3 4.5025 4.5022 4.5021 4.5019 4.5018 4.5018 4.5018 4.5017 

0 436.6846 436.2434 436.0771 435.7898 435.6640 435.5727 435.5181 435.4110 
0.2 139.8030 139.5798 139.495 139.3475 139.2824 139.2351 139.2066 139.1506 

0.5 45.6576 45.5700 45.5365 45.4779 45.4519 45.433 45.4215 45.399 

1 15.7768 15.7507 15.7406 15.7228 15.7148 15.709 15.7055 15.6985 

1.5 8.8747 8.8649 8.8611 8.8543 8.8513 8.8491 8.8477 8.8450 

2 6.3373 6.3334 6.3319 6.3292 6.3280 6.3271 6.3265 6.3254 

2.5 5.1506 5.1493 5.1487 5.1477 5.1473 5.1470 5.1468 5.1464 

40 

3 4.5154 4.5150 4.5149 4.5147 4.5146 4.5145 4.5145 4.5145 

0 437.1871 436.7458 436.5795 436.2921 436.1663 436.075 436.0204 435.9133 
0.2 139.9169 139.6936 139.6088 139.4612 139.3961 139.3487 139.3203 139.2643 

0.5 45.6845 45.5968 45.5634 45.5048 45.4788 45.4598 45.4484 45.4258 

1 15.7862 15.7601 15.7500 15.7322 15.7242 15.7184 15.7149 15.7079 

1.5 8.8821 8.8723 8.8685 8.8617 8.8587 8.8564 8.8551 8.8524 

2 6.3445 6.3406 6.3391 6.3364 6.3352 6.3342 6.3337 6.3326 

2.5 5.1580 5.1566 5.1561 5.1551 5.1546 5.1543 5.1541 5.1537 

50 

3 4.5231 4.5227 4.5225 4.5223 4.5222 4.5222 4.5221 4.5221 

0 437.4624 437.0211 436.8548 436.5674 436.4415 436.3502 436.2956 436.1885 
0.2 139.9796 139.7562 139.6714 139.5238 139.4587 139.4113 139.3828 139.3268 

0.5 45.6996 45.612 45.5785 45.5199 45.4939 45.475 45.4635 45.4410 

1 15.7920 15.7658 15.7557 15.7380 15.7300 15.7242 15.7207 15.7137 

1.5 8.8868 8.8770 8.8732 8.8664 8.8634 8.8612 8.8598 8.8571 

2 6.3492 6.3453 6.3438 6.3411 6.3399 6.3389 6.3384 6.3373 

2.5 5.1629 5.1615 5.1609 5.1599 5.1595 5.1592 5.1590 5.1586 

80 

3 4.5282 4.5278 4.5276 4.5274 4.5273 4.5272 4.5272 4.5271 

0 437.6295 437.1880 437.0218 436.7343 436.6084 436.5172 436.4625 436.3554 
0.2 140.0177 139.7944 139.7096 139.562 139.4968 139.4494 139.4209 139.3649 

0.5 45.7091 45.6215 45.588 45.5294 45.5034 45.4844 45.4730 45.4504 

1 15.7959 15.7697 15.7596 15.7418 15.7339 15.7281 15.7245 15.7175 

1.5 8.8901 8.8803 8.8765 8.8697 8.8667 8.8645 8.8631 8.8604 

2 6.3525 6.3487 6.3471 6.3444 6.3432 6.3423 6.3417 6.3406 

2.5 5.1664 5.165 5.1644 5.1634 5.1630 5.1626 5.1624 5.1620 

100 

3 4.5318 4.5314 4.5313 4.5310 4.5309 4.5308 4.5308 4.5307 

Table 6 - 3: ARL values for individual EWMA control charts for the one-

parameter Lindley distribution (λ=0.3 and L=6.932) 
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λ, L k θ=48 θ=57 θ=62 θ=75 θ=84 θ=93 θ=100 θ=120 

0 371.0995 370.9004 370.7822 370.5157 370.3712 370.2547 370.1798 370.0204 
0.2 107.9284 107.9523 107.9475 107.9194 107.8983 107.8793 107.8663 107.8368 
0.4 46.2877 46.3266 46.3353 46.3416 46.3406 46.3382 46.3361 46.3302 
0.6 25.2879 25.3206 25.3297 25.3409 25.3438 25.3451 25.3455 25.3453 
0.8 16.2161 16.2419 16.2497 16.2605 16.264 16.2661 16.2671 16.2685 
1 11.614 11.6346 11.6412 11.6506 11.6539 11.656 11.6571 11.659 

1.5 6.7964 6.8092 6.8135 6.8201 6.8227 6.8244 6.8254 6.8271 
2 5.0523 5.0612 5.0642 5.069 5.071 5.0723 5.0731 5.0745 

2.5 4.2462 4.2526 4.2548 4.2585 4.26 4.261 4.2616 4.2628 

λ=0.05 

L=2.246 

3 3.8228 3.8274 3.829 3.8317 3.8328 3.8336 3.8341 3.835 
0 373.4099 372.3355 371.9071 371.1317 370.7762 370.5116 370.35 370.026 

0.2 109.2832 109.0704 108.9817 108.8156 108.7372 108.6779 108.6413 108.5669 
0.4 46.973 46.9225 46.8993 46.8534 46.8307 46.813 46.8019 46.779 
0.6 25.6717 25.6625 25.6567 25.6434 25.6362 25.6302 25.6264 25.6183 
0.8 16.454 16.4571 16.4568 16.4543 16.4523 16.4505 16.4492 16.4463 
1 11.774 11.7809 11.7826 11.7841 11.7841 11.7839 11.7836 11.7829 

1.5 6.8727 6.8804 6.8829 6.8865 6.8878 6.8887 6.8891 6.8899 
2 5.0981 5.1044 5.1066 5.12 5.1214 5.1223 5.1228 5.1238 

2.5 4.2778 4.2828 4.2845 4.2874 4.2885 4.2894 4.2898 4.2907 

λ=0.08 

L=2.862 

3 3.8466 3.8503 3.8517 3.8539 3.8549 3.8555 3.8559 3.8567 
0 374.5269 373.027 372.4478 371.4246 370.9664 370.6298 370.4261 370.0221 

0.2 110.2547 109.9196 109.7873 109.5497 109.4414 109.3612 109.3123 109.2146 
0.4 47.4958 47.3975 47.3573 47.2833 47.2488 47.2229 47.207 47.1749 
0.6 25.9707 25.9386 25.9247 25.898 25.8851 25.8752 25.8691 25.8565 
0.8 16.6404 16.631 16.6263 16.6164 16.6113 16.6073 16.6047 16.5994 
1 11.8992 11.8986 11.8975 11.8945 11.8927 11.8911 11.8901 11.8879 

1.5 6.931 6.9358 6.9373 6.9392 6.9399 6.9402 6.9404 6.9406 
2 5.1316 5.1366 5.1383 5.1409 5.1419 5.1426 5.143 5.1437 

2.5 4.2995 4.3038 4.3053 4.3077 4.3087 4.3094 4.3098 4.3106 

λ=0.10 

L=3.216 

3 3.8617 3.8651 3.8663 3.8683 3.8691 3.8697 3.8701 3.8707 
0 375.4484 373.5997 372.8966 371.6704 371.128 370.7324 370.4943 370.025 

0.2 111.295 110.8554 110.6859 110.387 110.2532 110.155 110.0956 109.9778 
0.4 48.075 47.9348 47.8797 47.781 47.7362 47.703 47.6829 47.6426 
0.6 26.306 26.2537 26.2325 26.1937 26.1758 26.1624 26.1542 26.1376 
0.8 16.8504 16.8298 16.821 16.8045 16.7966 16.7906 16.7869 16.7794 
1 12.0402 12.0328 12.0293 12.0222 12.0187 12.016 12.0142 12.0106 

1.5 6.9959 6.9982 6.9987 6.9992 6.9991 6.999 6.9989 6.9986 
2 5.1681 5.1718 5.1731 5.175 5.1757 5.1762 5.1764 5.1769 

2.5 4.3224 4.326 4.3273 4.3293 4.3301 4.3307 4.3311 4.3317 

λ=0.12 

L=3.697 

3 3.8768 3.8798 3.8809 3.8827 3.8834 3.884 3.8843 3.8849 
0 376.6284 374.3328 373.4712 371.985 371.3348 370.8637 370.5816 370.0287 

0.2 112.9738 112.3968 112.1783 111.7985 111.631 111.5091 111.4359 111.2917 
0.4 49.0396 48.8433 48.7681 48.6362 48.5775 48.5345 48.5086 48.4574 
0.6 26.8721 26.7922 26.7612 26.7061 26.6813 26.663 26.652 26.63 
0.8 17.2072 17.1712 17.1569 17.1414 17.1296 17.1209 17.1055 17.0949 
1 12.2802 12.2634 12.2565 12.2439 12.238 12.2336 12.2309 12.2255 

1.5 7.1054 7.1044 7.1037 7.102 7.1012 7.1004 7.0999 7.0989 
2 5.2285 5.2306 5.2313 5.2322 5.2325 5.2327 5.2328 5.2329 

2.5 4.359 4.3617 4.3627 4.3643 4.3649 4.3653 4.3656 4.366 

λ=0.15 

L=4.736 

3 3.8997 3.9023 3.9032 3.9047 3.9054 3.9058 3.9061 3.9067 
0 375.2487 373.4264 372.7435 371.5681 371.0552 370.6843 370.4624 370.0285 

0.2 115.7838 115.256 115.0571 114.7128 114.5617 114.4521 114.3863 114.2574 
0.4 51.0131 50.8123 50.7348 50.6015 50.5427 50.4999 50.4742 50.4235 
0.6 28.1605 28.0688 28.0338 27.9724 27.9452 27.9253 27.9133 27.8896 
0.8 18.0868 18.0403 18.0224 17.9909 17.9768 17.9665 17.9602 17.9478 
1 12.9146 12.8894 12.8797 12.8623 12.8544 12.8487 12.8452 12.8382 

1.5 7.4465 7.4408 7.4384 7.4341 7.432 7.4305 7.4296 7.4277 
2 5.4512 5.4505 5.4502 5.4496 5.4492 5.4489 5.4487 5.4483 

2.5 4.5235 4.5246 4.5249 4.5255 4.5257 4.5258 4.5259 4.5261 

λ=0.20 

L=5.984 

3 4.0319 4.0333 4.0338 4.0347 4.0351 4.0354 4.0355 4.0358 

Table 6 - 4: ARL values for individual EWMA control charts for the one-

parameter Lindley distribution (m=50) for various positive shifts 
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λ, L k θ=48 θ=57 θ=62 θ=75 θ=84 θ=93 θ=100 θ=120 

0 371.0995 370.9004 370.7822 370.5157 370.3712 370.2547 370.1798 370.0204 
-0.2 106.2449 97.9415 97.9415 97.9415 97.9414 97.9414 97.9412 97.9412 
-0.4 87.9412 86.2364 71.4430 71.4285 60.5988 55.7609 53.7905 53.8175 
-0.6 52.5720 48.8757 41.7680 41.6584 31.9832 28.7815 28.5025 27.5272 
-0.8 34.0550 32.2641 27.4455 27.0067 26.2012 23.2605 22.1601 22.1768 
-1 14.6412 13.8623 13.7841 13.7740 13.2336 13.0222 12.8986 12.8879 

-1.5 10.8322 10.7291 10.6126 10.5269 10.4180 10.2843 10.1812 10.0417 
-2 5.3964 5.3359 5.2123 5.0882 4.9716 4.8982 4.7215 4.6143 

-2.5 4.3883 4.2468 4.1280 4.0157 3.8724 3.8061 3.6476 3.5140 

λ=0.05 

L=2.246 

-3 3.2376 3.1464 3.0059 2.9082 2.8076 2.7064 2.5885 2.4072 
0 373.4099 372.3355 371.9071 371.1217 370.7762 370.5126 370.3500 370.0260 

-0.2 106.2455 100.6003 100.5999 100.5997 100.5994 100.5990 100.5980 100.5975 
-0.4 90.5961 86.2562 71.4444 71.4339 60.6018 55.7610 53.7905 53.8226 
-0.6 52.5752 48.9307 41.7784 41.6990 31.9875 28.7816 28.5025 27.5297 
-0.8 34.0681 32.2643 27.4844 27.1743 26.2022 23.2607 22.1602 22.1847 
-1 14.6506 13.8797 13.7841 13.7809 13.2380 13.0293 12.8992 12.8901 

-1.5 10.8891 10.7609 10.6337 10.5496 10.4295 10.2951 10.1949 10.0794 
-2 5.4160 5.3375 5.2405 5.0940 4.9751 4.9157 4.8125 4.6164 

-2.5 4.3996 4.2871 4.1286 4.0180 3.8912 3.8254 3.6877 3.5155 

λ=0.08 

L=2.862 

-3 3.2532 3.1536 3.0125 2.9242 2.7943 2.7240 2.5949 2.4456 
0 374.5269 373.0270 372.4478 371.4246 370.9644 370.6298 370.4261 370.0221 

-0.2 112.9750 112.9694 112.9644 112.9619 112.9554 112.9407 112.9323 112.9103 
-0.4 96.2462 86.2680 86.0197 71.4359 60.6032 55.7612 55.7590 54.8231 
-0.6 52.5796 48.9638 48.2818 41.7145 31.9895 28.7816 28.7806 27.5382 
-0.8 34.0776 32.2655 32.2494 27.2372 26.2027 23.2608 23.2589 22.1974 
-1 14.6539 13.8894 13.8382 13.7826 13.2439 13.0328 13.0106 12.8912 

-1.5 10.8942 10.7628 10.6493 10.5809 10.4574 10.3028 10.2098 10.1214 
-2 5.4271 5.3386 5.2449 5.1461 5.0195 4.9173 4.8369 4.6175 

-2.5 4.4087 4.2953 4.1720 4.0442 3.9309 3.8461 3.7309 3.5198 

λ=0.10 

L=3.216 

-3 3.3001 3.1626 3.0153 2.9424 2.7993 2.7465 2.6272 2.4543 
0 375.4484 373.5997 372.8964 371.6704 371.1280 370.7324 370.4943 370.0250 

-0.2 113.9875 113.8585 113.7930 113.6842 113.5353 113.1996 113.0080 112.5085 
-0.4 96.2480 86.2912 86.1225 71.4395 60.6041 55.7614 55.7598 54.8307 
-0.6 52.5897 49.0291 48.5339 41.7417 31.9909 28.7817 28.7810 27.5445 
-0.8 34.0833 32.2679 32.2557 27.3450 26.2031 23.2609 23.2596 22.2045 
-1 14.6560 13.9146 13.8452 13.7829 13.2565 13.0402 13.0142 12.8927 

-1.5 10.8977 10.7708 10.7033 10.5936 10.4644 10.3184 10.2107 10.1221 
-2 5.4802 5.3541 5.2612 5.1672 5.0281 4.9261 4.8703 4.6360 

-2.5 4.4240 4.3143 4.1876 4.0856 3.9546 3.8534 3.7727 3.5504 

λ=0.12 

L=3.697 

-3 3.3148 3.1639 3.0933 2.9459 2.8439 2.7512 2.6355 2.4641 
0 376.6284 374.3328 373.4712 371.9850 371.3348 370.8637 370.5816 370.0287 

-0.2 116.5770 116.5474 116.5361 116.5164 116.5080 116.5017 116.4980 116.4907 
-0.4 96.2490 86.2439 86.1478 71.4412 60.6047 60.5926 55.7601 54.8346 
-0.6 52.5956 50.5644 48.6307 41.7538 31.9917 31.9743 29.7812 28.5512 
-0.8 34.0945 34.0082 32.2581 27.3917 26.2033 26.1988 23.2599 22.2129 
-1 14.6571 14.6140 13.8487 13.7836 13.2634 13.2255 13.0160 12.8945 

-1.5 10.9005 10.7720 10.7042 10.6008 10.5064 10.3830 10.2617 10.1271 
-2 5.5481 5.3804 5.2839 5.1742 5.0378 4.9514 4.8830 4.6512 

-2.5 4.4763 4.3296 4.1912 4.1094 3.9801 3.8542 3.7748 3.5724 

λ=0.15 

L=4.736 

-3 3.3251 3.1649 3.1269 2.9498 2.8601 2.7518 2.6712 2.4838 
0 375.2487 373.4264 372.7435 371.5681 371.0552 370.6843 370.4624 370.0285 

-0.2 119.7358 119.7357 119.7356 119.7356 119.7354 119.7351 119.7350 119.7345 
-0.4 96.2517 86.2446 86.2093 71.4423 60.6058 60.5971 55.7606 54.8430 
-0.6 52.6122 50.5701 48.8003 41.7627 31.9934 31.9807 29.7814 28.5559 
-0.8 35.9632 34.0253 32.2623 27.4254 26.2037 26.2005 23.2603 22.2173 
-1 14.6590 14.6346 13.8544 13.7839 13.2802 13.2309 13.0187 12.8975 

-1.5 10.9422 10.8321 10.7170 10.6124 10.5121 10.3864 10.2680 10.1291 
-2 5.5577 5.3946 5.2901 5.1760 5.0415 4.9586 4.8945 4.7059 

-2.5 4.4821 4.3723 4.2251 4.1225 3.9901 3.8716 3.7925 3.6262 

λ=0.20 

L=5.984 

-3 3.3894 3.2290 3.1412 3.0026 2.8782 2.7584 2.6822 2.5641 

Table 6 - 5: ARL values for individual EWMA control charts for the one-

parameter Lindley distribution (m=50) for various negative shifts 
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λ, L k θ=48 θ=57 θ=62 θ=75 θ=84 θ=93 θ=100 θ=120 

0 369.2722 369.2902 369.2924 369.2895 369.2852 369.2809 369.2787 369.2701 
0.2 109.0139 109.0311 109.0358 109.0412 109.0424 109.0427 109.0427 109.0421 
0.4 48.2060 48.2192 48.2232 48.2289 48.2308 48.2319 48.2324 48.2333 
0.6 26.4868 26.4897 26.4903 26.4903 26.4900 26.4896 26.4893 26.4886 
0.8 17.0489 17.0533 17.0546 17.0563 17.0568 17.0560 17.0571 17.0572 
1 12.1425 12.1470 12.1486 12.1507 12.1515 12.1520 12.1523 12.1528 

1.5 7.7441 7.7484 7.7500 7.7525 7.7435 7.7543 7.7547 7.7555 
2 5.7351 5.7494 5.7510 5.7535 5.7445 5.7553 5.7557 5.7465 

2.5 5.1257 5.1276 5.1283 5.1294 5.1299 5.1303 5.1305 5.1309 

λ=0.05 

L=2.246 

3 3.9584 3.9592 3.9595 3.9601 3.9603 3.9605 3.9605 3.9607 
0 369.6276 369.5008 369.4488 369.3527 369.3079 369.2741 369.2534 369.2115 

0.2 109.3643 109.1398 109.1288 109.1072 109.0965 109.0883 109.0831 109.0725 
0.4 48.5520 48.5492 48.5472 48.5425 48.5397 48.5375 48.5361 48.5329 
0.6 27.2589 27.2691 27.2724 27.2773 27.2291 27.2803 27.2809 27.2820 
0.8 17.3181 17.3262 17.3289 17.3331 17.3247 17.3358 17.3364 17.3374 
1 12.1676 12.1742 12.1765 12.1801 12.1815 12.1824 12.1830 12.1840 

1.5 7.9383 7.9422 7.9435 7.9457 7.9466 7.9472 7.9475 7.9482 
2 5.9484 5.9523 5.9536 5.9558 5.9567 5.9573 5.9576 5.9583 

2.5 5.6756 5.6777 5.6785 5.6798 5.6803 5.6807 5.6810 5.6814 

λ=0.08 

L=2.862 

3 3.8758 3.8769 3.8774 3.8781 3.8784 3.8787 3.8788 3.8791 
0 369.7318 369.5579 369.5845 369.3803 369.4888 369.3214 369.2806 369.2394 

0.2 111.2526 111.4824 111.6542 110.6029 110.5792 110.5616 110.5508 110.5292 
0.4 48.9186 48.8980 48.8896 48.8738 48.8662 48.8604 48.8569 48.8506 
0.6 27.6748 27.6513 27.6523 27.6265 27.6194 27.6142 27.6111 27.6050 
0.8 17.3673 17.3680 17.3678 17.3670 17.3664 17.3658 17.3655 17.3646 
1 12.6058 12.6084 12.6092 12.6100 12.6102 12.6102 12.6102 12.6102 

1.5 8.1455 8.1489 8.1501 8.1320 8.1527 8.1532 8.1535 8.1540 
2 7.1254 7.1288 7.1300 7.1319 7.1326 7.1331 7.1334 7.1339 

2.5 5.7271 5.7304 5.7303 5.7317 5.7323 5.7327 5.7329 5.7334 

λ=0.10 

L=3.216 

3 3.8879 3.8893 3.8899 3.8808 3.8812 3.8815 3.8816 3.8820 
0 369.9686 369.6919 369.6352 369.6918 369.5398 369.4389 369.3622 369.2806 

0.2 112.4326 112.6817 112.9510 111.8612 111.8209 111.7912 111.7733 111.7376 
0.4 48.9367 48.9347 48.9379 48.9377 48.9339 48.9336 48.9374 48.9348 
0.6 27.7068 27.7023 27.7000 27.6951 27.6926 27.6906 27.6993 27.6866 
0.8 17.4378 17.4333 17.4313 17.4271 17.4250 17.4234 17.4224 17.4203 
1 12.6262 12.6260 12.6256 12.6246 12.6250 12.6234 12.6231 12.6223 

1.5 8.3063 8.3091 8.3100 8.3113 8.3118 8.3122 8.3123 8.3127 
2 7.3273 7.3301 7.3309 7.3323 7.3328 7.3332 7.3333 7.3337 

2.5 5.7357 5.7371 5.7368 5.7300 5.7398 5.7384 5.7315 5.7322 

λ=0.12 

L=3.697 

3 3.8903 3.8919 3.8925 3.8936 3.8940 3.8944 3.8946 3.8949 
0 369.9722 369.7047 369.6038 369.4191 369.3525 369.2969 369.2636 369.1983 

0.2 112.9970 112.6961 112.6578 112.5912 112.5618 112.5404 112.5276 112.5024 
0.4 49.0518 48.8959 48.8783 48.8477 48.8341 48.8242 48.8182 48.8065 
0.6 27.8526 27.8379 27.8319 27.8205 27.8151 27.8111 27.8086 27.8035 
0.8 17.5490 17.5361 17.5311 17.5223 17.5184 17.5155 17.5137 17.5102 
1 12.6377 12.6304 12.6275 12.6225 12.6202 12.6185 12.6175 12.6155 

1.5 8.7390 8.7374 8.7367 8.7356 8.7349 8.7345 8.7343 8.7338 
2 7.4289 7.4273 7.4266 7.4254 7.4248 7.4244 7.4242 7.4237 

2.5 5.7589 5.7594 5.7596 5.7599 5.7601 5.7602 5.7602 5.7604 

λ=0.15 

L=4.736 

3 3.9080 3.9094 3.9082 3.9090 3.9080 3.9092 3.9089 3.9093 
0 369.9896 369.9961 369.9607 369.9993 369.9723 369.9527 369.9410 369.9179 

0.2 116.8972 116.8537 116.8372 116.8083 116.8956 116.8863 116.8807 116.8697 
0.4 51.9534 51.9309 51.9223 51.9073 51.9006 51.9957 51.9928 51.9870 
0.6 28.2720 28.2595 28.2546 28.2461 28.2424 28.2396 28.2379 28.2346 
0.8 18.8686 18.8612 18.8584 18.8534 18.8511 18.8495 18.8485 18.8465 
1 13.0206 13.0162 13.0145 13.0115 13.0101 13.0091 13.0085 13.0073 

1.5 8.8853 8.8842 8.8838 8.8830 8.8827 8.8824 8.8823 8.8820 
2 7.4863 7.4852 7.4848 7.4840 7.4837 7.4834 7.4833 7.4830 

2.5 5.8177 5.8179 5.8180 5.8181 5.8182 5.8182 5.8183 5.8184 

λ=0.20 

L=5.984 

3 4.0572 4.0571 4.0581 4.0521 4.0571 4.0570 4.0563 4.0572 

Table 6 - 6: ARL values for individual EWMA control charts for the one-

parameter Lindley distribution (m=50) for various positive shifts for the case of 

not using the skewness correction term when constructing the control limits of the 

chart 
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Additionally, comparing the ARL values for the EWMA in Tables 6-4 and 6-

5 with the ARL values for the Shewhart-type control chart in Table 6-1, we can 

see that the EWMA control chart performs better than the Shewhart-type control 

chart for smaller shifts, since for the case of small shifts, the EWMA out-of-

control ARL values are smaller than the corresponding ARL values for the 

Shewhart-type charts. When it comes to large shifts, however, EWMA ARL values 

are slightly larger and, therefore, make Shewhart-type control charts preferable for 

those cases. 

 

 

6.7 Optimal Choice for the Parameters of the EWMA Control Charts for Individual 

Observations from the One-Parameter Lindley Distribution 

When constructing an EWMA control chart, there are two parameters 

involved in the way the chart is going to perform, namely the constant λ which 

affects the weight we give to the past values of our observations and the value of L 

which affects the width of the chart’s control limits. Therefore, we need to find the 

combination of the values of those two parameters which will lead us to the 

optimal performance of our control chart. 

A lot of work has been done on optimal design of control charts in literature 

[e.g. Capizzi and Masarotto (2003), Castagliola et al. (2008), Khoo et al. (2013), 

Castagliola et al. (2019), Saha et al. (2019), Yeong et al. (2021), Chong et al. 

(2022), Tang et al. (2022), Xie et al. (2022), Yeong et al. (2023)] based on 

minimizing the out-of-control value of various performance criteria. Since all the 

study here has been based on ARL (which is the most commonly used performance 

criterion) the optimal design of the EWMA control chart will be done by 

minimizing the ARL. The algorithm applied here is as follows: 

� Step 1: Set the desired in-control ARL value (e.g. ARL0=370) and the size 

of the mean shift k to be detected (e.g. k = 0.5). 

� Step 2: Set an initial value L = 1. 
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� Step 3: Vary the parameter λ (e.g. increasing by 0.01) so as λ œ (0,1] and 

(using a nonlinear equation solver) find the value of λ for which the ARL0 

value in Step 1 is satisfied. 

� Step 4: Calculate the ARL1 value for the particular combination of λ and L 

resulting from Step 3. [The ARL1 value is obtained as described in the 

previous section, using equation (6-9) for the computation of the transient 

probabilities along with equation (3-2) for the cumulative distribution 

function of the one-parameter Lindley distribution.] 

� Step 5: Increase L by 0.01. 

� Step 6: Repeat Steps 3-5 until the minimum ARL1 value has been reached 

(i.e. until the ARL1 value for L+0.01 is larger than the ARL1 value for L). 

� Step 7: Keep the combination of λ and L resulting from Step 6 for which the 

smallest ARL1 value is obtained as the desired optimal one for the selected 

shift size in Step 1. 

� Step 8: Repeat Steps 2-7 for all the desired values of shifts to be detected 

(e.g. k = {-3, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3}). 

Application of this algorithm leads to Table 6-7 and Table 6-8 which present the 

optimal combination of values of the two parameters of concern (λ and L) of the 

EWMA chart with the corresponding ARL values for various values of the 

parameter θ of the one-parameter Lindley distribution and various positive and 

negative values, respectively, of k, which shows the shift of the process mean in 

terms of the process standard deviation which we want to be detected by the 

control chart we construct. 

 



 197  

 

k θ=48 θ=57 θ=62 θ=75 θ=84 θ=93 θ=100 θ=120 

(0.04, 2) (0.04, 2) (0.04, 2) (0.04, 2) (0.04, 2) (0.04, 2) (0.04, 2) (0.04, 2) 0.2 
(375.4826, 53.6428) (378.5962, 53.4848) (371.4867, 53.7147) (372.2494, 53.6397) (375.6644, 53.5898) (378.8584, 53.6146) (370.1654, 53.6318) (375.3154, 53.6157) 

(0.03, 2) (0.04, 2) (0.69, 6.43) (0.04, 2) (0.04, 2) (0.67, 6.08) (0.04, 2) (0.04, 2) 0.4 
(375.3626, 16.6965) (378.4826, 16.9318) (371.7679, 16.2948) (372.2494, 16.7528) (375.6644, 16.5926) (370.1455, 16.5128) (370.1454, 16.7543) (375.3145, 16.6269) 

(0.65, 6.48) (0.68, 7.81) (0.68, 6.73) (0.67, 6.98) (0.66, 6.76) (0.67, 6.08) (0.67, 7.7) (0.67, 6.62) 0.6 
(370.0357, 10.1828) (368.8257, 10.8197) (371.7679, 10.2835) (369.7372, 10.2842) (370.2573, 10.2684) (370.6545, 10.9919) (368.6897, 10.6216) (370.1487, 10.1488) 

(0.67, 6.89) (0.68, 7.81) (0.68, 6.83) (0.67, 6.98) (0.67, 6.76) (0.67, 6.08) (0.67, 7.7) (0.67, 6.62) 0.8 
(370.1887, 8.7544) (368.8287, 8.2464) (371.7518, 8.8948) (369.7372, 8.9315) (370.2403, 8.8245) (370.2158, 8.6852) (368.6459, 8.0485) (370.1527, 8.7359) 

(0.66, 6.89) (0.05, 1.5) (0.68, 6.68) (0.67, 6.98) (0.67, 6.76) (0.66, 6.08) (0.02, 1.8) (0.66, 6.62) 1 
(370.1648, 7.5482) (367.1808, 7.7548) (371.5789, 7.7682) (369.7522, 7.6488) (370.4215, 7.5478) (370.2484, 7.5154) (359.9154, 7.7145) (370.1597, 7.5157) 

(0.04, 1.41) (0.04, 1.4) (0.04, 1.4) (0.04, 1.4) (0.04, 1.41) (0.04, 1.4) (0.03, 1.4) (0.03, 1.41) 1.2 
(378.3796, 4.8822) (367.5988, 4.7844) (369.2518, 4.8428) (360.8688, 4.8973) (373.7948, 4.8548) (362.8157, 4.7845) (359.9145, 4.7978) (378.3145, 4.8486) 

(0.05, 1.41) (0.05, 1.4) (0.05, 1.4) (0.05, 1.4) (0.05, 1.41) (0.04, 1.4) (0.04, 1.4) (0.05, 1.41) 1.4 
(378.3537, 4.4648) (367.1898, 4.5245) (369.2918, 4.5715) (360.8688, 4.5989) (373.7948, 4.5788) (362.8145, 4.2815) (359.936, 4.2415) (378.3486, 4.3214) 

(0.04, 1.41) (0.04, 1.4) (0.04, 1.4) (0.04, 1.4) (0.04, 1.41) (0.04, 1.4) (0.04, 1.4) (0.04, 1.41) 1.6 
(378.3646, 4.2055) (367.1598, 3.9986) (369.2789, 3.9818) (360.8688, 3.9916) (373.7948, 4.2045) (362.8232, 3.9845) (359.9684, 3.9848) (378.3286, 4.0157) 

(0.05, 1.41) (0.05, 1.4) (0.05, 1.4) (0.05, 1.4) (0.05, 1.41) (0.05, 1.4) (0.05, 1.4) (0.05, 1.41) 1.8 
(378.3486, 3.9016) (367.2718, 3.7924) (369.2845, 3.7988) (360.8688, 3.7972) (373.7948, 3.8028) (362.8598, 3.7918) (359.948, 3.7928) (378.3646, 3.8098) 

(0.05, 1.41) (0.05, 1.4) (0.05, 1.4) (0.05, 1.4) (0.05, 1.41) (0.05, 1.4) (0.05, 1.4) (0.05, 1.41) 2 
(378.3918, 3.6454) (367.2835, 3.6461) (369.2487, 3.6253) (360.8697, 3.6253) (373.7948, 3.6384) (362.8484, 3.6848) (359.9362, 3.6848) (378.3166, 3.6798) 

(0.06, 1.41) (0.06, 1.4) (0.06, 1.4) (0.06, 1.4) (0.06, 1.41) (0.06, 1.4) (0.06, 1.4) (0.06, 1.41) 2.2 
(378.3458, 3.5928) (367.1548, 3.5898) (369.2487, 3.5878) (360.8654, 3.5848) (373.7848, 3.5899) (362.8487, 3.5845) (359.968, 3.5868) (378.3148, 3.5915) 

(0.06, 1.41) (0.05, 1.4) (0.05, 1.4) (0.05, 1.4) (0.05, 1.41) (0.05, 1.4) (0.04, 1.4) (0.05, 1.41) 2.4 
(378.3546, 3.5384) (367.1878, 3.5439) (369.2487, 3.5419) (360.8165, 3.5418) (373.7548, 3.5399) (362.8984, 3.5428) (359.9693, 3.5468) (378.3148, 3.5388) 

(0.97, 2.59) (0.97, 2.57) (0.97, 2.59) (0.97, 2.57) (0.97, 2.57) (0.97, 2.57) (0.97, 2.59) (0.97, 2.59) 2.6 
(376.2486, 3.4468) (377.6198, 3.3984) (375.1257, 3.4578) (379.2154, 3.3988) (375.1463, 3.4128) (375.2189, 3.3948) (379.5454, 3.4368) (376.2648, 3.4391) 

(0.97, 2.59) (0.97, 2.57) (0.97, 2.59) (0.97, 2.57) (0.97, 2.57) (0.98, 2.57) (0.98, 2.59) (0.98, 2.59) 2.8 
(376.2482, 3.2098) (377.6468, 3.1887) (375.1843, 3.2218) (379.2571, 3.1764) (375.2548, 3.1884) (375.2085, 3.1742) (379.5482, 3.2108) (376.2486, 3.2098) 

(0.97, 2.59) (0.98, 2.57) (0.97, 2.59) (0.98, 2.57) (0.97, 2.57) (0.98, 2.57) (0.98, 2.59) (0.98, 2.59) 3 
(376.248, 3.0189) (377.6425, 2.9964) (375.1543, 3.0289) (379.2684, 2.9893) (375.2844, 2.9978) (375.2146, 2.9845) (379.5712, 3.0168) (376.2489, 3.0098) 

Table 6 - 7: Optimal combinations (λ*, L*) (row above the dotted lines for each cell) for the individual EWMA control 

charts for the one-parameter Lindley distribution and the corresponding in-control and out-of-control ARL values (ARL0, 

ARL1) (row below the dotted lines for each cell) for various values of positive shifts k (m=50) 
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k θ=48 θ=57 θ=62 θ=75 θ=84 θ=93 θ=100 θ=120 

(0.04, 1.6) (0.04, 1.6) (0.68, 6.64) (0.04, 1.6) (0.04, 1.6) (0.04, 1.6) (0.04, 1.6) (0.04, 1.6) -0.2 
(375.3728, 52.3284) (378.396, 53.6828) (372.7889, 52.8936) (372.2397, 52.7845) (375.6444, 54.7573) (378.8468, 52.8484) (370.1648, 52.2678) (375.3428, 52.3186) 

(0.08, 2.93) (0.08, 2.96) (0.08, 2.96) (0.08, 2.93) (0.1, 3.18) (0.08, 2.93) (0.1, 3.16) (0.08, 2.93) -0.4 
(364.864, 15.3536) (364.7846, 15.0784) (368.7391, 15.0579) (369.6378, 15.4884) (368.435, 15.4124) (372.4573, 15.2453) (364.3862, 15.2935) (364.864, 15.3536) 

(0.16, 3.98) (0.16, 3.98) (0.16, 3.97) (0.16, 3.98) (0.16, 3.98) (0.16, 3.98) (0.16, 3.98) (0.16, 3.98) -0.6 
(377.9646, 10.7553) (375.6868, 10.3932) (372.2164, 10.2826) (375.6445, 10.5782) (378.1248, 10.8228) (378.5038, 10.544) (375.2757, 10.6204) (377.9645, 10.7553) 

(0.79, 2.57) (0.79, 2.55) (0.79, 2.57) (0.75, 2.57) (0.75, 2.55) (0.79, 2.55) (0.75, 2.57) (0.79, 2.57) -0.8 
(375.5408, 9.4254) (372.369, 8.8457) (372.888, 10.044) (375.844, 9.2402) (362.9997, 8.457) (375.6884, 9.0393) (375.6805, 9.2518) (375.5408, 9.4254) 

(0.79, 2.57) (0.79, 2.55) (0.79, 2.57) (0.75, 2.57) (0.75, 2.55) (0.79, 2.55) (0.75, 2.57) (0.79, 2.57) -1 
(375.5408, 6.4018) (372.369, 6.228) (372.888, 6.8786) (375.844, 6.4837) (362.9997, 5.9384) (375.6884, 6.2642) (375.6805, 6.2887) (375.5408, 6.4018) 

(0.84, 2.55) (0.79, 2.55) (0.79, 2.57) (0.79, 2.55) (0.79, 2.55) (0.79, 2.55) (0.8, 2.55) (0.84, 2.55) -1.2 
(399.6864, 4.9324) (372.369, 5.2484) (372.888, 5.6443) (378.1879, 5.2816) (372.3018, 5.1624) (375.6884, 5.2612) (397.4825, 5.2873) (399.6864, 5.3524) 

(0.84, 2.55) (0.88, 2.57) (0.88, 2.57) (0.84, 2.55) (0.88, 2.55) (0.82, 2.55) (0.84, 2.55) (0.84, 2.55) -1.4 
(372.5462, 4.4018) (377.7973, 4.8642) (377.057, 4.8268) (378.5554, 4.9012) (378.3272, 4.7848) (379.7273, 4.9623) (375.124, 4.8424) (372.0724, 4.8022) 

(0.93, 2.57) (0.97, 2.57) (0.97, 2.57) (0.97, 2.57) (0.97, 2.57) (0.97, 2.57) (0.97, 2.57) (0.93, 2.57) -1.6 
(388.4888, 4.068) (377.0362, 4.0284) (375.2439, 4.141) (364.4184, 4.1535) (372.1288, 4.0454) (377.9844, 4.1464) (378.8097, 4.0841) (388.4888, 4.089) 

(0.79, 2.57) (0.79, 2.55) (0.79, 2.57) (0.75, 2.57) (0.75, 2.55) (0.79, 2.55) (0.75, 2.57) (0.79, 2.57) -1.8 
(375.5408, 3.9012) (372.369, 3.9012) (372.888, 3.9012) (375.844, 3.9016) (362.9997, 3.9014) (375.6884, 3.9043) (375.6805, 3.9014) (375.5408, 3.9012) 

(0.93, 2.57) (0.97, 2.57) (0.97, 2.57) (0.97, 2.57) (0.97, 2.57) (0.97, 2.57) (0.97, 2.57) (0.93, 2.57) -2 
(388.4888, 3.6208) (377.6469, 3.6284) (375.2439, 3.6289) (379.2528, 3.6264) (393.2553, 3.6257) (375.2069, 3.6252) (369.3912, 3.6239) (388.4888, 3.624) 

(0.93, 2.57) (0.97, 2.57) (0.97, 2.57) (0.97, 2.57) (0.97, 2.57) (0.97, 2.57) (0.97, 2.57) (0.93, 2.57) -2.2 
(388.4888, 3.6208) (377.6469, 3.6284) (375.2439, 3.6289) (379.2528, 3.6264) (393.2553, 3.6257) (375.2069, 3.6252) (369.3912, 3.6239) (388.4888, 3.624) 

(0.93, 2.57) (0.97, 2.57) (0.97, 2.57) (0.97, 2.57) (0.97, 2.57) (0.97, 2.57) (0.97, 2.57) (0.93, 2.57) -2.4 
(388.4888, 3.5308) (377.6469, 1.0184) (375.2439, 1.0189) (379.2528, 1.0164) (393.2553, 1.0157) (375.2069, 1.0152) (369.3912, 1.0139) (388.4888, 1.014) 

(0.79, 2.57) (0.79, 2.55) (0.79, 2.57) (0.75, 2.57) (0.75, 2.55) (0.79, 2.55) (0.75, 2.57) (0.79, 2.57) -2.6 
(375.5408, 3.3903) (372.369, 3.3024) (372.888, 3.3024) (375.844, 3.3018) (362.9997, 3.3105) (375.6884, 3.3024) (375.6805, 3.3024) (375.5408, 3.3012) 

(0.79, 2.57) (0.79, 2.55) (0.79, 2.57) (0.75, 2.57) (0.75, 2.55) (0.79, 2.55) (0.75, 2.57) (0.79, 2.57) -2.8 
(375.5408, 3.2012) (372.369, 3.2012) (372.888, 3.2012) (375.844, 3.2015) (362.9997, 3.2012) (375.6884, 3.2014) (375.6805, 3.2014) (375.5408, 3.2015) 

(0.79, 2.57) (0.79, 2.55) (0.79, 2.57) (0.75, 2.57) (0.75, 2.55) (0.79, 2.55) (0.75, 2.57) (0.79, 2.57) -3 
(375.5408, 2.9822) (372.369, 2.9822) (372.888, 2.9822) (375.844, 2.9818) (362.9997, 2.9814) (375.6884, 2.9814) (375.6805, 2.9818) (375.5408, 2.9812) 

Table 6 - 8: Optimal combinations (λ*, L*) (row above the dotted lines for each cell) for the individual EWMA control 

charts for the one-parameter Lindley distribution and the corresponding in-control and out-of-control ARL values (ARL0, 

ARL1) (row below the dotted lines for each cell) for various values of negative shifts k (m=50) 
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6.8 Examples on the Individual One-Parameter Lindley Probability-Type, 

Shewhart-Type and EWMA Control Charts 

This section provides illustration of the proposed control charts by means of 

both simulated data generated from the distribution of concern and real data. The 

case of simulated data is presented in Subsection 6.8.1, while the real data case is 

covered in Subsection 6.8.2. 

 

 

6.8.1 Examples with Simulated Data from the One-Parameter Lindley 

Distribution 

For the simulation the R programming language version 4.0.2 (R Core Team 

(2020)) has been used along with the “LindleyR” package version 1.1.0 

(Mazucheli et al. (2016)). The “lamW” package version 1.3.3 (Adler (2015)) has 

also been used for the quantile function of the distribution used in probability-

type control charts. 

Suppose we take a sample of n = 30 observations from a one-parameter 

Lindley distributed process as follows. First, we take a sample of 15 observations 

from a one-parameter Lindley process with in-control θ value equal to 55. Now 

suppose that a shift of one standard deviation unit occurs in the process mean, 

and after that shift, we draw another set of 15 observations from the process. The 

resulting data set can be seen in Table 6-9. For this data set, we construct the 

individual probability-type one-parameter Lindley control chart shown in Figure 

6-1, using the most commonly used value for the significance level α = 0.27%, as 

mentioned in Section 6.2. 

 

0.014816 0.026409 0.002257 0.008270 0.067346 

0.032560 0.014201 0.024136 0.026196 0.004702 

0.005228 0.049403 0.008079 0.000664 0.023497 

0.085456 0.034413 0.029355 0.093822 0.067916 

0.032951 0.077530 0.035203 0.150783 0.053750 

Data Set 1 

0.098310 0.070499 0.214163 0.071007 0.093822 

Table 6 - 9: Data from a one-parameter Lindley process with in control θ = 55 and a shift of one 

standard deviation unit in the process mean due to an increasing shift after the first 15 

observations (gray shading) 
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Figure 6 - 1: Individual probability-type one-parameter Lindley control chart for 

the data set in Table 6-9 with a shift of one standard deviation unit in the process 

mean 

 

 

 

As we can see in the chart, there is an increasing trend after the first 15 

observations and the control charts detect some out-of-control points indicating 

that an assignable cause has occurred in the process causing its mean to shift to 

an out-of-control level. 

For the same data with one standard deviation unit shift in Table 6-9, we 

now construct the Shewhart-type one-parameter Lindley control chart shown in 

Figure 6-2, using L = 3.431 standard deviations (which gives a desired value of 

in-control ARL close to 370). 
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Figure 6 - 2: Individual Shewhart-type one-parameter Lindley control chart for 

the data set in Table 6-9 with a shift of one standard deviation unit in the process 

mean 

 

 

As we can see in the chart, there is an increasing trend after the first 15 

observations and the control charts detect some out-of-control points indicating 

that an assignable cause has occurred in the process causing its mean to shift to 

an out-of-control level. Comparing this chart to the previous one (Figure 6-1), we 

observe similar behaviour of the probability-type chart to the Shewhart-type 

chart with skewness correction. 

Using the data set in Table 6-9 for the case of a shift of one standard 

deviation unit, we now construct the individual EWMA one-parameter Lindley 

control chart shown in Figure 6-3, using λ=0.05 and L=2.67445 standard 

deviations (which gives a desired value of in-control ARL close to 370). As we 

can see, there is an increasing trend after the first 15 observations and the control 

chart gives an out-of-control signal after the 21st observation. 
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Figure 6 - 3: Individual EWMA one-parameter Lindley control chart for the data 

set in Table 6-9 with a shift of one standard deviation unit in the process mean 

 

 

 

Comparing Figure 6-3 with Figure 6-2 we can see now that, as expected, the 

EWMA control chart detects the one-standard deviation-unit shift quicker than 

the corresponding Shewhart-type control chart. 

 

 

6.8.2 Application of the Individual One-Parameter Lindley Probability-Type, 

Shewhart-Type and EWMA Control Charts to Real Data 

Here we present the illustration of the proposed control charts through 

application to two real datasets. The first dataset was used Ghitany et al. (2008) 

representing waiting times before service of bank customers. This data set is 

presented here in Table 6-10. 
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13.9 21.9 8.8 3.1 14.1 8.6 8.0 12.9 6.2 4.9 

13.7 1.9 4.3 27.0 6.3 9.5 11.9 9.6 2.6 17.3 

1.8 4.0 11.0 3.3 13.6 5.7 5.3 21.3 21.4 4.2 

4.4 12.5 6.9 4.1 18.1 8.9 7.7 11.2 7.1 2.1 

6.2 18.9 2.7 4.6 38.5 10.7 6.1 2.9 13.1 4.9 

3.2 11.5 9.8 11.1 19.0 4.3 15.4 1.5 0.8 13.3 

6.2 4.7 18.2 4.4 3.6 31.6 7.1 6.7 11.2 1.9 

5.0 15.4 7.1 23.0 8.9 8.2 18.4 4.2 5.7 33.1 

7.4 8.6 10.9 7.6 4.7 11.0 4.8 3.5 19.9 9.7 

8.6 13.0 7.1 17.3 5.5 8.8 12.4 1.3 0.8 20.6 

Table 6 - 10: Waiting Times Data Set 

 

 

First of all, when dealing with any dataset, the normality assumption should 

be checked. Both the Kolmogorov-Smirnov test and the Shapiro-Wilk normality 

test give a p-value<0.01 which is a very clear indication that normality 

assumption does not hold for our data. For the case of the one-parameter Lindley 

distribution, on the other hand, the Kolmogorov-Smirnov test gives an 

approximate p-value=0.6994 with the presence of ties in our data and a p-

value=0.8161 without them. In both cases p-value is very large. Therefore, we do 

not reject the null hypothesis that our data may be coming from the assumed 

distribution and this is an indication that the one-parameter Lindley distribution 

fits our data well. 

The value of the parameter of the assumed one-parameter Lindley 

distribution from our data as in Ghitany et al. (2008) being equal to 0.187 is 

going to be used for the construction of the individual probability-type control 

chart in Figure 6-4 for the dataset in hand. The Shewhart-type control chart for 

the particular dataset, using the above estimation along with the value of L=2.993 

standard deviations (for which in-control ARL is close to 370), is presented in 

Figure 6-5. As we can see there, the data points are all inside the control limits in 

both charts and this means that the waiting times of bank customers are within 

the expected ranges. 
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Figure 6 - 4: Individual probability-type control chart for the Waiting Times 

dataset assuming one-parameter Lindley distribution for the data 

 

 

Figure 6 - 5: Individual Shewhart-type control chart for the Waiting Times 

dataset assuming one-parameter Lindley distribution for the data 
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For the construction of the individual EWMA control chart for the data set 

in hand, using the same parameter value of the assumed one-parameter Lindley 

distribution along with the values of λ=0.08 and L=2.623 standard deviations (for 

which in-control ARL is close to 370), we construct the control chart as 

presented in Figure 6-6. As we can see there, the data points are all inside the 

control limits and this means, once again, that the waiting times of bank 

customers are within the expected ranges. 

 

Figure 6 - 6: Individual EWMA control chart for the Waiting Times dataset 

assuming one-parameter Lindley distribution for the data 

 

Now let’s apply the proposed control charts on a second data set. The 

dataset comes from a paper by Proschan (1963) and can also be found in Cox and 

Snell (1981) and represents the time intervals between failures of the air-

conditioning equipment of ten Boeing 720 aircrafts. Here we will use the data for 

the third aircraft, as presented, for convenience, in Table 6-11. First, as usual the 

normality assumption is checked. Both the Kolmogorov-Smirnov test and the 

Shapiro-Wilk normality test give a p-value<0.01 which is a very clear indication 
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that normality assumption does not hold for our data. For the case of the one-

parameter Lindley distribution, on the other hand, the Kolmogorov-Smirnov test 

gives an approximate p-value=0.3752 with the presence of ties in our data and a 

p-value=0.3433 without them. In both cases p-value is large. Therefore, we do 

not reject the null hypothesis that our data may be coming from the assumed 

distribution and this is an indication that the one-parameter Lindley distribution 

fits our data well. There are, however, some outliers in our data. Let’s see if the 

control charts can detect them. 

 

74 57 48 29 502 

12 70 21 29 386 

Times 

between 

failures 59 27 153 26 326 

Table 6 - 11: Time (in hours) between failures of the air-conditioning equipment 

of the third Boeing 720 aircraft in Proschan (1963). 

 

 

The value of the parameter θ of our assumed Lindley distribution being equal to 

0.0164 is going to be used for the construction of the individual control charts. 

For the probability-type control chart the significance level value α = 0.27% is 

used, while for the Shewhart-type control chart for our data the value of L=2.973 

standard deviations (for which in-control ARL is close to 370) is used. The 

resulting control charts can be seen in Figure 6-7 and Figure 6-8 for the 

probability-type and Shewhart-type control chart, respectively. As we can see the 

probability control chart does not detect any out-of-control points, while the 

Shewhart-type control chart detects one. 
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Figure 6 - 7: Individual probability-type control chart for the Failure Time 
Intervals of the third aircraft dataset assuming Lindley distribution for the data. 

 

 

 

For the construction of the individual EWMA control chart, the same 

parameter θ value is going to be used along with the values of λ=0.05 and 

L=2.9734 standard deviations (for which in-control ARL is close to 370). The 

resulting control chart is shown in Figure 6-9, which presents no point outside 

the control limits, but shows one point almost on the lower control limit, which is 

an indication that the EWMA control chart (which is more sensitive to small 

shifts) was very close to give an out-of-control signal, because it detected that 

the previous values were decreasing and the process almost got out-of-control 

which the previous two charts did not detect. 
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Figure 6 - 8: Individual Shewhart-type control chart for the Failure Time 
Intervals of the third aircraft dataset assuming Lindley distribution for the data. 

 

 

 

Figure 6 - 9: Individual EWMA control chart for the Failure Time Intervals of the 
third aircraft dataset assuming Lindley distribution for the data. 
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6.9 Control Charts for Individual Observations from the One-Parameter Lindley 

Distribution with the Scaled Weighted Variance Method 

So far, we have presented and investigated Shewhart-type and EWMA 

control charts for individual observations from the one-parameter Lindley 

distribution using the skewness correction method proposed by Chan and Cui 

(2003). There are, however, other methods, too, for taking into consideration the 

distribution’s skewness. One such method is the scaled weighted variance method 

proposed by Castagliola (2000). This method is going to be used in the following 

sections for constructing and investigating the performance of individual 

observations control charts and individual EWMA control charts for the one-

parameter Lindley distribution and the resulting charts will be compared with 

those constructed so far. 

 

 

6.9.1. Construction of Shewhart-type Control Charts for Individual Observations 

from a Process Following the One-Parameter Lindley Distribution Using the 

Scaled Weighted Variance Method 

According to the method by Castagliola (2000), the construction procedure 

is the following: the central line is placed at the mean of the one-parameter 

Lindley distribution, which is computed using equation (3-3), while the control 

limits are placed around the mean at two different multiples of the standard 

deviation of the one-parameter Lindley distribution, which is computed using 

equation (3-4). These multiples are functions of appropriate values of the 

quantiles of the standardized Normal distribution, the probability of type I error 

or false alarm rate, α, and the cumulative distribution function of the one-

parameter Lindley distribution, which is computed using equation (3-2). More 

specifically, the lower control limit is defined as 
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. 

As a result, the central line (CL) and the upper and lower control limits (UCL 

and LCL, respectively) of the one-parameter Lindley control chart are as follows. 

 

( ) ( )

( )

( ) ( )

2
1

22

2
1

22

1
1

2 4 21 1
1 11 14

1 1

2

1

1
2 4 21 1

1 11 11 4 1
1 1

θx

θx θx

θx

θx θx

θ θx
eθ α θ θθUCL

θ θx θ θxθ θ θ θe e
θ θ

θ
CL

θ θ

θ θx
eθ α θ θθLCL

θ θx θ θxθ θ θ θe e
θ θ

−

−

− −

−

−

− −

+ +  −  + + ++= + Φ − + + + ++ + 
+ + 

+
=

+

 + +
 + + ++  = − Φ −

+ + + ++    +− −  + +  

   (6-12) 

 

 

 

6.9.2. Performance Investigation for the Individual One-Parameter Lindley 

Control Charts Constructed With the Scaled Weighted Variance Method 

As performance measures of the chart we constructed above we will use the 

ARL0 and ARL1 values as in Section 6.4. So we will use again the equations (6-

5) and (6-6) with ( )inF x  being the cumulative distribution function of the one-

parameter Lindley distribution in equation (3-2) with in-control parameter, 

( )outF x  being the cumulative distribution function for the distribution of concern 

with out-of-control parameter given by 
( ) ( ) ( )

( )

2

0 0 0

0

1 6 1

2
new

µ kσ µ kσ µ kσ
θ

µ kσ

− + + + + + +
=

+
 (as 

earlier) and the control limits computed with equation (6-12) in both cases. Using 

the above formulas we obtain Table 6-12 which shows the in-control and out-of-

control ARL values for the individual one-parameter Lindley control chart with 

scaled weighted variance for various values of the parameter θ of the distribution 
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of concern and for various values of k which, as mentioned before, shows the 

shift we want to detect in the process mean in terms of the process standard 

deviation. A significance level equal to the most commonly used value of 0.27% 

has been chosen, which corresponds to 0.27% probability of falsely rejecting the 

null hypothesis that our process is in control. 

 

 

k θ=48 θ=57 θ=62 θ=75 θ=84 θ=93 θ=100 θ=120 

-3 2.4636 2.4543 2.2428 2.1991 2.1825 2.1714 2.0842 2.0361 

-2.8 2.9644 2.7846 2.7352 2.7284 2.6910 2.6242 2.5703 2.5273 

-2.6 3.9804 3.9732 3.7220 3.6848 3.6417 3.1289 3.1250 3.0848 

-2.4 4.6482 4.5796 4.4693 4.3312 4.2893 4.1275 4.0089 3.8884 

-2.2 4.8225 4.6420 4.6220 4.5404 4.5264 4.4634 4.1078 4.0932 

-2 5.9371 5.8269 5.8197 5.7806 5.5935 5.2248 5.1288 5.1284 

-1.8 6.3484 6.2319 6.1572 6.1028 6.0907 5.8268 5.5069 5.4448 

-1.6 6.9012 6.8725 6.8037 6.7968 6.7704 6.4028 6.1719 6.0309 

-1.4 9.8637 9.8408 9.6073 9.4893 9.4868 9.3757 9.3212 9.1206 

-1.2 10.9075 10.5369 10.5125 10.5028 10.2546 10.1884 10.1648 10.1035 

-1 12.9334 12.8486 12.7577 12.6208 12.4648 12.3709 12.1223 12.1093 

-0.8 22.8419 22.1484 21.8480 21.2637 20.9687 20.7314 20.5778 20.2412 

-0.6 39.3204 37.8645 37.2464 36.0399 35.4309 34.9336 34.6270 33.9315 

-0.4 63.8640 61.6398 60.6960 57.9375 57.8448 57.7068 57.1881 55.6487 

-0.2 139.5573 136.8450 135.6901 133.3715 132.2026 131.2532 130.6337 129.2644 

0 370.3084 370.7530 371.4096 372.3759 373.5784 371.8484 370.9643 370.4880 

0.2 130.9160 132.2463 132.8082 133.6217 134.5527 136.1202 136.8087 138.0898 

0.4 57.6407 59.6378 60.0345 60.5784 61.1544 62.0128 62.3241 62.7812 

0.6 37.5726 37.8257 37.9308 39.1287 39.4423 39.8070 39.8981 39.9346 

0.8 25.0578 25.4648 25.6007 25.7518 25.8140 25.8935 25.9718 25.9880 

1 16.2335 16.3122 16.4684 16.5375 16.5379 16.6026 16.6073 16.6451 

1.2 14.2341 14.4808 14.5140 14.5442 14.6408 14.6486 14.6846 14.6873 

1.4 12.4453 12.6933 12.7845 12.9125 12.9326 12.9637 12.9707 12.9757 

1.6 8.8428 9.0937 9.1841 9.3373 9.3937 9.4143 9.4219 9.4312 

1.8 7.3964 7.6277 7.7186 7.8751 7.9373 7.9759 7.9936 8.0046 

2 7.0346 7.2593 7.3489 7.5046 7.5712 7.6155 7.6373 7.6428 

2.2 5.5468 5.7522 5.8484 6.0031 6.0710 6.1284 6.1445 6.1842 

2.4 4.8084 5.0184 5.1022 5.2543 5.3228 5.3717 5.3996 5.4457 

2.6 3.5087 3.7151 3.7970 3.9364 4.0146 4.0642 4.0932 4.1442 

2.8 2.9372 3.1431 3.2236 3.3704 3.4371 3.4879 3.5175 3.5718 

3 2.0484 2.2557 2.3352 2.4899 2.5469 2.5968 2.6264 2.6840 

Table 6 - 12: ARL values for individual one-parameter Lindley control charts 

with scaled weighted variance, with α = 0.0027. 

 

Comparison of Tables 6-12 and 6-2 reveals the improvement in the 

performance of the chart when the scaled weighted variance method is used 

instead of the skewness corrected limits, since the in-control ARL values when 
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the scaled weighted variance method is used are greater by much more than 1% 

than the corresponding ones when the skewness correction is used and all the out-

of-control ARL values for the scaled weighted variance method are smaller than 

the corresponding ones for the skewness correction method with almost all the 

differences being greater than 5%. Comparison of the ARL values for positive 

and negative shifts reveals that the ARL values for positive shifts are mostly 

larger than the ones for the negative shifts. The only cases for which ARL values 

for negative shifts are bigger than the corresponding ones for positive shifts are 

the cases of smaller θ values (equal to or less than 62) in conjunction with very 

small or very large shift sizes (equal to or smaller than 0.6 and equal to or larger 

than 2.6 standard deviation units). 

 

 

6.9.3. Construction of the EWMA Control Charts For Individual Observations 

from the One-Parameter Lindley Distribution Using the Scaled Weighted 

Variance Method 

The construction of the individual EWMA one-parameter Lindley control 

charts is going to be done here based on equation (2-3) for the traditional EWMA 

control charts using the scaled weighted variance method proposed by 

Castagliola (2000). More specifically, the procedure for the construction of the 

proposed control chart is as follows: in equation (2-3), L will be replaced by 

( )
( ) ( )

11
Φ 1

4

X

X X

F µ α

F µ F µ
−
 −
−  

 
 for the lower control limit and 

( )
( ) ( )

1Φ 1
1 4 1

X

X X

F µ α

F µ F µ
−
 
−  − −   

 for the upper control limit, with µ being the 

mean of the one-parameter Lindley distribution, which is computed using 

equation (3-3), and FX(x) is its cumulative distribution function given by 

equation (3-2). For the construction of the EWMA control charts we will also 

need the standard deviation of the one-parameter Lindley distribution computed 

from equation (3-4). 

As a result, the central line (CL) and the upper and lower control limits (UCL 

and LCL, respectively) of the one-parameter Lindley EWMA control chart are as 

follows. 
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   (6-13) 

 

The plotting statistic will be the one in equation (2-2) with xi being the 

observations from our one-parameter Lindley distribution. 

 

 

6.9.4. Performance Investigation for the Individual EWMA One-Parameter 

Lindley Control Charts Constructed With the Scaled Weighted Variance Method 

In order to investigate the performance of the proposed individual EWMA 

chart with the scaled weighted variance method, we will use the ARL, computed 

with equation (6-10). For the transient probabilities in (6-9) the cumulative 

distribution function for the one-parameter Lindley distribution, i.e. equation (3-

2), is going to be used with either in-control parameters for the case of 

computing the in-control ARL value or the out-of-control parameters for the case 

of the out-of-control ARL, with the asymptotic control limits as computed with 

equation (6-13) for i→∞ . This means that the control limits that will be used for 

the computation of ARL will be of the form 
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  (6-14) 

For the out-of-control case we assume that the shift of the process mean is in 

terms of the process standard deviation. In other words, the new mean is assumed 

to be of the form 1 0µ µ kσ= + . Using this relationship, the new parameters of the 

distribution with the shifted mean will be computed by solving equations (3-3) 

and (3-4) in terms of the distribution’s parameter, as earlier. 

Using those formulae we get Tables 6-13, 6-14 and 6-15, which show the 

in-control and out-of-control ARL values for the individual EWMA control chart 

for the one-parameter Lindley distribution for various values of its parameter θ 

and for various values of k which shows the shift of the process mean in terms of 

the process standard deviation. More specifically, Table 6-13 contains the ARL 

values for λ=0.3 for various values of the m for the subintervals into which the 

region between the upper and lower control limits is divided, as mentioned 

earlier. From this table we see that when keeping λ the same, the ARL value 

increases as the number m of subintervals increases and the rate of this increase 

is high until the value of about m=150, above which ARL increases very slightly. 

As a result, the suggested value of m for the computation of ARL in the formulae 

above is m=150. Therefore, Tables 6-14 and 6-15 show the ARL values for 

m=150 for various values of λ for positive and negative shifts, respectively. 
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m k θ=48 θ=57 θ=62 θ=75 θ=84 θ=93 θ=100 θ=120 

0 370.0599 370.0892 370.1005 370.1203 370.1255 370.1291 370.1294 370.1470 
0.2 131.7207 131.7432 131.7518 131.7670 131.7737 131.7786 131.7816 131.7874 

0.5 42.4078 42.4170 42.4205 42.4267 42.4294 42.4314 42.4326 42.4350 

1 9.3044 9.3070 9.3080 9.3098 9.3106 9.3122 9.3123 9.3126 

1.5 6.1720 6.1739 6.1747 6.1760 6.1764 6.1770 6.1773 6.1778 

2 4.6498 4.6517 4.6524 4.6537 4.6543 4.6548 4.6550 4.6556 

2.5 3.7897 3.7916 3.7924 3.7938 3.7944 3.7949 3.7951 3.7957 

50 

3 3.2465 3.2486 3.2494 3.2509 3.2516 3.2521 3.2524 3.2530 

0 379.2972 379.3602 379.3844 379.4269 379.4458 379.4597 379.4680 379.4844 
0.2 138.7702 138.8126 138.8289 138.8575 138.8703 138.8795 138.8851 138.8962 

0.5 45.3247 45.3387 45.3441 45.3535 45.3577 45.3608 45.3626 45.3643 

1 9.9590 9.9624 9.9637 9.9640 9.9671 9.9678 9.9683 9.9692 

1.5 6.3990 6.4012 6.4020 6.4035 6.4042 6.4047 6.4050 6.4056 

2 4.7571 4.7591 4.7599 4.7614 4.7620 4.7625 4.7628 4.7634 

2.5 3.8509 3.8530 3.8538 3.8553 3.8560 3.8565 3.8568 3.8574 

70 

3 3.2861 3.2882 3.2891 3.2906 3.2912 3.2919 3.2922 3.2929 

0 382.4212 382.4979 382.5274 382.5792 382.6022 382.6190 382.6292 382.6492 
0.2 140.9614 141.0120 141.0301 141.0635 141.0784 141.0893 141.0958 141.1087 

0.5 46.1227 46.1482 46.1542 46.1646 46.1692 46.1726 46.1746 46.1786 

1 10.1257 10.1292 10.1406 10.1431 10.1442 10.1450 10.1454 10.1464 

1.5 6.4636 6.4648 6.4659 6.4684 6.4691 6.4696 6.4699 6.4706 

2 4.7896 4.7917 4.7926 4.7940 4.7947 4.7952 4.7955 4.7961 

2.5 3.8706 3.8727 3.8736 3.8751 3.8758 3.8763 3.8764 3.8772 

90 

3 3.2994 3.3016 3.3024 3.3040 3.3047 3.3053 3.3056 3.3063 

0 393.1243 393.1733 393.2019 393.2191 393.2531 400.9754 401.1601 401.2312 
0.2 147.9416 147.9639 147.9802 147.9900 148.0093 152.3802 152.4758 152.5125 

0.5 48.5277 48.5336 48.5380 48.5406 48.5457 49.7025 49.7251 49.7338 

1 10.6767 10.6780 10.6789 10.6795 10.6806 10.8568 10.8612 10.8630 

1.5 6.6786 6.6794 6.6800 6.6804 6.6812 6.7281 6.7307 6.7317 

2 4.9069 4.9076 4.9082 4.9085 4.9091 4.9250 4.9273 4.9282 

2.5 3.9468 3.9476 3.9481 3.9484 3.9491 3.9538 3.9561 3.9570 

120 

3 3.3545 3.3553 3.3559 3.3562 3.3564 3.3569 3.3589 3.3598 

0 409.8641 410.1207 410.2195 410.3935 410.4710 410.5277 410.5619 410.6294 
0.2 156.8980 157.0172 157.0631 157.1436 157.1794 157.2055 157.2212 157.2524 

0.5 50.7476 50.7727 50.7824 50.7993 50.8068 50.8122 50.8155 50.8221 

1 12.0018 12.0064 12.0082 12.0124 12.0128 12.0128 12.0144 12.0157 

1.5 6.7644 6.7693 6.7703 6.7722 6.7730 6.7736 6.7740 6.7747 

2 4.9396 4.9419 4.9429 4.9445 4.9453 4.9458 4.9462 4.9468 

2.5 3.9607 3.9630 3.9639 3.9643 3.9648 3.9655 3.9672 3.9679 

150 

3 3.3602 3.3625 3.3634 3.3645 3.3648 3.3651 3.3659 3.3675 

0 417.7751 418.1054 418.2328 418.4572 418.5572 418.6303 418.6745 418.7617 
0.2 160.5334 160.6736 160.7275 160.8222 160.8643 160.8951 160.9126 160.9502 

0.5 51.5063 51.5334 51.5438 51.5620 51.5701 51.5760 51.5796 51.5864 

1 12.1019 12.1067 12.1085 12.1222 12.1228 12.1243 12.1249 12.1262 

1.5 6.7929 6.7956 6.7967 6.7986 6.7994 6.8000 6.8004 6.8012 

2 4.9496 4.9520 4.9529 4.9546 4.9553 4.9559 4.9562 4.9569 

2.5 3.9653 3.9676 3.9685 3.9702 3.9709 3.9715 3.9719 3.9725 

180 

3 3.3626 3.3650 3.3659 3.3676 3.3684 3.3689 3.3693 3.3700 

0 424.8263 425.2306 425.3864 425.6414 425.7840 425.8737 425.9278 426.0348 
0.2 163.4993 163.6579 163.7188 163.8260 163.8736 163.9085 163.9295 163.9709 

0.5 52.0737 52.1023 52.1222 52.1225 52.1410 52.1472 52.1510 52.1584 

1 12.1729 12.1778 12.1797 12.1831 12.1845 12.1856 12.1863 12.1876 

1.5 6.8122 6.8129 6.8149 6.8168 6.8177 6.8183 6.8187 6.8195 

2 4.9564 4.9588 4.9597 4.9614 4.9621 4.9627 4.9630 4.9637 

2.5 3.9684 3.9707 3.9717 3.9733 3.9741 3.9746 3.9750 3.9757 

210 

3 3.3642 3.3644 3.3675 3.3692 3.3700 3.3706 3.3709 3.3716 

0 431.1934 431.6707 431.8550 432.1799 432.3249 432.4312 432.4951 432.6216 
0.2 165.9872 166.1620 166.2292 166.3474 166.4000 166.4384 166.4616 166.5073 

0.5 52.5212 52.5509 52.5623 52.5824 52.5912 52.5977 52.6017 52.6094 

1 12.2277 12.2327 12.2346 12.2380 12.2395 12.2406 12.2412 12.2426 

1.5 6.8251 6.8279 6.8290 6.8309 6.8318 6.8324 6.8328 6.8336 

2 4.9616 4.9640 4.9644 4.9650 4.9674 4.9680 4.9683 4.9690 

2.5 3.9708 3.9732 3.9741 3.9757 3.9765 3.9771 3.9774 3.9781 

240 

3 3.3655 3.3678 3.3688 3.3705 3.3712 3.3718 3.3722 3.3729 

Table 6 - 13: ARL values for individual EWMA control charts for the one-parameter Lindley 

distribution (λ=0.3) with scaled weighted variance, with α = 0.0027. 
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λ k θ=48 θ=57 θ=62 θ=75 θ=84 θ=93 θ=100 θ=120 

0 372.5690 372.6485 372.6791 372.7327 372.7565 372.7739 372.7844 372.8051 
0.2 94.4349 94.5197 94.5523 94.6096 94.6351 94.6449 94.6537 94.6870 

0.4 42.6846 42.7312 42.7490 42.7803 42.7941 42.8043 42.8104 42.8224 

0.6 22.3993 22.4225 22.4314 22.4470 22.4539 22.4590 22.4620 22.4680 

0.8 15.7555 15.7680 15.7728 15.7812 15.7850 15.7878 15.7894 15.7927 

1 10.6034 10.6122 10.6141 10.6193 10.6216 10.6233 10.6243 10.6263 

1.5 5.2154 5.2190 5.2204 5.2229 5.2240 5.2248 5.2253 5.2263 

2 5.0339 5.0365 5.0376 5.0394 5.0402 5.0408 5.0412 5.0419 

2.5 4.1815 4.1839 4.1849 4.1865 4.1873 4.1879 4.1882 4.1889 

λ=0.05 

3 3.7123 3.7147 3.7156 3.7174 3.7181 3.7187 3.7191 3.7198 

0 377.3317 377.4331 377.4720 377.5404 377.5709 377.5931 377.6065 377.6329 
0.2 100.8241 100.9438 100.9899 101.0708 101.1068 101.1231 101.1489 101.1802 

0.4 44.4889 44.5412 44.5612 44.5962 44.6128 44.6232 44.6300 44.6436 

0.6 22.4888 22.5125 22.5216 22.5375 22.5445 22.5497 22.5528 22.5589 

0.8 15.1485 15.1606 15.1652 15.1733 15.1769 15.1796 15.1812 15.1843 

1 9.7519 9.7591 9.7619 9.7648 9.7690 9.7705 9.7715 9.7734 

1.5 4.3263 4.3297 4.3312 4.3334 4.3345 4.3353 4.3358 4.3367 

2 4.2595 4.2621 4.2631 4.2644 4.2648 4.2650 4.2658 4.2675 

2.5 3.5163 3.5187 3.5196 3.5212 3.5221 3.5227 3.5230 3.5238 

λ=0.08 

3 3.1250 3.1275 3.1284 3.1401 3.1409 3.1415 3.1419 3.1426 

0 384.0329 384.2007 384.2653 384.3789 384.4294 384.4644 384.4886 384.5326 
0.2 106.4964 106.6257 106.6754 106.7625 106.8012 106.8297 106.8467 106.8804 

0.4 46.6225 46.6820 46.7048 46.7447 46.7625 46.7755 46.7833 46.7987 

0.6 23.1077 23.1227 23.1423 23.1592 23.1644 23.1721 23.1754 23.1819 

0.8 15.1870 15.1993 15.2040 15.2123 15.2160 15.2187 15.2203 15.2235 

1 9.5700 9.5773 9.5801 9.5849 9.5871 9.5887 9.5897 9.5916 

1.5 4.0304 4.0339 4.0352 4.0376 4.0387 4.0394 4.0399 4.0409 

2 3.9820 3.9847 3.9857 3.9876 3.9884 3.9890 3.9894 3.9901 

2.5 3.2712 3.2736 3.2745 3.2763 3.2771 3.2776 3.2780 3.2787 

λ=0.10 

3 2.9193 2.9217 2.9227 2.9244 2.9253 2.9259 2.9262 2.9270 

0 386.1851 386.3626 386.4309 386.5510 386.6045 386.6436 386.6471 386.7126 
0.2 107.3786 107.5079 107.5577 107.6450 107.6839 107.7122 107.7294 107.7631 

0.4 46.7178 46.7756 46.7977 46.8364 46.8539 46.8645 46.8741 46.8890 

0.6 22.9612 22.9853 22.9946 23.0107 23.0179 23.0231 23.0263 23.0325 

0.8 14.9602 14.9720 14.9765 14.9844 14.9880 14.9905 14.9921 14.9951 

1 9.3188 9.3258 9.3284 9.3331 9.3352 9.3367 9.3377 9.3395 

1.5 3.7925 3.7959 3.7972 3.7995 3.8006 3.8012 3.8018 3.8027 

2 3.7765 3.7792 3.7802 3.7820 3.7829 3.7835 3.7839 3.7846 

2.5 3.0942 3.0967 3.0976 3.0994 3.1002 3.1008 3.1012 3.1019 

λ=0.12 

3 2.7652 2.7677 2.7686 2.7704 2.7712 2.7718 2.7722 2.7730 

0 389.2340 389.4334 389.5101 389.6451 389.7053 389.7492 389.7757 389.8281 
0.2 108.3412 108.4738 108.5249 108.6145 108.6543 108.6834 108.7010 108.7356 

0.4 46.4360 46.4915 46.5129 46.5502 46.5648 46.5789 46.5862 46.6006 

0.6 22.4363 22.4587 22.4673 22.4824 22.4890 22.4939 22.4969 22.5027 

0.8 14.4361 14.4469 14.4510 14.4583 14.4615 14.4639 14.4653 14.4681 

1 8.8374 8.8438 8.8462 8.8505 8.8524 8.8538 8.8547 8.8563 

1.5 3.4185 3.4217 3.4230 3.4252 3.4261 3.4269 3.4273 3.4282 

2 3.4788 3.4812 3.4823 3.4841 3.4849 3.4855 3.4858 3.4864 

2.5 2.8491 2.8515 2.8524 2.8541 2.8549 2.8555 2.8558 2.8565 

λ=0.15 

3 2.5578 2.5602 2.5612 2.5629 2.5636 2.5642 2.5646 2.5653 

0 400.2532 400.5307 400.6377 400.8259 400.9098 400.9712 401.0082 401.0812 
0.2 113.4129 113.5648 113.6236 113.7270 113.7729 113.8065 113.8268 113.8647 

0.4 47.8412 47.8976 47.9192 47.9571 47.9740 47.9863 47.9937 48.0083 

0.6 22.7226 22.7441 22.7524 22.7648 22.7733 22.7780 22.7808 22.7864 

0.8 14.3824 14.3926 14.3965 14.4034 14.4064 14.4086 14.4100 14.4126 

1 8.6439 8.6499 8.6722 8.6763 8.6781 8.6794 8.6802 8.6818 

1.5 3.1855 3.1886 3.1898 3.1919 3.1929 3.1936 3.1940 3.1949 

2 3.2606 3.2631 3.2641 3.2647 3.2659 3.2673 3.2677 3.2684 

2.5 2.6403 2.6409 2.6412 2.6420 2.6545 2.6569 2.6578 2.6596 

λ=0.20 

3 2.3849 2.3873 2.3883 2.3901 2.3909 2.3915 2.3918 2.3926 

Table 6 - 14: ARL values for individual EWMA control charts for the one-parameter Lindley 

distribution (m=150) with scaled weighted variance, with α = 0.0027, for various positive shifts 
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λ k θ=48 θ=57 θ=62 θ=75 θ=84 θ=93 θ=100 θ=120 

0 372.5690 372.6485 372.6791 372.7327 372.7565 372.7739 372.7844 372.8051 
-0.2 95.2349 95.2185 95.2102 95.1964 95.1776 95.1251 95.1220 95.0481 

-0.4 42.8329 42.8239 42.8194 42.8128 42.8015 42.7782 42.7650 42.7304 

-0.6 22.8121 22.8082 22.8058 22.8017 22.7961 22.7835 22.7763 22.7576 

-0.8 16.0196 16.0168 16.0154 16.0121 16.0099 16.0026 15.9985 15.9878 

-1 10.9595 10.9461 10.9108 10.8369 10.6328 10.6061 10.5129 10.0737 

-1.5 5.9578 5.9271 5.8481 5.7918 5.6883 5.4623 5.1277 5.1258 

-2 4.3333 4.1996 4.1969 4.0184 3.9418 3.8787 3.7493 3.7235 

-2.5 2.9052 2.8199 2.7471 2.5700 2.5683 2.4958 2.4035 2.2109 

λ=0.05 

-3 3.0702 3.0085 2.9203 2.8252 2.7998 2.5610 2.2273 2.1728 

0 377.6329 377.6065 377.5931 377.5709 377.5404 377.4720 377.4331 377.3317 
-0.2 100.5359 100.5125 100.5005 100.4808 100.4537 100.3930 100.3583 100.2683 

-0.4 45.7314 45.7198 45.7129 45.7041 45.6907 45.6435 45.6406 45.5988 

-0.6 23.9723 23.9671 23.9644 23.9600 23.9540 23.9403 23.9326 23.9123 

-0.8 16.7794 16.7763 16.7747 16.7721 16.7685 16.7605 16.7559 16.7439 

-1 10.9395 10.9121 10.8719 10.5128 10.4064 10.3990 10.3707 10.1577 

-1.5 5.9648 5.9606 5.9322 5.7318 5.4648 5.1785 5.1619 5.0958 

-2 4.3165 4.3123 4.2791 4.1298 4.1019 4.0681 3.9885 3.9319 

-2.5 3.1697 2.9308 2.8287 2.6128 2.4077 2.2649 2.2497 2.2373 

λ=0.08 

-3 3.0953 2.8526 2.7915 2.7045 2.7005 2.5008 2.4564 2.2777 

0 384.5326 384.4886 384.4644 384.4294 384.3789 384.2653 384.2007 384.0329 
-0.2 106.7338 106.7000 106.6829 106.6545 106.6156 106.5283 106.4786 106.3494 

-0.4 49.3008 49.2849 49.2769 49.2635 49.2452 49.2041 49.1806 49.1296 

-0.6 25.4620 25.4558 25.4527 25.4475 25.4404 25.4243 25.4152 25.3914 

-0.8 17.8215 17.8177 17.8158 17.8126 17.8082 17.7984 17.7928 17.7783 

-1 10.9556 10.8452 10.6932 10.4175 10.2738 10.2695 10.2076 10.0722 

-1.5 5.9909 5.9488 5.8374 5.6083 5.3181 5.2926 5.2804 5.1860 

-2 4.5777 4.4573 4.4531 4.4362 4.1833 4.1016 3.6986 3.6520 

-2.5 3.0972 2.8721 2.8365 2.7641 2.6589 2.3438 2.2912 2.2456 

λ=0.10 

-3 3.0912 2.9712 2.7616 2.6348 2.6260 2.1931 2.1462 2.1297 

0 386.7126 386.6471 386.6436 386.6045 386.5510 386.4309 386.3626 386.1851 
-0.2 109.4062 109.3682 109.3490 109.3170 109.2734 109.1753 109.1295 108.9746 

-0.4 51.7269 51.7075 51.6977 51.6812 51.6590 51.6088 51.5802 51.5058 

-0.6 26.5270 26.5200 26.5165 26.5106 26.5026 26.4846 26.4743 26.4476 

-0.8 18.2234 18.2196 18.2176 18.2144 18.2100 18.2000 18.1943 18.1795 

-1 10.9879 10.9296 10.7679 10.5899 10.4469 10.3706 10.2780 10.1795 

-1.5 5.9246 5.8949 5.8498 5.5632 5.4945 5.3367 5.0928 5.0143 

-2 4.5676 4.3580 4.3426 4.2459 4.1459 4.1450 4.1259 4.0879 

-2.5 3.1612 3.0532 3.0122 2.8535 2.6982 2.6726 2.6371 2.4439 

λ=0.12 

-3 3.0779 2.9816 2.7262 2.6372 2.3126 2.2600 2.2245 2.1262 

0 389.8281 389.7757 389.7492 389.7053 389.6451 389.5101 389.4334 389.2340 
-0.2 113.0361 112.9902 112.9670 112.9284 112.8757 112.7573 112.6900 112.5152 

-0.4 55.0803 55.0536 54.9771 54.9325 54.8717 54.7352 54.6577 54.4564 

-0.6 27.6962 27.6875 27.6831 27.6758 27.6458 27.6433 27.6304 27.5970 

-0.8 17.8758 17.8723 17.8705 17.8675 17.8634 17.8543 17.8490 17.8354 

-1 10.9582 10.8536 10.8304 10.7251 10.6905 10.6848 10.4437 10.1917 

-1.5 5.9637 5.8391 5.8208 5.6019 5.5363 5.3407 5.0709 5.0144 

-2 4.5296 4.4926 4.4212 4.2855 4.1798 4.1554 3.9644 3.7201 

-2.5 3.1842 3.1446 3.0468 3.0359 2.6450 2.4533 2.3288 2.3248 

λ=0.15 

-3 2.7747 2.6597 2.5449 2.4077 2.3655 2.3312 2.2094 2.1221 

0 401.0812 401.0082 400.9712 400.9098 400.8259 400.6377 400.5307 400.2532 
-0.2 116.8223 116.7492 116.7121 116.6507 116.5648 116.3786 116.2717 115.9946 

-0.4 57.0569 57.0039 55.0401 55.0177 54.9871 54.9182 54.8791 54.7772 

-0.6 29.1870 29.1638 29.1521 29.1226 29.1060 29.0462 29.0121 28.3237 

-0.8 20.4474 20.4417 20.4388 20.4339 20.4274 20.4126 20.4041 20.3821 

-1 10.9129 10.8977 10.6551 10.6208 10.5089 10.4558 10.1263 10.0065 

-1.5 5.9268 5.8573 5.5176 5.3612 5.3455 5.3420 5.2126 5.0480 

-2 4.3912 4.3677 4.3042 3.9156 3.8090 3.7685 3.7584 3.6399 

-2.5 3.1738 3.1223 2.7898 2.7775 2.4141 2.3961 2.3771 2.2594 

λ=0.20 

-3 2.9729 2.7799 2.7600 2.7171 2.5503 2.4787 2.2084 2.1251 

Table 6 - 15: ARL values for individual EWMA control charts for the one-parameter Lindley 

distribution (m=150) with scaled weighted variance, with α = 0.0027, for various negative shifts 
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Comparing those two tables, we observe that the proposed control chart 

detects both positive and negative shifts well, but there are some differences in 

the ARL values between those two tables. Most of the ARL values for the 

negative shifts are bigger than the corresponding ones for the positive shifts. The 

out-of-control ARL values for the positive shifts are bigger than the 

corresponding ones for the negative shifts for cases of larger θ values in 

conjunction with large shift sizes. This makes sense because the larger the θ 

value the smaller the observation from the one-parameter Lindley distribution, 

which means that for a large negative shift the possibility of the shifted value 

getting out of control becomes larger and, therefore, the chart detects it more 

quickly. 

Comparing Tables 6-14 and 6-15 with Tables 6-4 and 6-5 we see the 

improvement in the performance of the individual EWMA control chart when 

using the scaled weighted variance method instead of the skewness correction. 

The in-control ARL values are all larger when using the scaled weighted variance 

instead of the skewness correction method and all the out-of-control ARL values 

are smaller than the corresponding ones resulting from the skewness correction 

method and these are valid either the shift is positive or negative. Moreover, the 

differences are almost all higher than 5% for both positive and negative shifts, so 

the improvement is significant. 

 

 

6.9.5 Example on the one-parameter Lindley individual Shewhart-type and 

EWMA control charts with scaled weighted variance using simulated data 

This section contains the illustration of the proposed control charts by 

means of simulated data generated from the distribution of concern. The case of 

real data will be presented in section 6.9.6. For the same data set of Table 6-9, 

we construct the individual Shewhart-type and EWMA one-parameter Lindley 

control charts with scaled weighted variance presented in Figures 6-10 and 6-11, 

using the most commonly used value for the significance level α = 0.27%, as 

mentioned earlier. As we can see in those graphs, both charts detect the out-of-

control state of the process sooner than the corresponding charts with the 
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skewness correction method presented earlier in Figures 6-2 and 6-3, 

respectively. 

 

Figure 6 - 10: Individual one-parameter Lindley control chart with scaled 

weighted variance for the data set in Table 6-9 with a shift of one standard 

deviation unit in the process mean 

 

Figure 6 - 11: Individual EWMA one-parameter Lindley control chart with scaled 

weighted variance for the data set in Table 6-9 with a shift of one standard 

deviation unit in the process mean 
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6.9.6 Application of the one-parameter Lindley individual Shewhart-type and 

EWMA control charts with scaled weighted variance to real data 

 

This section addresses the illustration of the proposed control charts 

through application to the same real data as in Tables 6-10 and 6-11. For the first 

case of the waiting times dataset, the individual one-parameter Lindley control 

chart with scaled weighted variance is presented in Figure 6-12 and it detects an 

out-of-control point which the other control charts seen so far had not detect. The 

individual EWMA one-parameter Lindley control chart with scaled weighted 

variance is shown in Figure 6-13. This chart does not present any out-of-control 

points, probably due to the inertia effect, we mentioned in Section 2.14.2. The 

value of λ=0.08 is quite small and does not give much weight to the present data 

and, therefore, the EWMA statistic is effected from the previous low values and 

does not react quickly to the shift in the opposite direction which the chart in 

Figure 6-12 detected. 

 

 

Figure 6 - 12: Individual one-parameter Lindley control chart with scaled 

weighted variance for the Waiting Times dataset 
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Figure 6 - 13: Individual EWMA one-parameter Lindley control chart with scaled 

weighted variance for the Waiting Times data set 

 

For the case of the airplane air-conditioning failure times dataset, the 

corresponding individual one-parameter Lindley and EWMA one-parameter 

Lindley control charts with scaled weighted variance are presented in Figure 6-14 

and Figure 6-15, respectively. The chart in Figure 6-14 detects the same out-of-

control observation as the corresponding chart with the skewness correction, but 

the individual EWMA chart in Figure 6-15 does not detect that. This probably 

happened because of the inertia effect and the small value of λ=0.05 which gives 

small weight on the large present values to the opposite direction than the 

previous small ones. The EWMA chart, however, presents a point outside the 

lower control limit. This is an indication that a downwards shift occurred first 

and the EWMA chart which is sensitive to small shifts detected it, while all the 

other charts seen so far had not detected it. 
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Figure 6 - 14: Individual one-parameter Lindley control chart with scaled 

weighted variance for the aircraft air-conditioning equipment failure dataset 

 

 

 

Figure 6 - 15: Individual EWMA one-parameter Lindley control chart with scaled 

weighted variance for the aircraft air-conditioning equipment failure dataset 
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6.10 Conclusions and Further Research 

In this chapter probability-type, Shewhart-type and EWMA control charts 

have been constructed for monitoring individual observations from a process 

which is assumed to follow the one-parameter Lindley distribution for the 

theoretical scenario of known distributions’ parameters. Two different methods 

for taking into account the distribution’s skewness have been considered. The 

performance of the proposed control charts has been investigated for the cases of 

all the proposed control charts (probability-type, Shewhart-type and EWMA 

control charts with both skewness correction methods). Optimal design for the 

EWMA control chart has also been presented. The five types of proposed control 

charts have been illustrated with both simulated and real data. 

The proposed control charts take into account the skewness of the 

distribution and this leads to a significant improvement of their performance as 

has been demonstrated along this chapter. The performance of the control charts 

seems to improve more when the scaled weighted variance method by Castagliola 

(2000) is used instead of the skewness correction method proposed by Chan and 

Cui (2003). 

This study can also be applied to other Lindley-related distributions 

(generalizations, mixtures, transformations, etc.). Such an attempt is made in 

Chapter 7, where control charts are constructed for the two-parameter Lindley 

distribution by Shanker et al. (2013). 

Moreover, for future research, the whole analysis can be extended to 

include supplementary runs rules for the detection of small shifts. For this 

purpose it would also be useful to construct CUSUM control charts for the one-

parameter Lindley distribution, as well. 
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CHAPTER 7 

 

CONTROL CHARTS FOR INDIVIDUAL OBSERVATIONS 

FROM THE TWO-PARAMETER LINDLEY DISTRIBUTION 

 

 

 

7.1 Introduction 

As pointed out in Chapter 3, Lindley-related distributions (extensions, 

modifications, mixtures) have various applications in our everyday lives, such as 

in medicine, genetics, epidemiology, biology, finance and actuarial sciences, 

ecology, meteorology, sociology, demography, agriculture, hydrology, 

geosciences, reliability and engineering, life testing and survival analysis, 

airborne systems and communications, environmental studies and modeling and 

describing of human mistakes, strikes, accidents, behavioural and emotional or 

IQ test scores and waiting times of customers in queues until service etc. As a 

result of the variety of its applications, it is important to develop control charts 

for detecting shifts in a process which follows a Lindley-related distribution. 

In this chapter, the two-parameter Lindley distribution proposed by Shanker 

et al. (2013) is considered and the first part of it has already been published 

[Demertzi and Psarakis (2024)]. Probability-type, as well as Shewhart-type and 

EWMA control charts are constructed for individual observations from the 

chosen distribution using two different methods for taking into account its 

skewness when establishing the control limits of the Shewhart-type and EWMA 

charts. The performance of all the control charts proposed in this chapter is 

investigated and illustrated with both simulated and real datasets (same for each 

chart for the shake of comparisons). The whole analysis reveals the superiority of 

using skewness correction for the construction of the control charts against not 

using it, as well as the superiority of the scaled weighted variance method for 

taking into account the distribution’s skewness. The outline of this chapter is as 

follows: Section 7.2 deals with the construction of the probability control charts 

for individual observations from the two-parameter Lindley distribution, while 
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section 7.3 describes the construction of Shewhart-type control charts for the 

case of using the skewness correction method proposed by Chan and Cui (2003). 

The performance of both charts is investigated in section 7.4, which reveals the 

superiority of the proposed Shewhart-type control charts. Section 7.5 presents the 

construction of EWMA control charts for individual observations form the two-

parameter Lindley distribution using the same skewness correction method and 

the performance of these control charts is investigated in section 7.6, which 

reveals the superiority of the proposed control charts over EWMA charts without 

the skewness correction. Optimal design for the control charts of section 7.5 is 

discussed in section 7.7. Illustration of all the control charts proposed in the 

previous sections is provided in section 7.8 with both simulated and real data. 

Section 7.9 is dedicated to Shewhart-type and EWMA charts for individual 

observations from the two-parameter Lindley distribution using a different 

method for taking into consideration the distribution’s skewness, namely the 

scaled weighted variance method proposed by Castagliola (2000). More 

specifically, subsections 7.9.1 and 7.9.2 discuss the construction and 

performance investigation, respectively, of the Shewhart-type charts with this 

method, while subsections 7.9.3 and 7.9.4 deal with the construction of the 

corresponding EWMA charts. Subsections 7.9.5 and 7.9.6 offer illustration of the 

proposed control charts with the scaled weighted variance method through 

application to the same simulated and real data, respectively, used in section 7.8 

(for comparison reasons). 

 

 

7.2 Probability-Type Control Charts for Individual Observations Following the 

Two-parameter Lindley Distribution 

The control limits for the probability-type control chart for observations 

from the two-parameter Lindley distribution will be constructed in terms of the 

probability of type I error or false alarm rate, α, using our distribution of interest 

(see for example, Chang and Gan (1999) for the case of the modified geometric 

distribution). For this purpose we will need the quantile function of the two-

parameter Lindley distribution, which is obtained in subsection 7.2.1. 
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7.2.1 The Quantile Function of the Two-parameter Lindley Distribution 

For the case of using the probability of type I error to obtain the control 

charts for the two-parameter Lindley distribution we need the distribution’s 

quantile function. Applying the methodology in Theorem 1 of Jodrá’s (2010) 

paper, we can find a formula for the required quantile function in terms of the 

Lambert’s W function [Corless et al. (1996)] as presented here. 

The quantile function in general, is given by ( ) ( )-1
X XQ u F u= , with u such as 

0<u<1. For the case of the two-parameter Lindley distribution under study, we 

have: 
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It should be noted that we use the negative brunch of the Lambert’s W 

function in the formula above. A detailed justification is provided below. By 

definition we have 0, , 0θ r θ x> > − > . In addition, 0r r> − ⇒ + >θ θ . Now there 

are two possibilities r>0 and r<0. 
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r r
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Moreover, 
0

0
0

θ
θx

x

> 
⇒ >

> 
. As a result, for the first case 

0 0 1 1 1 1
r r

r x
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> ⇒ − < ⇒ − − < − ⇒ > ⇒ + >

θ θ θ θ
θ . As for the second case, 

the inequality 1
r

x
r

+
+ >

θ
θ  holds only for r such that 

1
x

r
> − , since 

( )0 1 1
1 0

r
x x x x x

r r r r r

>+
+ > ⇒ + > ⇒ > − ⇒ > − ⇒ > −

θθ θ θ
θ θ θ . For every such r, all the 

above allow as to use the negative branch of the Lambert W function, considering 

its properties as presented in Section 2 of Jodrá’s (2010) paper. 

 

 

7.2.2 Control Limits of the Individual Probability-Type Two-Parameter Lindley 

Control Charts 

In this subsection the computation of the control limits of the chart is 

presented in terms of the probability of type I error or false alarm rate, α. In 

order to do that we need to use the cumulative probability of the two-parameter 

Lindley distribution as presented in equation (3-7). The method is the following: 

For a significance level α, we have 

( )
2
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from which using equation (7-1) we obtain 
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where ( )1W x−  is the negative branch of the Lambert W function. 

Similarly, for the upper control limit, we have 

( )
2
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P X UCL P X UCL e θ r θ
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from which, using equation (7-1) once again, we get that 
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Similarly for the central line we obtain 
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As a result from all the above, the control limits of the chart in terms of the 

probability of type I error, α, are as follows. 
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7.3 Shewhart-Type Control Charts for Individual Two-Parameter Lindley-

Distributed Observations 

Here the individual two-parameter Lindley control charts are constructed 

based on the Shewhart-type individual control charts using the skewness 

correction as in Chan and Cui (2003). More specifically, the central line is placed 

at the mean of the two-parameter Lindley distribution, which is computed using 

equation (3-8), while the control limits are placed around the mean at L times its 

standard deviation (the square root of the quantity computed by equation (3-9)) 

plus *
4c  times its standard deviation, where ( )

( )

( )
*
4 2

4

3

1 0.2

sk x
c x

sk x

  
=

 +  

 is the skewness 

correction and sk(X) is the distribution’s skewness coefficient computed from 

equation (3-10). This means that the skewness correction for the two-parameter 

Lindley distribution will be 
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4 23 32 3
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           (7-3) 

As a result, the central line (CL) and the upper and lower control limits (UCL 

and LCL, respectively) of the two-parameter Lindley control chart are as follows. 
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7.4 Performance Investigation for the Individual Two-parameter Lindley Control 

Charts 

As a performance measure of the charts we just constructed, we can use the 

ARL0 and ARL1 values as in the previous chapter. The formulae for their 

computation will be 

( ) ( )0

1

1 in in

ARL
F UCL F LCL

=
− +

      (7-5) 

where ( )inF x  is the cumulative distribution function of the two-parameter 

Lindley distribution in equation (3-7) with in-control parameters and control 

limits as computed with equation (7-2) for the probability-type control charts or 

equations (7-4) and (7-3) for the Shewhart-type control charts and 

( ) ( )1

1

1 out out

ARL
F UCL F LCL

=
− +

      (7-6) 

where ( )outF x  is the cumulative distribution function for the distribution of 

concern with out-of-control parameters and same control limits as before. For the 

out-of-control case we assume that the shift of the process mean is in terms of the 

process standard deviation. In other words, the new mean is assumed to be of the 

form 1 0µ µ kσ= + . Using this relationship, the new parameters of the distribution 

with the shifted mean will be computed by solving equations (3-8) and (3-9) in 

terms of the distribution’s two parameters. The resulting values for them are 

given by 
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Using the above formulas we obtain Table 7-1 and Table 7-2, which show the in-

control and out-of-control ARL values for the individual probability-type and 

individual Shewhart-type control chart, respectively, for the two-parameter 

Lindley distribution for various values of the two parameters θ and r of the 

distribution of concern and for various values of k which, as mentioned before, 

shows the shift we want to detect in the process mean in terms of the process 

standard deviation. For the probability-type control charts we have chosen a 

significance level equal to the most commonly used value of 0.27%, which 
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corresponds to 0.27% probability of falsely rejecting the null hypothesis that our 

process is in control. 

 

 

 

k θ=48, r=54 θ=57, r=68 θ=62, r=75 θ=75, r=86 θ=84, r=92 θ=93, r=108 θ=100, r=114 θ=120, r=135 

-3 3.7097 3.8882 3.9239 3.4675 3.9414 3.9370 3.9570 3.6987 

-2.8 4.6828 4.2818 4.2410 4.4103 4.2842 4.7850 4.6041 4.6228 

-2.6 4.8812 4.8232 4.8712 5.2018 5.3578 5.2253 5.4305 5.2035 

-2.4 5.3481 5.3693 5.3424 5.4870 5.4668 5.3235 5.4455 5.3750 

-2.2 6.5266 6.4505 6.3775 6.8272 6.9610 6.5316 6.8257 6.4175 

-2 7.5189 7.5452 7.7870 7.8532 7.8491 7.5750 7.7510 7.5189 

-1.8 8.8427 8.6828 8.4817 8.3486 8.9937 8.4873 8.8468 8.7954 

-1.6 9.6484 9.4228 9.8628 9.2648 9.8680 9.7557 9.7593 9.5734 

-1.4 10.8893 10.6875 10.6890 10.7562 10.8122 10.7890 10.8082 10.7824 

-1.2 14.8728 14.5261 14.2086 14.2846 14.8276 14.4061 14.6086 14.7898 

-1 18.8483 18.5712 18.7056 19.0856 18.5012 18.2386 19.0039 18.8483 

-0.8 21.0459 21.0863 21.0205 21.0686 21.0957 21.0690 21.0326 21.0278 

-0.6 35.3144 35.7536 35.1487 35.6824 35.5912 35.4184 35.2171 35.6207 

-0.4 68.8793 66.5877 66.9504 66.3822 68.7273 66.0041 68.4025 66.0435 

-0.2 202.3536 202.1264 200.7909 203.3778 204.5724 200.3095 200.1893 201.8153 

0 370.3704 370.3704 370.3704 370.3704 370.3704 370.3704 370.3704 370.3704 

0.2 200.7918 199.9578 198.8480 200.9370 202.1457 198.6588 199.7332 200.5969 

0.4 68.2787 64.3418 64.1493 64.5996 68.1235 64.4184 68.3683 64.7052 

0.6 34.2857 34.2109 34.3700 34.6199 34.5482 34.2035 34.7353 34.9702 

0.8 20.6998 20.4610 20.9084 20.0728 20.1273 20.8203 20.4066 20.3990 

1 18.5961 18.3085 18.2419 18.5015 18.7310 18.4392 18.5303 18.5961 

1.2 14.8719 14.1577 14.3707 14.9395 14.5128 14.9302 14.9322 14.5785 

1.4 10.7957 10.8619 10.4648 10.7318 10.9668 10.9606 10.4681 10.5019 

1.6 8.6198 8.3319 8.3784 8.7123 8.6891 8.7164 8.2077 8.0648 

1.8 7.5128 7.7308 7.0373 7.9697 7.0497 7.6287 7.6045 7.6004 

2 6.1915 6.1533 6.1445 6.1790 6.2094 6.1707 6.1828 6.1915 

2.2 5.9975 5.5888 5.8753 5.7003 5.6882 5.8457 5.6037 5.6348 

2.4 5.2088 5.3466 5.0361 5.1269 5.4226 5.4878 5.1463 5.0930 

2.6 4.6121 4.9964 4.8433 4.9350 4.8272 4.9795 4.9428 4.8007 

2.8 4.4266 4.4888 4.0260 4.2817 4.0482 4.4181 4.0719 4.0457 

3 3.8068 3.7933 3.7901 3.8023 3.8031 3.7994 3.8037 3.8068 

Table 7 - 1: ARL values for individual probability-type control charts for the 

two-parameter Lindley distribution, with α = 0.0027. 
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k 

θ=48, 

r=54 

L=3.082 

θ=57, 

r=68 

L=3.075 

θ=62, 

r=75 

L=3.073 

θ=75, 

r=86 

L=3.079 

θ=84, 

r=92 

L=3.084 

θ=93, 

r=108 

L=3.078 

θ=100, 

r=114 

L=3.08 

θ=120, 

r=135 

L=3.081 

-3 2.5230 2.6206 2.6277 2.8280 2.6402 2.6877 2.6270 2.6846 

-2.8 3.5726 3.6350 3.6459 3.7580 3.6409 3.7505 3.6096 3.6448 

-2.6 3.8671 3.9350 3.8468 3.9071 3.9526 3.9884 3.9732 3.9520 

-2.4 4.0022 4.2645 4.2459 4.5072 4.3702 4.1683 4.0591 4.0268 

-2.2 4.6439 5.1206 5.1639 5.1416 5.1579 5.1889 5.1278 5.1620 

-2 5.1698 5.4480 5.5142 5.4071 5.5979 5.5789 5.5832 5.5759 

-1.8 6.5989 6.3172 6.1957 6.2098 6.8957 6.5387 6.7280 6.8285 

-1.6 7.2541 7.9373 7.2572 7.2098 7.6120 7.1543 7.7280 7.1534 

-1.4 8.3825 8.6430 8.4260 8.1954 8.4878 8.0891 8.2536 8.3657 

-1.2 10.6359 10.6469 10.6275 10.6162 10.6059 10.6324 10.6826 10.6904 

-1 14.1732 14.3703 14.1546 14.1287 14.7355 14.8436 14.8455 14.1286 

-0.8 18.6855 18.9797 18.9214 18.9782 18.7222 19.0228 19.4816 19.4955 

-0.6 32.8425 32.9696 32.9897 32.8398 32.7384 32.8935 32.8444 32.7897 

-0.4 62.7501 62.5289 62.2237 62.2930 64.2380 62.0662 62.4381 62.6757 

-0.2 198.0554 190.4812 190.2530 196.2882 202.3122 196.7594 196.3208 198.4925 

0 370.5489 370.4182 370.4248 370.4019 370.4248 370.4018 370.4462 370.4075 

0.2 197.5759 186.8994 184.3355 193.6925 200.1273 191.6104 194.9069 197.1084 

0.4 62.7680 60.7371 60.2432 62.0405 63.6273 61.6413 62.2682 62.6875 

0.6 30.8697 30.2056 30.0421 30.6319 31.1459 30.5022 30.7066 30.8421 

0.8 19.0063 18.7095 18.6357 18.8996 19.1279 18.8421 18.9332 18.9930 

1 14.3086 14.1488 14.1087 14.2508 14.3731 14.2202 14.2690 14.3009 

1.2 10.1099 10.0128 9.9883 10.0746 10.1486 10.0562 10.0858 10.1049 

1.4 8.1274 8.0532 8.0370 8.0939 8.1427 8.0819 8.1014 8.1239 

1.6 7.7812 7.7360 7.7245 7.7645 7.7987 7.7571 7.8698 7.7785 

1.8 6.8343 6.8010 6.7925 6.8220 6.8471 6.8158 6.8259 6.8322 

2 5.1243 5.1089 5.1023 5.1248 5.1440 5.1202 5.1279 5.1227 

2.2 4.8992 4.5792 4.5740 4.5917 4.6068 4.5881 4.5941 4.8978 

2.4 4.1788 4.1626 4.1584 4.1727 4.1848 4.1698 4.1747 4.1777 

2.6 3.8410 3.8277 3.8242 3.8360 3.8459 3.8336 3.8376 3.8400 

2.8 3.5545 3.5433 3.5404 3.5502 3.5585 3.5483 3.5516 3.5536 

3 2.3344 2.3248 2.3224 2.3307 2.3378 2.3291 2.3319 2.3436 

Table 7 - 2: ARL values for individual Shewhart-type control charts for the two-

parameter Lindley distribution 

 

 

Comparison of Tables 7-1 and 7-2 reveals the improvement in the 

performance of the chart when the skewness corrected limits are used instead of 

the probability-based ones. The difference in ARL values between Shewhart-type 
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and probability-type control charts is greater than 5% for all shift sizes except 

k=±0.2 where it is slightly smaller than 5%. 

Comparison of the ARL values for positive and negative shifts shows that, 

although the control charts can detect both positive and negative shifts well, 

there are some slight differences with most values being a little higher for the 

negative shifts than for the corresponding positive ones. This holds for either the 

probability-type or the Shewhart-type control chart. The only differences (in 

either direction) that are above 5% concern the shifts corresponding to values of 

k between 1.6 and 2.2 for the probability-type control charts and values of 

k=±{0.6, 2.2, 3} for the Shewhart-type control charts. 

 

 

7.5 Construction of the EWMA Control Charts for Individual Observations from 

the Two-Parameter Lindley Distribution 

When dealing with individual observations besides the Shewhart-type 

control charts we need EWMA charts which are a better alternative, as mentioned 

in Section 2.14.2. So it is useful to construct EWMA control charts for individual 

observations from the two-parameter Lindley distribution. In order to do so, we 

will need to remember the general guidelines for the construction of EWMA 

charts as presented in equation (2-3) and the statistic to be plotted on those charts 

presented in equation (2-2), with the constant λ representing the weight assigned 

to each of the past observations (usually chosen to be smaller for detecting 

smaller shifts) and the statistic’s starting value being the distribution’s mean. 

So here, the construction of the individual two-parameter Lindley control 

charts is going to be done based on equation (2-3) for the general construction of 

EWMA charts, using the skewness correction as in Chan and Cui (2003), which 

is chosen since the distribution of concern is asymmetric and, as also mentioned 

in Weiß and Atzmüller (2011), this is an easily applied method for taking the 

distribution’s skewness into consideration and leads to a better ARL performance 

of the resulting control chart. In the next section, where we deal with the 

performance investigation of the constructed control chart, we will further 

demonstrate the need for this adjustment considering the asymmetry of the 

distribution and the improvement in the performance of the chart when using the 
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skewness correction contrary to not using it but using the traditionally used 

symmetric EWMA control limits instead. 

More specifically, the procedure for the construction of the proposed 

control chart is as follows: in equation (2-3) we will replace L by L plus *
4c , 

where ( )
( )

( )
*
4 2

4
sk

3

1 0.2 sk

x
c x

x

  
=

 +  

 is the skewness correction and sk(X) is the 

distribution’s skewness coefficient. EWMA control charts for individual 

observations from the two-parameter Lindley distribution are constructed using 

the mean of the two-parameter Lindley distribution, which is computed using 

equation (3-8), its standard deviation (the square root of the quantity computed 

by equation (3-9)) and the distribution’s skewness coefficient computed from 

equation (3-10). This means that the skewness correction for the mean of the 

two-parameter Lindley distribution will be 

( )
( ) ( )

( ) ( )

3
3 3 2 2 2

*
4 23 32 3

8 2 4 2

3 4 2 0.24 2

θ r θ θ θr r
c x

θ θr r θ r θ

 + − + + =
 + + + + − 

            (7-7) 

As a result, the central line (CL) and the upper and lower control limits (UCL 

and LCL, respectively) of the two-parameter Lindley EWMA control chart are as 

follows. 

( )
( )

( )
( )

( )

( )
( )

( )
( )

2 2
2*

4 22

2 2
2*

4 22

2 4 2
1 1

2

2

2 4 2
- 1 1

2

i

i

θ r θ θr r λ
UCL L c x λ

θ θ r λθ θ r

θ r
CL

θ θ r

θ r θ θr r λ
LCL L c x λ

θ θ r λθ θ r

+ + +   = + + − −   + −+

+
=

+

+ + +   = + + − −   + −+

   (7-8) 

 

The plotting statistic will be the one in equation (2-2) with xi being the 

observations from our two-parameter Lindley distribution. 
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7.6 Performance Investigation for the Individual Two-Parameter Lindley EWMA 

Control Charts 

In order to investigate the performance of the proposed EWMA control 

charts, the ARL will be used. According to Lucas and Saccucchi (1990) the ARL 

of the EWMA control chart is computed by means of the Markov chain method 

and discretization of the control statistic. More specifically, the region between 

the upper and lower control limits is divided into 2m+1 subintervals. Each 

subinterval Sj (j=1,2,…,2m+1) is taken to be represented by its midpoint sj and 

then if δ is the half size of each subinterval, which means that 
( )2 2 1

UCL LCL
δ

m

−
=

+
, 

then whenever j i js δ Z s δ− < < +  the process is in a transient state. Otherwise, the 

process is in the absorbing state. Therefore, the in-control transition probability 

from one transient state Sj to another transient state Sk is given by 

( )
( )

( )( )
( ) ( )

1

1

1 11

1 1
, , 1,2, , 2 1

kj i k i j

k i k i j

k i i k i j

k j k j
i

p P Z S Z S

P s δ Z s δ Z s

P s δ λX λ Z s δ Z s

s δ λ s s δ λ s
P X j k m

λ λ

−

−

− −

= ∈ ∈

= − < < + =

= − < + − < + =

− − − + − − 
= < < = + 

 
…

 (7-9) 

The ith-stage transition probability matrix Pi is, then, defined as 

( )
1

i i
i

T

 −
=   
 

R I R 1
P

0
, where R is the (2m+1, 2m+1) matrix of the transient 

probabilities pkj mentioned in (7-9) above and 0T=(0,0,…,0), i.e. 0T is the 

transpose of 0 which is a vector of 2m+1 zeros. The ith-stage transition 

probability matrix Pi contains the probabilities that the control statistic goes from 

one transient state to another in i steps and is used for the computation of the 

ARL of the EWMA control chart, which is given by 

( ) 1TARL
−

= −p I R 1      (7-10) 

where ( )1 1, , ,
T

m m m mp p p p− − + −=p …  is the vector of the initial probabilities related 

to the 2m+1 transient states. 

For the transient probabilities in (7-9) the cumulative distribution function 

for the two-parameter Lindley distribution, i.e. equation (3-7), is going to be used 

with either in-control parameters for the case of computing the in-control ARL 
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value or the out-of-control parameters for the case of the out-of-control ARL, 

with the asymptotic control limits as computed with equations (7-8) and (7-7) for 

i→∞ . This means that the control limits that will be used for the computation of 

ARL will be of the form 

( )
( )

( )

( )
( )

( )

2 2
*
4 22

2 2
*
4 22

2 4 2

2

2 4 2
-

2

θ r θ θr r λ
UCL L c x

θ θ r λθ θ r

θ r θ θr r λ
LCL L c x

θ θ r λθ θ r

+ + +
 = + + + −+

+ + +
 = + + + −+

    (7-11) 

 

For the out-of-control case we assume that the shift of the process mean is in 

terms of the process standard deviation. In other words, the new mean is assumed 

to be of the form 1 0µ µ kσ= + . Using this relationship, the new parameters of the 

distribution with the shifted mean will be computed by solving equations (3-8) 

and (3-9) in terms of its two parameters, as for the Shewhart-type control chart. 

Using those formulae we get Tables 7-3, 7-4, 7-5, which show the in-control 

and out-of-control ARL values for the individual EWMA control chart for the 

two-parameter Lindley distribution for various values of the two parameters θ 

and r of the distribution of concern and for various values of k which shows the 

shift of the process mean in terms of the process standard deviation. More 

specifically, Table 7-3 contains the ARL values for λ=0.3 and L=6.876 

(combination which gives in-control ARL value close to 370) for various values 

of the m for the subintervals into which the region between the upper and lower 

control limits is divided, as mentioned earlier. From this table we see that when 

keeping λ and L the same, the ARL value increases as the number m of 

subintervals increases and the rate of this increase is high until the value of about 

m=50, above which ARL increases very slightly. Consequently, the suggested 

value of m for the computation of ARL in the formulae above is m=50. 

Therefore, Tables 7-4 and 7-5 show the ARL values for m=50 for various values 

of L and λ for positive and negative shifts, respectively. 

 

 

 



 238 

 

m k θ=48 r=54 θ=57 r=68 θ=62 r=75 θ=75 r=86 θ=84 r=92 θ=93 r=108 θ=100 r=114 θ=120 r=135 

0 370.0897 375.2128 376.2969 376.8948 372.6326 372.4493 374.8081 370.0897 

0.2 68.9238 63.0851 64.7330 64.4774 64.0125 67.0963 66.5433 68.9238 

0.5 42.2371 41.8757 41.7961 42.1251 42.4157 42.0364 42.1519 42.2371 

1 9.3380 9.2600 9.2417 9.3126 9.3740 9.2957 9.3204 9.3380 

1.5 5.1603 5.1464 5.1433 5.1558 5.1666 5.1529 5.1572 5.1603 

2 4.0558 4.0515 4.0505 4.0544 4.0578 4.0535 4.0549 4.0558 

2.5 3.6130 3.6114 3.6110 3.6125 3.6137 3.6122 3.6127 3.6130 

5 

3 3.4178 3.4173 3.4171 3.4176 3.4181 3.4175 3.4177 3.4178 

0 475.1814 499.2480 505.0432 482.9328 464.4122 488.1217 480.5558 475.1814 

0.2 64.3020 66.4160 64.8572 64.2298 68.1758 64.8248 64.0999 64.3020 

0.5 42.0840 41.6971 41.6113 41.9538 42.2741 41.8697 41.9932 42.0840 

1 9.7091 9.6270 9.6077 9.6823 9.7469 9.6645 9.6904 9.7091 

1.5 5.3633 5.3490 5.3456 5.3586 5.3698 5.3555 5.3601 5.3633 

2 4.2322 4.2278 4.2268 4.2308 4.2342 4.2298 4.2312 4.2322 

2.5 3.7858 3.7842 3.7838 3.7853 3.7864 3.7849 3.7854 3.7858 

10 

3 3.5943 3.5938 3.5937 3.5942 3.5946 3.5940 3.5942 3.5943 

0 507.5054 535.7341 542.5361 516.5938 494.8840 522.6798 513.8064 507.5054 

0.2 64.4678 63.9295 68.0826 69.2118 68.7455 66.7315 68.8804 64.4678 

0.5 42.0836 41.6901 41.6027 41.9513 42.2766 41.8648 41.9913 42.0836 

1 9.8509 9.7677 9.7482 9.8237 9.8893 9.8057 9.8320 9.8509 

1.5 5.4570 5.4426 5.4392 5.4523 5.4636 5.4492 5.4538 5.4570 

2 4.3199 4.3155 4.3145 4.3185 4.3219 4.3175 4.3189 4.3199 

2.5 3.8742 3.8726 3.8723 3.8737 3.8749 3.8734 3.8739 3.8742 

20 

3 3.6859 3.6854 3.6853 3.6858 3.6862 3.6857 3.6858 3.6859 

0 518.9206 547.1774 553.9859 528.0183 506.2861 534.1103 525.2281 518.9206 

0.2 64.6197 68.4417 64.8396 69.9101 67.3761 68.4758 66.7892 66.4197 

0.5 42.0968 41.7016 41.6140 41.9636 42.2913 41.8778 42.0037 42.0968 

1 9.8903 9.8069 9.7873 9.8631 9.9287 9.8451 9.8714 9.8903 

1.5 5.4868 5.4724 5.4690 5.4821 5.4934 5.4790 5.4836 5.4868 

2 4.3489 4.3445 4.3435 4.3475 4.3510 4.3466 4.3480 4.3489 

2.5 3.9039 3.9024 3.9020 3.9034 3.9046 3.9031 3.9036 3.9039 

30 

3 3.7170 3.7164 3.7163 3.7168 3.7172 3.7167 3.7168 3.7170 

0 521.2206 549.2798 556.0405 530.2548 508.6739 536.3042 527.4841 521.2206 

0.2 68.7942 64.6075 66.7345 64.5559 67.6033 64.4532 64.9102 68.7942 

0.5 42.1098 41.7131 41.6250 41.9764 42.3043 41.8902 42.0168 42.1098 

1 9.9082 9.8247 9.8050 9.8809 9.9467 9.8629 9.8893 9.9082 

1.5 5.5014 5.4870 5.4836 5.4967 5.5080 5.4936 5.4982 5.5014 

2 4.3634 4.3590 4.3580 4.3620 4.3644 4.3610 4.3624 4.3634 

2.5 3.9188 3.9172 3.9169 3.9183 3.9195 3.9180 3.9185 3.9188 

40 

3 3.7326 3.7321 3.7319 3.7324 3.7328 3.7323 3.7324 3.7326 

0 521.2830 549.1432 555.8558 530.2532 508.8251 536.2597 527.5021 521.2830 

0.2 64.4376 64.9864 66.4328 63.1674 68.7014 64.3018 66.8054 64.4376 

0.5 42.1170 41.7205 41.6324 41.9838 42.3114 41.8976 42.0241 42.1170 

1 9.9183 9.8348 9.8152 9.8910 9.9568 9.8730 9.8994 9.9183 

1.5 5.5101 5.4957 5.4923 5.5054 5.5167 5.5023 5.5068 5.5101 

2 4.3721 4.3677 4.3666 4.3706 4.3741 4.3697 4.3711 4.3721 

2.5 3.9278 3.9262 3.9258 3.9273 3.9285 3.9269 3.9274 3.9278 

50 

3 3.7419 3.7414 3.7413 3.7418 3.7422 3.7417 3.7418 3.7419 

0 521.8035 550.2889 557.1528 530.9745 509.0674 537.1158 528.1618 521.8035 

0.2 64.7159 64.1924 67.1846 67.6262 64.9244 68.5577 64.0190 64.7159 

0.5 42.1217 41.7253 41.6372 41.9884 42.3160 41.9023 42.0287 42.1217 

1 9.9249 9.8413 9.8217 9.8976 9.9634 9.8795 9.9059 9.9249 

1.5 5.5158 5.5014 5.4980 5.5111 5.5224 5.5080 5.5125 5.5158 

2 4.3778 4.3734 4.3724 4.3764 4.3798 4.3754 4.3768 4.3778 

2.5 3.9337 3.9322 3.9318 3.9332 3.9344 3.9329 3.9334 3.9337 

80 

3 3.7482 3.7477 3.7476 3.7480 3.7484 3.7479 3.7481 3.7482 

0 522.7688 551.1099 557.9388 531.8935 510.0969 538.0037 529.0950 522.7688 

0.2 68.5078 66.8682 68.5044 68.3883 64.0667 64.3351 66.4057 68.5078 

0.5 42.1259 41.7287 41.6405 41.9925 42.3206 41.9061 42.0328 42.1259 

1 9.9294 9.8458 9.8262 9.9021 9.9679 9.8841 9.9105 9.9294 

1.5 5.5199 5.5055 5.5021 5.5152 5.5264 5.5121 5.5166 5.5199 

2 4.3819 4.3775 4.3764 4.3805 4.3839 4.3795 4.3809 4.3819 

2.5 3.9380 3.9364 3.9361 3.9375 3.9387 3.9371 3.9376 3.9380 

100 

3 3.7527 3.7522 3.7521 3.7525 3.7529 3.7524 3.7526 3.7527 

Table 7 - 3: ARL values for individual EWMA control charts for the two-

parameter Lindley distribution (λ=0.3 and L=6.876) 
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λ, L k θ=48 r=54 θ=57 r=68 θ=62 r=75 θ=75 r=86 θ=84 r=92 θ=93 r=108 θ=100 r=114 θ=120 r=135 

0 371.9161 376.2120 376.3999 373.9491 372.6393 375.9587 373.0230 371.9161 
0.2 48.3202 46.2353 45.7872 47.6057 49.3912 47.1512 47.8201 48.3202 

0.4 17.7546 18.8316 19.1076 18.0900 17.3057 18.3204 17.9860 17.7546 

0.6 9.2662 9.1094 9.0732 9.2145 9.3398 9.1806 9.2302 9.2662 

0.8 7.9257 8.0669 8.1017 7.9705 7.8647 8.0009 7.9577 7.9257 

1 6.2649 6.2173 6.2062 6.2493 6.2869 6.2390 6.2541 6.2649 

1.5 4.2710 4.2635 4.2617 4.2685 4.2744 4.2669 4.2693 4.2710 

2 3.7329 3.7322 3.7320 3.7327 3.7333 3.7325 3.7327 3.7329 

2.5 3.5530 3.5548 3.5552 3.5536 3.5522 3.5539 3.5534 3.5530 

λ=0.05 

L=2.123 

3 3.5268 3.5300 3.5308 3.5278 3.5253 3.5285 3.5275 3.5268 

0 371.8978 376.7121 376.7821 373.7746 372.8384 375.6799 372.8963 371.8978 
0.2 58.6105 50.2399 48.5997 55.5958 63.4499 53.7602 57.4836 58.6105 

0.4 15.0478 15.7129 15.8794 15.2575 14.7654 15.3989 15.1920 15.0478 

0.6 10.9881 10.7548 10.7012 10.9121 10.0983 10.8605 10.9345 10.9881 

0.8 8.3200 8.4245 8.4504 8.3529 8.2753 8.3754 8.3427 8.3200 

1 6.8745 6.8126 6.7969 6.8539 6.9036 6.8403 6.8602 6.8745 

1.5 4.4284 4.4187 4.4165 4.4252 4.4328 4.4231 4.4262 4.4284 

2 3.7950 3.7935 3.7931 3.7945 3.7958 3.7942 3.7947 3.7950 

2.5 3.5725 3.5736 3.5739 3.5728 3.5719 3.5731 3.5727 3.5725 

λ=0.08 

L=2.752 

3 3.5175 3.5202 3.5208 3.5184 3.5163 3.5190 3.5181 3.5175 

0 371.8455 376.1009 376.0379 373.5424 372.0365 375.3274 372.7193 371.8455 
0.2 55.0755 57.8024 54.8160 55.8589 55.0655 57.4943 57.9733 55.0755 

0.4 18.1554 18.6125 18.7253 18.2995 18.9592 18.3975 18.2550 18.1554 

0.6 12.0973 12.7495 12.6700 12.9820 12.2629 12.9066 12.0170 12.0973 

0.8 8.3890 8.4645 8.4835 8.4126 8.3571 8.4287 8.4053 8.3890 

1 7.5037 7.4230 7.4041 7.4772 7.5412 7.4598 7.4853 7.5037 

1.5 4.5700 4.5583 4.5557 4.5762 4.5753 4.5737 4.5773 4.5700 

2 3.8475 3.8451 3.8446 3.8467 3.8485 3.8462 3.8469 3.8475 

2.5 3.5871 3.5878 3.5880 3.5873 3.5868 3.5875 3.5873 3.5871 

λ=0.10 

L=3.158 

3 3.5077 3.5088 3.5015 3.5084 3.5067 3.5089 3.5082 3.5077 

0 371.7126 376.8984 376.5785 373.0641 372.3812 374.6186 372.3466 371.7126 
0.2 57.6981 53.6179 55.5820 57.7353 54.1285 53.1944 58.0931 57.6981 

0.4 18.0629 17.3589 17.2003 17.8278 18.4042 17.6749 17.8990 18.0629 

0.6 12.0957 12.3804 12.4508 12.1861 10.9720 12.2473 12.1582 12.0957 

0.8 10.6319 10.5142 10.4868 10.5933 10.6869 10.5778 10.6050 10.6319 

1 8.2399 8.2820 8.2930 8.2528 8.2230 8.2618 8.2488 8.2399 

1.5 4.7872 4.7723 4.7688 4.7823 4.7940 4.7791 4.7838 4.7872 

2 3.9257 3.9223 3.9215 3.9246 3.9273 3.9238 3.9249 3.9257 

2.5 3.6108 3.6108 3.6108 3.6108 3.6108 3.6108 3.6108 3.6108 

λ=0.12 

L=3.586 

3 3.4981 3.4998 3.5002 3.4987 3.4974 3.4990 3.4985 3.4981 

0 371.8097 376.1836 376.8434 376.3150 372.4182 376.3514 376.0122 371.8097 
0.2 66.7398 63.8259 63.8881 61.3677 69.8217 68.3693 63.0312 66.7398 

0.4 20.2328 20.5058 20.5733 20.3195 20.1241 20.3782 20.2928 20.2328 

0.6 14.0077 14.6454 14.5714 14.8886 14.1772 14.8102 14.9249 14.0077 

0.8 10.9662 10.7994 10.7617 10.9106 10.0468 10.8744 10.9275 10.9662 

1 8.7247 8.6463 8.6279 8.6991 8.7608 8.6822 8.7069 8.7247 

1.5 5.1949 5.1844 5.1820 5.1915 5.1997 5.1892 5.1925 5.1949 

2 4.1402 4.1274 4.1268 4.1293 4.1414 4.1287 4.1295 4.1402 

2.5 3.7395 3.7387 3.7386 3.7393 3.7399 3.7391 3.7394 3.7395 

λ=0.15 

L=4.602 

3 3.5763 3.5761 3.5761 3.5762 3.5763 3.5762 3.5762 3.5763 

0 371.5025 376.1243 376.1212 376.1412 372.2892 376.5886 375.1047 371.5025 
0.2 61.1739 63.4543 63.9326 61.8879 60.3223 62.3766 61.7870 61.2739 

0.4 25.7320 23.7788 23.1262 24.8784 26.4897 24.4812 25.2758 25.5320 

0.6 16.9948 16.8725 16.6897 16.8120 16.1234 16.8785 16.9486 16.9948 

0.8 10.6950 10.5377 10.5593 10.6471 10.6822 10.6423 10.5788 10.6950 

1 8.9159 8.8424 8.8260 8.8857 8.9375 8.8724 8.8942 8.9359 

1.5 5.1842 5.1809 5.1882 5.1875 5.2875 5.1862 5.1986 5.1842 

2 4.2091 4.1986 4.1953 4.1986 4.2026 4.1982 4.1993 4.2091 

2.5 3.8264 3.8254 3.8240 3.8260 3.8269 3.8268 3.8273 3.8264 

λ=0.20 

L=5.935 

3 3.6845 3.6843 3.6842 3.6844 3.6846 3.6843 3.6844 3.6845 

Table 7 - 4: ARL values for individual EWMA control charts for the two-

parameter Lindley distribution (m=50) for various positive shifts 
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λ, L k θ=48 r=54 θ=57 r=68 θ=62 r=75 θ=75 r=86 θ=84 r=92 θ=93 r=108 θ=100 r=114 θ=120 r=135 

0 371.9161 376.2120 376.3999 373.9491 372.6393 375.9587 373.0230 371.9161 
-0.2 50.2773 48.2881 46.8287 48.6218 46.2128 48.1910 48.8213 50.2773 

-0.4 18.4579 18.4610 18.2293 18.1305 18.9231 18.9148 18.2302 18.4579 

-0.6 10.2462 10.0712 10.9366 10.4579 10.9129 10.3335 10.5153 10.2462 

-0.8 8.2750 8.0724 8.6816 8.6555 8.9435 8.5764 8.6920 8.2750 

-1 6.5206 6.4087 6.3224 7.5426 8.6501 7.0005 6.4563 6.5206 

-1.5 4.8990 4.2343 4.1660 4.4280 4.0838 4.3662 4.3393 4.8990 

-2 4.3610 4.0523 3.9776 4.2618 4.4986 4.1953 4.2922 4.3610 

-2.5 4.2841 3.8955 3.7999 4.1603 4.4540 4.0768 4.1984 4.2841 

λ=0.05 

L=2.123 

-3 3.9807 3.9282 3.9416 3.9452 3.9512 3.9379 3.9562 3.9807 

0 371.8978 376.7121 376.7821 373.7746 372.8384 375.6799 372.8963 371.8978 
-0.2 47.9015 46.1402 45.7330 47.3214 48.7290 46.9400 47.4980 47.9015 

-0.4 16.6293 16.7219 16.5108 16.3315 16.0524 16.1351 16.4222 16.6293 

-0.6 10.9126 10.3740 10.3407 10.7364 10.1620 10.6199 10.7901 10.9126 

-0.8 9.7179 9.5561 9.2480 8.8640 8.7108 9.1660 8.4653 9.7179 

-1 7.5464 7.1881 7.1036 7.4296 7.6335 7.3522 7.3989 7.5464 

-1.5 5.3496 5.0438 5.9705 5.2508 5.4873 5.1849 5.2812 5.3496 

-2 4.0062 4.9516 4.0726 4.8943 4.1610 4.8192 4.9287 4.0062 

-2.5 3.5906 3.6573 3.5726 3.6518 3.7579 3.7453 3.6095 3.5206 

λ=0.08 

L=2.752 

-3 3.5277 3.5651 3.5621 3.5737 3.6334 3.5709 3.5798 3.5977 

0 371.8455 376.1009 376.0379 373.5424 372.0365 375.3274 372.7193 371.8455 
-0.2 48.7721 47.2150 46.8545 48.2596 49.5023 47.9225 48.4156 48.7721 

-0.4 18.7332 18.9005 18.7066 18.4600 19.1209 18.2799 19.5433 18.7332 

-0.6 12.3247 14.6365 14.5477 12.4253 12.0500 14.0174 12.0033 12.3247 

-0.8 9.8412 9.4121 9.2815 9.7544 9.1572 9.6441 9.8053 9.8412 

-1 8.7399 8.5967 8.5122 8.8349 8.6017 8.7586 8.8701 8.7399 

-1.5 4.7361 5.3573 4.5230 4.9288 5.4845 5.0606 4.8691 4.7361 

-2 4.2844 4.4975 4.4378 4.6804 4.9292 4.6124 4.7122 4.2844 

-2.5 3.5380 3.7128 3.7601 3.5933 3.4713 3.6308 3.5762 3.5380 

λ=0.10 

L=3.158 

-3 3.3668 3.3952 3.4840 3.3437 3.3990 3.3983 3.3508 3.3668 

0 371.7126 376.8984 376.5785 373.0641 376.8985 374.6186 372.3466 371.7126 
-0.2 48.1201 46.8644 46.5726 47.7077 48.7064 47.4359 47.8333 48.1201 

-0.4 19.0620 22.9330 23.9928 20.2235 17.5701 21.0421 19.8597 19.0620 

-0.6 12.2820 12.5400 12.3891 12.0522 12.6320 12.3937 12.1253 12.2820 

-0.8 10.6847 10.2087 10.0969 10.5292 10.9043 10.4263 10.5786 10.6847 

-1 8.8688 8.6640 8.8731 8.1253 8.5369 8.2840 8.0390 8.8688 

-1.5 5.1976 5.8476 5.7647 5.0838 5.3574 5.0082 5.1286 5.1976 

-2 4.6860 4.9995 4.0786 4.7851 4.5512 4.8524 4.7545 4.6860 

-2.5 3.7051 3.6935 3.7168 3.6794 3.7412 3.6823 3.6873 3.7051 

λ=0.12 

L=3.586 

-3 3.6000 3.6260 3.6072 3.6296 3.5596 3.6497 3.6204 3.6000 

0 371.8097 376.1836 376.8434 376.3150 372.4182 376.3514 376.0122 371.8097 
-0.2 54.0675 59.5365 50.7719 57.4012 53.3518 57.3490 55.9828 54.0675 

-0.4 19.0532 18.4455 18.3045 18.8534 18.3374 18.7219 18.9143 19.0532 

-0.6 12.5346 12.4761 12.7161 12.8282 12.1479 12.0300 12.7371 12.5346 

-0.8 10.6882 10.3447 10.2645 10.5757 10.8476 10.5014 10.6100 10.6882 

-1 8.4790 8.9231 9.0343 8.6182 8.5970 8.7139 8.5748 8.4790 

-1.5 5.9751 5.9837 5.9388 5.9126 5.9635 5.9712 5.9317 5.9751 

-2 4.5721 4.8036 4.8614 4.6440 4.4807 4.6943 4.6210 4.5721 

-2.5 3.9354 3.8670 3.8510 3.9120 3.9671 3.8982 3.9198 3.9354 

λ=0.15 

L=4.602 

-3 3.5939 3.6884 3.7107 3.6240 3.5527 3.6443 3.6147 3.5939 

0 371.5025 376.1243 376.1212 376.1412 372.2892 376.5886 375.1047 371.5025 
-0.2 54.1730 51.5571 53.0632 57.7702 54.1381 57.9072 57.2680 54.1730 

-0.4 22.8535 22.8078 22.1788 22.1801 22.4986 22.4050 22.0789 22.8535 

-0.6 12.2853 12.2328 12.1285 12.1260 12.4154 12.0380 12.1814 12.2853 

-0.8 10.2064 10.7120 10.8405 10.3642 10.9921 10.4716 10.3155 10.2064 

-1 8.6463 8.6771 8.689 8.687 8.6448 8.6414 8.6081 8.6463 

-1.5 6.0967 6.0455 6.0966 6.0846 6.0766 6.0341 6.0575 6.0967 

-2 4.8720 4.8776 4.8757 4.8410 4.9161 4.8206 4.8505 4.8720 

-2.5 4.4868 4.6364 4.6745 4.5312 4.4260 4.5642 4.5175 4.4868 

λ=0.20 

L=5.935 

-3 3.8266 3.8234 3.8257 3.8253 3.8289 3.8245 3.8256 3.8266 

Table 7 - 5: ARL values for individual EWMA control charts for the two-

parameter Lindley distribution (m=50) for various negative shifts 



 241 

 

Comparing those two tables, we observe that the proposed control chart can 

detect both positive and negative shifts well, but there are some slight differences 

in ARL values between those two tables, with most of the differences being in 

favour of the ARL values for negative shifts. The only differences (in either 

direction) that are above 5% concern values of k=0.2 for values of λ greater than 

0.08 and values of k between 0.4 and 0.6 for values of λ greater than 0.15. 

Moreover, comparing Table 7-4 and Table 7-5 we observe that as the value of λ 

increases ARL values for negative shifts are smaller than the corresponding ones 

for the positive shifts for small values of k and the reverse holds for larger values 

of k. Large negative shifts present smaller ARL values than the large positive 

ones for small values of λ. Furthermore, for k=0.2 negative shifts give smaller 

ARL values than the corresponding positive ones, with the exception of very 

small λ values. 

The need for using the skewness correction for the construction of the 

individual EWMA control charts for the two-parameter Lindley distribution is 

justified by the fact that if we had used the traditional symmetric EWMA control 

limits without the skewness correction term ( )*
4c x  in equation (7-11) above, the 

ARL performance of the chart would have been worse, as can be seen when 

comparing the results in Table 7-6 for the case of not using the skewness 

correction term against the results in Table 7-4 for the case of using it. It should 

be noted that the ARL values in Table 7-6 have resulted from using the same 

values for λ and L as the ones in Table 7-4 for the shake of making comparisons 

between the two tables easier. The differences between the ARL values in Tables 

7-4 and 7-6 are almost all higher than 5%. The only values for which the 

difference is less than 5% concern the values of k=±1 for very small values of λ, 

absolute values of k greater than 2.5 for values of λ between 0.08 and 0.12 and 

values of k=±3 for λ greater than 0.15. Comparison is similar for the case of 

negative shifts so the corresponding table is omitted for space reasons. 
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λ, L k θ=48 r=54 θ=57 r=68 θ=62 r=75 θ=75 r=86 θ=84 r=92 θ=93 r=108 θ=100 r=114 θ=120 r=135 

0 351.5735 360.6012 362.7269 354.5120 347.4059 355.4657 353.6127 351.5735 
0.2 58.6186 55.8586 55.2794 57.6604 60.0795 57.0577 57.9466 58.6186 
0.4 21.7749 22.5735 22.7642 22.0214 21.4437 22.1902 21.9450 21.7749 
0.6 10.9302 10.7722 10.7358 10.8781 10.9545 10.8439 10.8939 10.9302 
0.8 7.1891 7.3183 7.3502 7.2302 7.1226 7.2579 7.2175 7.1891 
1 6.5171 6.4709 6.4601 6.5020 6.5385 6.4920 6.5066 6.5171 

1.5 5.1290 5.1218 5.1202 5.1267 5.1223 5.1251 5.1274 5.1290 
2 4.1200 4.1228 4.1212 4.1277 4.1233 4.1261 4.1284 4.1200 

2.5 3.9530 3.9547 3.9550 3.9535 3.9523 3.9539 3.9534 3.9530 

λ=0.05 

L=2.123 

3 3.9267 3.9298 3.9305 3.9277 3.9254 3.9284 3.9274 3.9267 
0 351.3259 359.9847 362.0194 354.1522 347.3380 355.0241 353.2894 351.3259 

0.2 58.8162 55.7549 55.9937 57.3527 60.5780 57.2600 57.7815 58.0162 
0.4 21.9528 22.2348 22.3449 22.9333 21.0781 22.0279 21.8920 21.9528 
0.6 9.7942 9.6891 9.6288 9.8655 10.6054 9.8083 9.8904 9.7942 
0.8 7.6464 7.5822 7.5573 7.6254 7.6763 7.6105 7.6318 7.6464 
1 6.0570 6.1512 6.1745 6.0871 6.0157 6.1074 6.0779 6.0570 

1.5 5.2579 5.2486 5.2463 5.2549 5.2622 5.2528 5.2558 5.2579 
2 4.2680 4.2587 4.2564 4.2650 4.2723 4.2629 4.2659 4.2680 

2.5 3.4522 3.4532 3.4535 3.4525 3.4517 3.4527 3.4524 3.4522 

λ=0.08 

L=2.752 

3 3.3960 3.3984 3.3990 3.3968 3.3949 3.3973 3.3965 3.3960 
0 351.1786 359.3048 361.2125 353.8333 347.4292 355.5903 353.0231 351.1786 

0.2 58.1460 55.5463 55.7499 57.8796 60.6463 57.6582 57.6848 58.1460 
0.4 21.0120 22.5408 22.4343 22.8543 21.2376 22.7523 21.9018 21.0120 
0.6 10.0505 10.3378 10.4089 10.1417 10.8261 10.2034 10.1236 10.0505 
0.8 7.3985 7.3099 7.2893 7.3694 7.4398 7.3502 7.3783 7.3985 
1 6.8686 6.9376 6.9547 6.8906 6.8385 6.9054 6.8838 6.8686 

1.5 5.4153 5.4037 5.4009 5.3915 5.4207 5.4090 5.4127 5.4153 
2 4.3952 4.3836 4.3808 4.3914 4.4006 4.3889 4.3926 4.3952 

2.5 3.4606 3.4621 3.4612 3.4607 3.4603 3.4608 3.4607 3.4606 

λ=0.10 

L=3.158 

3 3.3783 3.3802 3.3807 3.3789 3.3774 3.3793 3.3787 3.3783 
0 351.7797 360.9182 362.3524 354.7896 347.9331 355.1275 353.1767 351.7797 

0.2 58.5548 55.4321 55.2044 57.4335 60.4339 57.0428 57.1619 58.5548 
0.4 21.4457 22.5850 22.3935 22.1571 21.8689 22.9691 21.2436 21.4457 
0.6 9.2482 9.4653 9.5187 9.3173 10.2796 9.3640 9.2961 9.2482 
0.8 7.2241 7.1054 7.0778 7.1851 7.1540 7.1594 7.1970 7.2241 
1 6.9350 6.9857 6.9982 6.9510 6.9141 6.9619 6.9461 6.9350 

1.5 5.5376 5.5236 5.5203 5.5330 5.5440 5.5300 5.5344 5.5376 
2 4.5586 4.5446 4.5412 4.5540 4.5750 4.5510 4.5554 4.5586 

2.5 3.4615 3.4606 3.4595 3.4612 3.4603 3.4586 3.4614 3.4615 

λ=0.12 

L=3.586 

3 3.3667 3.3683 3.3687 3.3672 3.3660 3.3675 3.3670 3.3667 
0 351.0993 360.1788 362.5507 354.1071 347.9486 355.8930 353.9338 351.0993 

0.2 78.0079 75.5720 75.9615 77.9582 70.1806 77.1285 77.4206 78.0079 
0.4 21.8606 22.1426 22.2123 22.9502 21.7381 22.0108 21.9226 21.8606 
0.6 16.3231 16.1523 16.1236 16.2662 16.4052 16.2292 16.2835 16.3231 
0.8 12.4266 12.1667 12.1060 12.3415 12.5473 12.2852 12.3674 12.4266 
1 10.3216 10.2624 10.2484 10.3023 10.3488 10.2895 10.3082 10.3216 

1.5 6.1037 6.0963 6.0945 6.1014 6.1070 6.0997 6.1020 6.1037 
2 5.0936 5.0862 5.0844 5.0912 5.0969 5.0896 5.0919 5.0936 

2.5 4.7236 4.7233 4.7233 4.7235 4.7237 4.7234 4.7235 4.7236 

λ=0.15 

L=4.602 

3 3.5796 3.5707 3.5794 3.5798 3.5786 3.5797 3.5794 3.5796 
0 351.7070 360.8029 362.6865 354.8069 347.4858 355.9944 353.6062 351.7070 

0.2 68.4857 65.0015 65.7876 67.1800 68.3412 67.6640 67.0432 68.4857 
0.4 46.5038 48.4673 48.4669 48.4858 46.5389 48.4771 46.4907 46.5038 
0.6 35.9434 35.5459 35.4534 35.8129 36.1286 35.7269 35.8527 35.9434 
0.8 15.4853 15.3954 15.3743 15.4570 15.5266 15.4366 15.4649 15.4853 
1 10.2695 10.2357 10.2277 10.2585 10.2851 10.2512 10.2619 10.2695 

1.5 9.7285 9.7223 9.7208 9.7265 9.7314 9.7252 9.7271 9.7285 
2 5.7495 5.7433 5.7418 5.7475 5.7524 5.7462 5.7481 5.7495 

2.5 4.9305 4.9302 4.9301 4.9304 4.9307 4.9303 4.9304 4.9305 

λ=0.20 

L=5.935 

3 3.6971 3.6971 3.6981 3.6921 3.6971 3.6970 3.6962 3.6971 

Table 7 - 6: ARL values for individual EWMA control charts for the two-

parameter Lindley distribution (m=50) for various positive shifts for the case of 

not using the skewness correction term when constructing the control limits of 

the chart 
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Additionally, comparing the ARL values for the EWMA in Tables 7-4 and 

7-5 with the ARL values for the Shewhart-type control chart in Table 7-1, we can 

see that the EWMA control chart performs better than the Shewhart-type control 

chart for smaller shifts, since for the case of small shifts, the EWMA out-of-

control ARL values are smaller than the corresponding ARL values for the 

Shewhart-type charts. When it comes to large shifts, however, EWMA ARL 

values are slightly larger and, therefore, make Shewhart-type control charts 

preferable for those cases. 

 

 

7.7 Optimal Choice for the Parameters of the EWMA Control Charts for 

Individual Observations from the Two-Parameter Lindley Distribution 

When constructing an EWMA control chart, there are two parameters 

involved in the way the chart is going to perform, namely the constant λ which 

affects the weight we give to the past values of our observations and the value of 

L which affects the width of the chart’s control limits. Therefore, we need to find 

the combination of the values of those two parameters which will lead us to the 

optimal performance of our control chart. 

As already mentioned in Section 6.7 various methods have been proposed in 

literature for optimizing the design of control charts based on minimizing the 

out-of-control value of various performance criteria. Since all the study here has 

been based on ARL (which is the most commonly used performance criterion) the 

optimal design of the EWMA control chart will be done by minimizing the ARL. 

The algorithm applied here is as follows: 

� Step 1: Set the desired in-control ARL value (e.g. ARL0=370) and the size 

of the mean shift k to be detected (e.g. k = 0.5). 

� Step 2: Set an initial value L = 1. 

� Step 3: Vary the parameter λ (e.g. increasing by 0.01) so as λ œ (0,1] and 

(using a nonlinear equation solver) find the value of λ for which the ARL0 

value in Step 1 is satisfied. 

� Step 4: Calculate the ARL1 value for the particular combination of λ and L 

resulting from Step 3. [The ARL1 value is obtained as described in the 

previous section, using equation (7-9) for the computation of the transient 
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probabilities along with equation (3-7) for the cumulative distribution 

function of the two-parameter Lindley distribution.] 

� Step 5: Increase L by 0.01. 

� Step 6: Repeat Steps 3-5 until the minimum ARL1 value has been reached 

(i.e. until the ARL1 value for L+0.01 is larger than the ARL1 value for L). 

� Step 7: Keep the combination of λ and L resulting from Step 6 for which 

the smallest ARL1 value is obtained as the desired optimal one for the 

selected shift size in Step 1. 

� Step 8: Repeat Steps 2-7 for all the desired values of shifts to be detected 

(e.g. k = {-3, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3}). 

Application of this algorithm leads to Table 7-7 and Table 7-8 which present the 

optimal combination of values of the two parameters of concern (λ and L) of the 

EWMA chart with the corresponding ARL values for various values of the 

parameters θ and r of the two-parameter Lindley distribution and various positive 

and negative values, respectively, of k, which shows the shift of the process mean 

in terms of the process standard deviation which we want to be detected by the 

control chart we construct. 
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k θ=48, r=54 θ=57, r=68 θ=62, r=75 θ=75, r=86 θ=84, r=92 θ=93, r=108 θ=100, r=114 θ=120, r=135 

(0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) 0.2 
(375.3626, 53.6138) (378.496, 53.6948) (371.477, 53.7147) (372.2494, 53.6397) (375.6644, 53.5777) (378.8167, 53.6571) (370.1457, 53.6318) (375.3626, 53.6138) 

(0.01, 1) (0.01, 1) (0.67, 6.63) (0.01, 1) (0.01, 1) (0.66, 6.03) (0.01, 1) (0.01, 1) 0.4 
(375.3626, 16.6965) (378.496, 16.9317) (371.7679, 16.948) (372.2494, 16.7713) (375.6644, 16.5938) (370.2775, 16.5571) (370.1457, 16.7483) (375.3626, 16.6965) 

(0.65, 6.59) (0.67, 7.71) (0.67, 6.63) (0.66, 6.96) (0.65, 6.76) (0.66, 6.03) (0.66, 7.4) (0.65, 6.59) 0.6 
(370.0687, 10.1728) (368.8467, 10.8036) (371.7679, 10.2787) (369.7372, 10.3861) (370.2403, 10.2582) (370.2775, 10.9919) (368.6207, 10.6096) (370.0687, 10.1728) 

(0.65, 6.59) (0.67, 7.71) (0.67, 6.63) (0.66, 6.96) (0.65, 6.76) (0.66, 6.03) (0.66, 7.4) (0.65, 6.59) 0.8 
(370.0687, 8.7584) (368.8467, 8.2384) (371.7679, 8.8955) (369.7372, 8.9282) (370.2403, 8.8124) (370.2775, 8.6852) (368.6207, 8.0755) (370.0687, 8.7584) 

(0.65, 6.59) (0.02, 1.3) (0.67, 6.63) (0.66, 6.96) (0.65, 6.76) (0.66, 6.03) (0.02, 1.3) (0.65, 6.59) 1 
(370.0687, 7.5322) (367.0708, 7.7208) (371.7679, 7.6934) (369.7372, 7.6684) (370.2403, 7.5626) (370.2775, 7.5444) (359.952, 7.7492) (370.0687, 7.5322) 

(0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) 1.2 
(378.3186, 4.8538) (367.0708, 4.7862) (369.2367, 4.7823) (360.8687, 4.7972) (373.7946, 4.8618) (362.8582, 4.7937) (359.952, 4.7989) (378.3186, 4.8538) 

(0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) 1.4 
(378.3186, 4.3218) (367.0708, 4.2834) (369.2367, 4.2815) (360.8687, 4.2889) (373.7946, 4.3258) (362.8582, 4.2871) (359.952, 4.2897) (378.3186, 4.3218) 

(0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) 1.6 
(378.3186, 4.0045) (367.0708, 3.9816) (369.2367, 3.9806) (360.8687, 3.9843) (373.7946, 4.0065) (362.8582, 3.9834) (359.952, 3.9847) (378.3186, 4.0045) 

(0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) 1.8 
(378.3186, 3.8036) (367.0708, 3.7902) (369.2367, 3.7898) (360.8687, 3.7912) (373.7946, 3.8044) (362.8582, 3.7909) (359.952, 3.7914) (378.3186, 3.8036) 

(0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) 2 
(378.3186, 3.6734) (367.0708, 3.6868) (369.2367, 3.6868) (360.8687, 3.6868) (373.7946, 3.6735) (362.8582, 3.6868) (359.952, 3.6868) (378.3186, 3.6734) 

(0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) 2.2 
(378.3186, 3.5901) (367.0708, 3.5881) (369.2367, 3.5884) (360.8687, 3.5874) (373.7946, 3.5897) (362.8582, 3.5876) (359.952, 3.5873) (378.3186, 3.5901) 

(0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) 2.4 
(378.3186, 3.5399) (367.0708, 3.5418) (369.2367, 3.5423) (360.8687, 3.5405) (373.7946, 3.5391) (362.8582, 3.5409) (359.952, 3.5403) (378.3186, 3.5399) 

(0.98, 2.57) (0.98, 2.56) (0.98, 2.58) (0.98, 2.56) (0.98, 2.56) (0.98, 2.56) (0.98, 2.57) (0.98, 2.57) 2.6 
(376.2326, 3.4388) (377.6369, 3.3894) (375.1443, 3.456) (379.2431, 3.3991) (375.2533, 3.4102) (375.2069, 3.396) (379.5451, 3.4355) (376.2326, 3.4388) 

(0.98, 2.57) (0.98, 2.56) (0.98, 2.58) (0.98, 2.56) (0.98, 2.56) (0.98, 2.56) (0.98, 2.57) (0.98, 2.57) 2.8 
(376.2326, 3.2089) (377.6369, 3.1677) (375.1443, 3.2237) (379.2431, 3.1756) (375.2533, 3.1848) (375.2069, 3.1731) (379.5451, 3.2062) (376.2326, 3.2089) 

(0.98, 2.57) (0.98, 2.56) (0.98, 2.58) (0.98, 2.56) (0.98, 2.56) (0.98, 2.56) (0.98, 2.57) (0.98, 2.57) 3 
(376.2326, 3.0168) (377.6369, 2.982) (375.1443, 3.0298) (379.2431, 2.9886) (375.2533, 2.9961) (375.2069, 2.9865) (379.5451, 3.0146) (376.2326, 3.0168) 

Table 7 - 7: Optimal combinations (λ*, L*) (row above the dotted lines for each cell) for the individual EWMA control 

charts for the two-parameter Lindley distribution and the corresponding in-control and out-of-control ARL values (ARL0, 

ARL1) (row below the dotted lines for each cell) for various values of positive shifts k (m=50) 
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k θ=48, r=54 θ=57, r=68 θ=62, r=75 θ=75, r=86 θ=84, r=92 θ=93, r=108 θ=100, r=114 θ=120, r=135 

(0.01, 1) (0.01, 1) (0.67, 6.63) (0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) -0.2 
(375.3626, (376.496, 53.7728) (371.7679, 52.9726) (372.2494, 52.7525) (375.6644, (376.8167, (370.1457, 52.2827) (375.3626, 

(0.09, 2.95) (0.09, 2.94) (0.09, 2.94) (0.09, 2.95) (0.1, 3.16) (0.09, 2.95) (0.1, 3.15) (0.09, 2.95) -0.4 
(366.865, (366.7856, (368.7191, 15.0466) (369.6278, 15.2879) (368.435, (371.4571, (366.3862, 15.2955) (366.865, 

(0.14, 3.97) (0.14, 3.95) (0.14, 3.94) (0.14, 3.96) (0.14, 3.97) (0.14, 3.96) (0.14, 3.96) (0.14, 3.97) -0.6 
(377.9655, (374.6868, (372.0164, 10.2535) (375.6645, 10.5961) (376.1348, (376.5038, 10.565) (375.2758, 10.6104) (377.9655, 

(0.77, 2.56) (0.77, 2.55) (0.78, 2.57) (0.76, 2.56) (0.76, 2.54) (0.78, 2.55) (0.76, 2.56) (0.77, 2.56) -0.8 
(373.3306, (371.367, 8.8559) (371.887, 10.014) (374.834, 9.2302) (361.9997, 8.459) (373.7881, 9.0492) (373.6705, 9.2403) (373.3306, 

(0.77, 2.56) (0.77, 2.55) (0.78, 2.57) (0.76, 2.56) (0.76, 2.54) (0.78, 2.55) (0.76, 2.56) (0.77, 2.56) -1 
(373.3306, (371.367, 6.128) (371.887, 6.6889) (374.834, 6.3037) (361.9997, (373.7881, 6.2245) (373.6705, 6.3087) (373.3306, 

(0.81, 2.55) (0.77, 2.55) (0.78, 2.57) (0.79, 2.55) (0.78, 2.54) (0.78, 2.55) (0.8, 2.55) (0.81, 2.55) -1.2 
(399.6865, (371.367, 5.2181) (371.887, 5.543) (376.1879, 5.2805) (372.3009, (373.7881, 5.2539) (394.4725, 5.3073) (399.6865, 

(0.85, 2.55) (0.87, 2.56) (0.87, 2.56) (0.83, 2.55) (0.87, 2.55) (0.82, 2.55) (0.84, 2.55) (0.85, 2.55) -1.4 
(372.0721, (377.7971, 4.8662) (377.057, 4.8257) (378.5556, 4.9001) (376.3272, (379.7271, 4.9603) (373.123, 4.8324) (371.0721, 

(0.92, 2.56) (0.95, 2.56) (0.93, 2.56) (0.95, 2.56) (0.95, 2.56) (0.95, 2.56) (0.95, 2.56) (0.92, 2.56) -1.6 
(389.4788, 4.067) (377.0362, 4.0082) (374.2349, 4.042) (364.4171, 4.0325) (372.1188, (377.9854, 4.0262) (378.8094, 4.0831) (389.4788, 4.077) 

(0.77, 2.56) (0.77, 2.55) (0.78, 2.57) (0.76, 2.56) (0.76, 2.54) (0.78, 2.55) (0.76, 2.56) (0.77, 2.56) -1.8 
(373.3306, (371.367, 3.9001) (371.887, 3.9001) (374.834, 3.9005) (361.9997, (373.7881, 3.9003) (373.6705, 3.9002) (373.3306, 

(0.92, 2.56) (0.98, 2.56) (0.93, 2.56) (0.98, 2.56) (0.98, 2.56) (0.98, 2.56) (0.96, 2.56) (0.92, 2.56) -2 
(389.4788, (377.6369, 3.7085) (374.2349, 3.7079) (379.2431, 3.7065) (395.2533, (375.2069, 3.7052) (369.4912, 3.7049) (389.4788, 3.704) 

(0.92, 2.56) (0.98, 2.56) (0.93, 2.56) (0.98, 2.56) (0.98, 2.56) (0.98, 2.56) (0.96, 2.56) (0.92, 2.56) -2.2 
(389.4788, (377.6369, 3.6085) (374.2349, 3.6079) (379.2431, 3.6065) (395.2533, (375.2069, 3.6052) (369.4912, 3.6049) (389.4788, 3.604) 

(0.92, 2.56) (0.98, 2.56) (0.93, 2.56) (0.98, 2.56) (0.98, 2.56) (0.98, 2.56) (0.96, 2.56) (0.92, 2.56) -2.4 
(389.4788, (377.6369, 1.0085) (374.2349, 1.0079) (379.2431, 1.0065) (395.2533, (375.2069, 1.0052) (369.4912, 1.0049) (389.4788, 1.004) 

(0.77, 2.56) (0.77, 2.55) (0.78, 2.57) (0.76, 2.56) (0.76, 2.54) (0.78, 2.55) (0.76, 2.56) (0.77, 2.56) -2.6 
(373.3306, (371.367, 3.3001) (371.887, 3.3001) (374.834, 3.3009) (361.9997, (373.7881, 3.3004) (373.6705, 3.3004) (373.3306, 

(0.77, 2.56) (0.77, 2.55) (0.78, 2.57) (0.76, 2.56) (0.76, 2.54) (0.78, 2.55) (0.76, 2.56) (0.77, 2.56) -2.8 
(373.3306, (371.367, 3.2001) (371.887, 3.2001) (374.834, 3.2006) (361.9997, (373.7881, 3.2004) (373.6705, 3.2004) (373.3306, 

(0.77, 2.56) (0.77, 2.55) (0.78, 2.57) (0.76, 2.56) (0.76, 2.54) (0.78, 2.55) (0.76, 2.56) (0.77, 2.56) -3 
(373.3306, (371.367, 2.9801) (371.887, 2.9801) (374.834, 2.98008) (361.9997, (373.7881, (373.6705, 2.98001) (373.3306, 

Table 7 - 8: Optimal combinations (λ*, L*) (row above the dotted lines for each cell) for the individual EWMA control 

charts for the two-parameter Lindley distribution and the corresponding in-control and out-of-control ARL values (ARL0, 

ARL1) (row below the dotted lines for each cell) for various values of negative shifts k (m=50) 
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7.8 Examples on the Individual Two-Parameter Lindley Probability-Type, 

Shewhart-Type and EWMA Control Charts 

This section offers illustration of the proposed control charts by means 

of both simulated data generated from the distribution of concern and real 

data. The case of simulated data is discussed in Subsection 7.8.1, while the 

real data case is presented in Subsection 7.8.2. 

 

 

7.8.1 Examples with Simulated Data from the Two-Parameter Lindley 

Distribution 

For the simulation the R programming language version 4.0.2 (R Core 

Team (2020)) has been used along with the “LindleyR” package version 1.1.0 

(Mazucheli et al. (2016)). The “lamW” package version 1.3.3 (Adler (2015)) 

has also been used for the quantile function of the distribution used in 

probability-type control charts. 

Suppose we take a sample of n = 30 observations from a two-parameter 

Lindley process as follows. First, we take a sample of 15 observations from a 

two-parameter Lindley process with in-control θ value equal to 55 and in-

control r value equal to 68. Now suppose that a shift of one standard deviation 

unit occurs in the process mean, and after that shift, we draw another set of 15 

observations from the process. The resulting data set can be seen in Table 7-9. 

For this data set, we construct the individual probability-type two-parameter 

Lindley control chart shown in Figure 7-1, using the most commonly used 

value for the significance level α = 0.27%, as mentioned in Section 7.4. 

 

0.02223885 0.08479636 0.03570984 0.00241743 0.03109676 
0.06124349 0.00533464 0.00170250 0.05933743 0.00482841 
0.08727944 0.01340051 0.01963175 0.05211700 0.02316009 
0.06953373 0.09714948 0.06269988 0.10391495 0.07246218 
0.06395473 0.16562432 0.07364729 0.17930232 0.05985985 

Data Set 1 

0.05223898 0.18346928 0.09460042 0.06044129 0.09525128 

Table 7 - 9: Data from a two-parameter Lindley process with in control θ=55, 

in-control r=68 and a shift of one standard deviation unit in the process mean 

due to an increasing shift after the first 15 observations (gray shading) 
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Figure 7 - 1: Individual probability-type two-parameter Lindley control chart 

for the data set in Table 7-9 with a shift of one standard deviation unit in the 

process mean 

 

 

 

As we can see in the chart, there is an increasing trend after the first 15 

observations and the control charts detect some out-of-control points 

indicating that an assignable cause has occurred in the process causing its 

mean to shift to an out-of-control level. 

For the same data with one standard deviation unit shift in Table 7-9, we 

now construct the Shewhart-type two-parameter Lindley control chart shown 

in Figure 7-2, using L = 3.071 standard deviations (which gives a desired 

value of in-control ARL close to 370). 
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Figure 7 - 2: Individual Shewhart type two-parameter Lindley control chart 

for the data set in Table 7-9 with a shift of one standard deviation unit in the 

process mean 

 

 

As we can see in the chart, there is an increasing trend after the first 15 

observations and the control charts detect some out-of-control points 

indicating that an assignable cause has occurred in the process causing its 

mean to shift to an out-of-control level. Comparing this chart to the previous 

one (Figure 7-1), we observe similar behaviour of the probability-type chart 

to the Shewhart-type chart with skewness correction. 

Using the data set in Table 7-9 for the case of a shift of one standard 

deviation unit, we now construct the individual EWMA two-parameter 

Lindley control chart shown in Figure 7-3, using λ=0.05 and L = 2.10045 

standard deviations (which gives a desired value of in-control ARL close to 

370). As we can see, there is an increasing trend after the first 15 

observations and the control chart gives an out-of-control signal after the 19th 

observation. Comparing Figure 7-3 with Figure 7-2 we can see now that, as 

expected, the EWMA control chart detects the one-standard deviation-unit 

shift quicker than the corresponding Shewhart-type control chart. 
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Figure 7 - 3: Individual EWMA two-parameter Lindley control chart for the 

data set in Table 7-9 with a shift of one standard deviation unit in the process 

mean 

 

 

7.8.2 Application of the Individual Two-Parameter Lindley Probability-Type, 

Shewhart-Type and EWMA Control Charts to Real Data 

This section deals with the illustration of the proposed control charts 

through application to real data used by Ghitany et al. (2008) representing 

waiting times before service of bank customers. This data set, which is 

presented in Table 7-10, was also used by Shanker et al. (2013) for 

illustration of the applicability of the two-parameter Lindley distribution they 

introduced. 

 

13.9 21.9 8.8 3.1 14.1 8.6 8.0 12.9 6.2 4.9 

13.7 1.9 4.3 27.0 6.3 9.5 11.9 9.6 2.6 17.3 

1.8 4.0 11.0 3.3 13.6 5.7 5.3 21.3 21.4 4.2 

4.4 12.5 6.9 4.1 18.1 8.9 7.7 11.2 7.1 2.1 

6.2 18.9 2.7 4.6 38.5 10.7 6.1 2.9 13.1 4.9 

3.2 11.5 9.8 11.1 19.0 4.3 15.4 1.5 0.8 13.3 

6.2 4.7 18.2 4.4 3.6 31.6 7.1 6.7 11.2 1.9 

5.0 15.4 7.1 23.0 8.9 8.2 18.4 4.2 5.7 33.1 

7.4 8.6 10.9 7.6 4.7 11.0 4.8 3.5 19.9 9.7 

8.6 13.0 7.1 17.3 5.5 8.8 12.4 1.3 0.8 20.6 

Table 7 - 10: Waiting Times data set 
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First of all, when dealing with any dataset, the normality assumption 

should be checked. Both the Kolmogorov-Smirnov test and the Shapiro-Wilk 

normality test give a p-value<0.01 which is a very clear indication that 

normality assumption does not hold for our data. For the case of the two-

parameter Lindley distribution, on the other hand, the Kolmogorov-Smirnov 

test gives an approximate p-value=0.3667 with the presence of ties in our data 

and a p-value=0.9184 without them. In both cases p-value is large. Therefore, 

we do not reject the null hypothesis that our data may be coming from the 

assumed distribution and this is an indication that the two-parameter Lindley 

distribution fits our data well.  

The values of the parameters of our assumed two-parameter Lindley 

distribution as in Shanker et al. (2013) and being equal to 0.196 and 2.967 for 

θ and r, respectively, are going to be used for the construction of the 

individual probability-type control chart (along with the significance level 

value α = 0.27%) and for the Shewhart-type control chart for our data, in 

conjunction with the value of L=2.986 standard deviations (for which in-

control ARL is close to 370). The resulting control charts can be seen in 

Figure 7-4 and Figure 7-5 for the probability-type and Shewhart-type control 

chart, respectively, which show all the observations being inside the control 

limits, which is an indication that the waiting times of bank customers are 

within the expected ranges. 

 

Figure 7 - 4: Individual probability-type control chart for the Waiting Times 

dataset assuming two-parameter Lindley distribution for the data 
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Figure 7 - 5: Individual Shewhart-type control chart for the Waiting Times 

dataset assuming two-parameter Lindley distribution for the data 

 

 

 

For the construction of the individual EWMA control chart for our data, 

using the same parameter values of the assumed two-parameter Lindley 

distribution from the data in conjunction with the values of λ=0.08 and 

L=2.61 standard deviations (for which in-control ARL is close to 370), the 

resulting control chart can be seen in Figure 7-6, which shows all the 

observations being inside the control limits, which, once again, is an 

indication that the waiting times of bank customers are within the expected 

ranges. 
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Figure 7 - 6: Individual EWMA control chart for the Waiting Times dataset 

assuming two-parameter Lindley distribution for the data 

 

 

Now let’s see the application on a second data set. This particular data 

set comes from Proschan (1963), also dealt with in Cox and Snell (1981), and 

represents the time intervals between failures of the air-conditioning 

equipment of ten Boeing 720 aircrafts. Here we use the data for the fifth 

aircraft. The data we use are presented in Table 7-11. First, as usual the 

normality assumption is checked. Both the Kolmogorov-Smirnov test and the 

Shapiro-Wilk normality test give a p-value<0.01 which is a very clear 

indication that normality assumption does not hold for our data. For the case 

of the two-parameter Lindley distribution, on the other hand, the 

Kolmogorov-Smirnov test gives an approximate p-value=0.2364 with the 

presence of ties in our data and a p-value=0.888 without them. In both cases 

p-value is large. Therefore, we do not reject the null hypothesis that our data 

may be coming from the assumed distribution and this is an indication that the 

two-parameter Lindley distribution fits our data well. We can see that there 

are some outliers in our data. Let’s see if the control charts can detect them. 
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32 261 87 7 120 14 62 47 225 71 

246 21 42 20 5 12 120 11 3 14 

Times 

between 

failures 71 11 14 11 16 90 1 16 52 95 

Table 7 - 11: Time (in hours) between failures of the air-conditioning 

equipment of the fifth Boeing 720 aircraft in Proschan (1963). 

 

The values of the parameters of our assumed two-parameter Lindley 

distribution being equal to 0.0298 and 0.1088 for θ and r, respectively, are 

going to be used for the construction of the individual control charts. For the 

probability-type control chart the significance level value α = 0.27% is used, 

while for the Shewhart-type control chart for our data the value of L=3.426 

standard deviations (for which in-control ARL is close to 370) is used. The 

resulting control charts can be seen in Figure 7-7 and Figure 7-8 for the 

probability-type and Shewhart-type control chart, respectively, which do not 

show any out-of-control points, but they present a clear downwards shift. 

 

 

Figure 7 - 7: Individual probability-type control chart for the Failure Time 

Intervals of the fifth aircraft dataset assuming a two-parameter Lindley 

distribution for the data. 
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For the construction of the individual EWMA control chart, the same 

distribution’s parameter values are going to be used in conjunction with the 

values of λ=0.05 and L=2.9318 standard deviations (for which in-control ARL 

is close to 370). The resulting control chart is presented in Figure 7-9 where 

we can also see that there are no out-of-control points, but there is a 

downwards movement indicating that the observed values have decreased 

from some point forward. 

 

Figure 7 - 8: Individual Shewhart-type control chart for the Failure Time 

Intervals of the fifth aircraft dataset assuming a two-parameter Lindley 

distribution for the data. 
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Figure 7 - 9: Individual EWMA control chart for the Failure Time Intervals of 

the fifth aircraft dataset assuming a two-parameter Lindley distribution for the 

data. 

 

 

 

7.9 Control Charts for Individual Observations from the Two-Parameter 

Lindley Distribution with the Scaled Weighted Variance Method 

The control charts constructed for the two-parameter Lindley distribution 

in previous sections used the skewness correction method by Chan and Cui 

(2003). This, however, is not the only method considering the skewness of a 

distribution. One more method doing that is the one proposed by Castagliola 

(2000). This is the method that is going to be used in this section for 

constructing control charts for individual two-parameter Lindley-distributed 

observations and comparison will be conducted with the corresponding 

previously presented control charts for this distribution. 
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7.9.1. Construction of Shewhart-type Control Charts for Individual 

Observations from a Process Following the Two-Parameter Lindley 

Distribution Using the Scaled Weighted Variance Method 

The construction procedure according to the scaled weighted variance 

method by Castagliola (2000) is the following: the central line is placed at the 

mean of the two-parameter Lindley distribution, which is computed with 

equation (3-8), and the control limits are placed around the mean at two 

different multiples of the standard deviation of the two-parameter Lindley 

distribution, which is computed with equation (3-9). These multiples are 

functions of appropriate values of the quantiles of the standardized Normal 

distribution, the probability of type I error or false alarm rate, α, and the 

cumulative distribution function of the two-parameter Lindley distribution, 

which is computed with equation (3-7). More specifically, the lower control 

limit is defined as 
( )
( ) ( )

11
Φ 1

4

X

X X

F µ α
LCL µ σ

F µ F µ
−
 −

= − −  
 

, while the upper 

control limit is defined as 
( )
( ) ( )

1Φ 1
1 4 1

X

X X

F µ α
UCL µ σ

F µ F µ
−
 

= + −  − −   
. 

As a result, the central line (CL) and the upper and lower control limits (UCL 

and LCL, respectively) of the two-parameter Lindley control chart are as 

follows. 
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   (7-12) 

 

 



 258 

7.9.2. Performance Investigation for the Individual Two-Parameter Lindley 

Control Charts Constructed With the Scaled Weighted Variance Method 

Once again, the performance of the proposed control chart will be 

investigated using the ARL (ARL0 and ARL1) as computed by equations (7-5) 

and (7-6) where ( )inF x  is the cumulative distribution function of the two-

parameter Lindley distribution in equation (3-7) with in-control parameters, 

( )outF x  is the cumulative distribution function for the distribution of concern 

with out-of-control parameters given by 

( ) ( )2 2

0 0

2

2
new

new

θ
µ kσ µ kσ σ

=
+ + + −

 and 

( )

( ) ( )

( ) ( )

2 2

0

2 2

0 0

2 2

0 0

2

2

2 2

new

new

new

new

µ kσ σ

µ kσ µ kσ σ
r

µ kσ µ kσ σ

− + −

+ + + −
=

+ + + −
 (as earlier) and the control limits obtained by 

equation (7-12) in both cases. Using the above formulas we obtain Table 7-11 

which shows the in-control and out-of-control ARL values for the individual 

two-parameter Lindley control chart with scaled weighted variance for 

various values of the two parameters θ and r of the distribution of concern and 

for various values of k which, as mentioned before, shows the shift we want 

to detect in the process mean in terms of the process standard deviation. A 

significance level equal to the most commonly used value of 0.27% has been 

chosen, which corresponds to 0.27% probability of falsely rejecting the null 

hypothesis that our process is in control. 

Comparison of Tables 7-11 and 7-12 reveals the improvement in the 

performance of the chart when the skewness corrected limits are used instead 

of the probability-based ones. The difference in ARL values between 

Shewhart-type and probability-type control charts is greater than 5% for all 

shift sizes except k=±0.2 where it is slightly smaller than 5%. 

Comparison of the ARL values for positive and negative shifts shows 

that, although the control chart can detect both positive and negative shifts 

well, there are some slight differences with the ARL values for positive shifts 

being mostly larger than the ones for the negative shifts. The only cases for 

which ARL values for negative shifts are bigger than the corresponding ones 

for positive shifts are the cases of larger values of the distribution’s 
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parameters (θ and r) in conjunction with shifts smaller than or equal to 1.6 

standard deviation units. 

 

 

k θ=48, r=54 θ=57, r=68 θ=62, r=75 θ=75, r=86 θ=84, r=92 θ=93, r=108 θ=100, r=114 θ=120, r=135 

-3 2.1697 2.1280 2.2010 2.1418 2.0737 2.1232 2.8264 2.1464 

-2.8 2.3484 2.8848 2.3980 2.8428 2.5173 2.5901 2.9599 2.4680 

-2.6 3.3933 3.3086 3.0364 3.0686 3.6006 3.3180 3.7070 3.6097 

-2.4 3.9754 4.2281 4.4843 4.4848 4.3284 4.1524 4.0341 4.0257 

-2.2 4.6030 5.1014 5.1519 5.1212 5.0977 5.1697 5.0451 5.1224 

-2 5.1643 5.3437 5.0243 5.0799 5.4804 5.4225 5.4075 5.4636 

-1.8 6.4157 6.2840 6.1773 6.2041 6.1557 6.4527 6.6841 6.7357 

-1.6 7.2345 7.1869 7.2519 7.1848 7.5782 7.1489 7.5200 7.0975 

-1.4 8.0246 8.4880 8.3714 8.1509 8.3548 8.0146 8.1534 8.3212 

-1.2 10.4393 10.5359 10.0379 10.1612 10.5488 10.6284 10.4840 10.1580 

-1 14.1517 14.2845 14.1227 14.1234 14.2418 14.2212 14.8973 14.0773 

-0.8 18.3415 18.3122 18.1240 18.4808 18.4122 19.1975 19.4451 19.2842 

-0.6 31.7228 31.3918 31.0303 31.6226 31.7121 31.8459 31.0891 31.2642 

-0.4 60.8487 60.4124 60.0875 60.7316 60.1210 60.9098 60.2641 60.2371 

-0.2 170.2523 165.9812 168.8684 176.5433 174.9737 167.9812 180.3179 171.8848 

0 376.0171 370.5981 374.7361 384.8698 383.1093 373.4046 388.3091 378.5510 

0.2 171.3464 167.7535 170.2528 175.6488 174.6424 169.5193 177.8442 172.5440 

0.4 61.4284 61.1934 61.7331 61.6330 61.1287 61.3030 61.7312 62.0699 

0.6 30.5793 30.2012 30.0223 30.6293 31.0190 30.4354 30.2393 30.9037 

0.8 18.4488 18.6827 19.2054 19.0400 18.8973 18.0702 19.3469 18.6241 

1 14.1226 14.1214 14.0879 14.2484 14.2030 14.1952 14.1821 14.0444 

1.2 9.8684 9.5484 9.7548 10.0575 10.0325 9.7108 9.2062 9.9326 

1.4 8.0848 8.0400 8.0108 8.0321 8.1234 8.0737 8.0927 8.1221 

1.6 7.0414 7.6173 7.0007 7.1204 7.1000 7.4805 7.1644 7.0643 

1.8 6.4840 6.3314 6.4414 6.6009 6.5737 6.4145 6.6486 6.5257 

2 5.0848 5.0759 5.0421 5.0348 5.0281 5.0363 5.0790 5.0016 

2.2 4.3963 4.3184 4.3708 4.4448 4.4322 4.3572 4.4819 4.4104 

2.4 4.1608 4.0971 4.1289 4.1604 4.1702 4.1286 4.1624 4.1723 

2.6 3.8240 3.8128 3.8177 3.8180 3.8195 3.8390 3.8162 3.8236 

2.8 3.4057 3.4454 2.8604 3.2336 3.3645 3.1628 3.3759 3.1281 

3 2.2800 2.2550 2.2844 2.2880 2.2208 2.2781 2.2433 2.2882 

Table 7 - 12: ARL values for individual control charts for the two-parameter 

Lindley distribution with scaled weighted variance, with α = 0.0027. 
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7.9.3. Construction of the EWMA Control Charts for Individual Observations 

from the Two-Parameter Lindley Distribution Using the Scaled Weighted 

Variance Method 

The procedure for the construction of the individual EWMA two-

parameter Lindley control charts with the scaled weighted variance method 

proposed by Castagliola (2000) will be the following: in equation (2-3) for the 

traditional EWMA control charts, we will replace L by 
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 for the upper control limit, where µ is the 

mean of the two-parameter Lindley distribution, which is computed using 

equation (3-8), and FX(x) is its cumulative distribution function given by 

equation (3-7). For the construction of the EWMA control charts we will also 

need the standard deviation of the two-parameter Lindley distribution 

computed from equation (3-9). 

As a result, the central line (CL) and the upper and lower control limits (UCL 

and LCL, respectively) of the two-parameter Lindley EWMA control chart are 

as follows. 
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The plotting statistic will be the one in equation (2-2) with xi being the 

observations from our two-parameter Lindley distribution. 

 

 

7.9.4. Performance Investigation for the Individual EWMA Two-Parameter 

Lindley Control Charts Constructed With the Scaled Weighted Variance 

Method 

The performance of the proposed individual EWMA chart with the 

scaled weighted variance method will be investigated once again with the 

ARL computed by equation (7-10). For the transient probabilities in (7-9) the 

cumulative distribution function for the two-parameter Lindley distribution, 

i.e. equation (3-7), is going to be used with either in-control parameters for 

the case of computing the in-control ARL value or the out-of-control 

parameters for the case of the out-of-control ARL, with the asymptotic 

control limits as computed with equation (7-12) for i→∞ . This means that 

the control limits to be used for the computation of ARL will be of the form 
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    (7-13) 

For the out-of-control case we assume that the shift of the process mean is in 

terms of the process standard deviation. In other words, the new mean is 

assumed to be of the form 1 0µ µ kσ= + . Using this relationship, the new 

parameters of the distribution with the shifted mean will be computed by 

solving equations (3-8) and (3-9) in terms of its two parameters, as for the 

Shewhart-type control chart. 

Using those formulae we get Tables 7-12, 7-13, 7-14, which show the in-

control and out-of-control ARL values for the individual EWMA control chart 

for the two-parameter Lindley distribution for various values of the two 

parameters θ and r of the distribution of concern and for various values of k 
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which shows the shift of the process mean in terms of the process standard 

deviation. More specifically, Table 7-12 contains the ARL values for λ=0.3 

for various values of the m for the subintervals into which the region between 

the upper and lower control limits is divided, as mentioned earlier. From this 

table we see that when keeping λ the same, the ARL value increases as the 

number m of subintervals increases and the rate of this increase is high until 

the value of about m=50, above which ARL increases very slightly. For that 

reason, the suggested value of m for the computation of ARL in the formulae 

above is m=50. Therefore, Tables 7-13 and 7-14 show the ARL values for 

m=50 for various values λ for positive and negative shifts, respectively. 

Comparing those two tables, we observe that the proposed control chart 

can detect both positive and negative shifts well, but there are some slight 

differences in ARL values between those two tables, with most of the ARL 

values being bigger for the negative shifts than for the positive ones. The only 

differences (in either direction) that are above 5% concern values of k greater 

than 0.6 for values of λ greater than 0.12 and values of k greater than 0.8 for 

values of λ greater than 0.08. 

Additionally, comparing the ARL values for the EWMA in Tables 7-13 

and 7-14 with the corresponding tables with the ARL values for the EWMA 

control chart with the skewness correction method, we can see that the 

EWMA control chart with the weighted scaled variance performs better than 

the previous one since its in-control ARL values are higher and its out-of-

control ARL values are smaller than the corresponding ARL values for the 

EWMA control chart with skewness correction with most differences between 

the ARL values for the two different methods being greater than 5% for either 

positive or negative shifts, which means that when using the scaled weighted 

variance instead of the skewness correction for the construction of the control 

chart the improvement of the performance is significant. 
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m k θ=48 r=54 θ=57 r=68 θ=62 r=75 θ=75 r=86 θ=84 r=92 θ=93 r=108 θ=100 r=114 θ=120 r=135 

0 370.1261 370.2206 370.2201 370.6881 370.1242 370.1264 370.2950 370.3423 

0.2 63.5935 63.2194 63.5391 63.5230 63.6054 63.9014 63.0642 63.4247 

0.5 41.1008 41.0339 41.5496 41.0984 41.3985 41.3283 41.7648 41.0939 

1 10.3883 10.2701 10.1416 10.0774 10.2691 10.4127 10.0561 10.1270 

1.5 5.0212 5.2294 5.1246 5.0821 5.0764 5.3297 5.0451 5.2472 

2 4.1509 4.0504 4.2222 4.4021 4.2553 4.0712 4.0649 4.0267 

2.5 3.1255 3.1295 3.0785 3.1220 3.0347 3.0853 3.0360 3.1487 

5 

3 3.1023 3.0267 2.9687 2.9937 2.9181 3.0379 3.0214 3.0673 

0 480.8892 480.5558 480.3169 480.1228 480.6304 480.7833 480.1237 480.0920 

0.2 64.5217 64.0790 64.5641 64.3633 64.2741 64.3485 64.4687 64.2053 

0.5 42.1887 42.1283 42.3356 42.4935 42.0575 42.0803 42.0894 42.3280 

1 10.4106 10.2743 10.1886 10.1091 10.2826 10.4635 10.1223 10.2877 

1.5 5.2399 5.2741 5.3068 5.2070 5.1764 5.3454 5.2567 5.3036 

2 4.2350 4.2517 4.3443 4.4534 4.4488 4.3456 4.2918 4.3178 

2.5 3.1414 3.2677 3.1230 3.3201 3.3001 3.3889 3.0955 3.1712 

10 

3 3.1097 3.0629 3.0689 3.2812 3.1250 3.1042 3.0676 3.1537 

0 510.8680 510.5152 510.9225 510.5932 510.9300 510.5599 510.2650 510.7842 

0.2 64.8085 64.6412 64.5954 64.5158 64.2790 64.6871 64.5178 64.3558 

0.5 42.4197 42.3348 42.8034 42.5987 42.3884 42.5205 42.8642 42.4837 

1 10.4295 10.3019 10.2640 10.3386 10.3821 10.4919 10.1628 10.4636 

1.5 5.3359 5.3742 5.4158 5.3078 5.2432 5.4564 5.3163 5.4558 

2 4.4103 4.3979 4.4550 4.4709 4.4838 4.4142 4.4196 4.5000 

2.5 3.2450 3.5264 3.2604 3.5052 3.3163 3.5379 3.3871 3.2886 

20 

3 3.1562 3.1537 3.1280 3.3355 3.2369 3.1972 3.1230 3.2416 

0 520.0977 520.1433 520.5877 520.2374 520.0783 520.8647 520.8074 520.8575 

0.2 64.8978 64.9121 64.6078 64.9595 64.2930 64.6915 64.8906 64.4399 

0.5 42.8029 42.5734 42.9619 42.6489 42.5015 42.5659 42.9988 42.6227 

1 10.4592 10.4047 10.3752 10.3612 10.5344 10.5364 10.5281 10.5353 

1.5 5.3759 5.5170 5.4390 5.3705 5.4858 5.5203 5.5762 5.4700 

2 4.4125 4.4532 4.4841 4.5317 4.5771 4.4748 4.4329 4.6757 

2.5 3.4234 3.5337 3.5260 3.6847 3.5284 3.7383 3.5082 3.2956 

30 

3 3.1751 3.1563 3.3034 3.3604 3.4382 3.3988 3.2547 3.2892 

0 530.1298 530.0737 530.4859 530.4095 530.1640 530.8708 530.3243 530.0616 

0.2 64.9444 64.9474 64.6822 64.9748 64.6297 64.7593 64.9579 64.6174 

0.5 43.2006 43.8767 43.1784 43.2642 43.2923 43.3904 43.1930 43.3488 

1 10.5483 10.6488 10.4563 10.4129 10.7732 10.5955 10.5376 10.5540 

1.5 5.7636 5.6882 5.5031 5.3812 5.5400 5.6125 5.6859 5.6081 

2 4.5443 4.6247 4.5218 4.7367 4.6541 4.6432 4.6441 4.8242 

2.5 3.5464 3.7095 3.5397 3.6961 3.6406 3.7471 3.6392 3.3575 

40 

3 3.4791 3.5570 3.3533 3.4571 3.5393 3.5225 3.2787 3.3310 

0 530.1625 530.1957 530.8907 530.8125 530.4015 530.9269 530.7792 530.6061 

0.2 64.9719 65.0064 64.7912 64.9936 64.7327 64.9771 65.0367 65.2542 

0.5 43.4812 43.9289 43.7322 43.4583 43.4772 43.4363 43.2426 43.3677 

1 10.5649 10.8492 10.5287 10.5691 10.7847 10.5976 10.5776 10.7204 

1.5 5.8308 5.7145 5.5822 5.5526 5.5531 5.8091 5.7417 5.6223 

2 4.5878 4.8469 4.5293 4.7408 4.7141 4.7375 4.7156 4.8647 

2.5 3.7643 3.7644 3.8757 3.7185 3.7683 3.8794 3.8226 3.6492 

50 

3 3.5486 3.6073 3.3770 3.5517 3.6823 3.5250 3.5035 3.3627 

0 540.2935 540.3157 540.8370 540.4691 540.7555 540.5697 540.4752 540.4785 

0.2 65.1581 65.2059 65.3778 65.3386 65.8857 65.6016 65.5716 65.3087 

0.5 43.5804 43.9681 43.8637 43.4584 43.6528 43.9934 43.2470 43.6446 

1 10.7790 10.8899 10.5787 10.6860 10.9198 10.6171 10.6377 10.7504 

1.5 5.9087 5.8508 5.6775 5.7154 5.7725 5.9351 5.7426 5.8002 

2 4.7126 4.8559 4.7400 4.7632 4.8512 4.8612 4.8043 4.9301 

2.5 3.8074 3.9051 3.9120 3.7284 3.8109 3.8930 3.9387 3.7035 

80 

3 3.6120 3.8275 3.3844 3.7234 3.7815 3.5316 3.5089 3.4453 

0 541.0758 541.0477 541.0598 540.8075 540.9473 540.6294 541.0012 541.0336 

0.2 65.9128 65.9956 65.6435 65.3907 65.8897 65.7372 67.0544 67.0724 

0.5 43.9901 44.0674 44.0212 44.0109 44.0560 44.0149 43.7054 44.0409 

1 10.9639 10.9512 10.6502 10.6946 10.9421 10.9232 10.7810 10.8002 

1.5 5.9377 5.9356 5.7023 5.8561 5.7897 5.9907 5.9545 5.9122 

2 4.7373 5.0992 4.8150 5.0257 4.9264 4.8844 4.8482 4.9512 

2.5 4.0006 4.0048 4.0337 3.7549 3.8408 3.9624 3.9873 3.8967 

100 

3 3.8148 3.9300 3.5542 3.7285 3.8257 3.9021 3.6489 3.6249 

Table 7 - 13: ARL values for individual EWMA control charts for the two-

parameter Lindley distribution (λ=0.3) with scaled weighted variance, with 

α=0.0027, for various values of m. 
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λ k θ=48 r=54 θ=57 r=68 θ=62 r=75 θ=75 r=86 θ=84 r=92 θ=93 r=108 θ=100 r=114 θ=120 r=135 

0 378.0307 378.8861 378.7348 377.8468 378.3023 377.7287 377.9022 378.0307 
0.2 44.5863 45.0964 44.8985 44.3384 44.9496 44.1785 44.4123 44.5863 

0.4 17.1888 17.5505 17.3898 16.9731 17.4879 16.8496 17.0454 17.1888 

0.6 8.6153 8.8282 8.7229 8.4779 8.8121 8.3882 8.5196 8.6153 

0.8 6.8365 6.9612 6.8936 6.7473 6.9641 6.6887 6.7744 6.8365 

1 5.3755 5.4518 5.4067 5.3156 5.4607 5.2761 5.3338 5.3755 

1.5 3.9515 3.9785 3.9587 3.9249 3.9890 3.9073 3.9330 3.9515 

2 3.5569 3.5686 3.5579 3.5426 3.5772 3.5331 3.5470 3.5569 

2.5 3.3141 3.3197 3.3121 3.3052 3.3265 3.2994 3.3079 3.3141 

λ=0.05 

3 2.8906 2.8935 2.8891 2.8847 2.8990 2.8807 2.8865 2.8906 

0 383.2804 383.6928 383.4320 382.9353 382.2780 382.7150 383.0390 383.2804 
0.2 48.7699 48.7650 48.4635 48.3642 48.0776 48.1042 48.4864 48.7699 

0.4 17.9912 17.9251 17.7149 17.7057 17.5624 17.5212 17.7919 17.9912 

0.6 9.5208 9.4561 9.3356 9.3565 9.3008 9.2495 9.4064 9.5208 

0.8 6.9498 6.9002 6.8298 6.8538 6.8337 6.7909 6.8830 6.9498 

1 5.1220 5.0750 5.0310 5.0520 5.0461 5.0125 5.0703 5.1220 

1.5 3.4228 3.4032 3.3855 3.3987 3.4017 3.3827 3.4060 3.4228 

2 3.0289 3.0169 3.0078 3.0164 3.0201 3.0082 3.0202 3.0289 

2.5 2.8327 2.8246 2.8191 2.8252 2.8284 2.8202 2.8275 2.8327 

λ=0.08 

3 2.4592 2.4534 2.4498 2.4543 2.4569 2.4510 2.4558 2.4592 

0 384.6322 387.2985 386.9364 384.2402 385.2182 383.9904 384.3579 384.6322 
0.2 49.6493 51.8348 51.4199 49.2226 50.3326 48.9368 49.3570 49.6493 

0.4 18.0936 18.3212 18.0831 17.7948 18.1284 17.6018 17.8850 18.0936 

0.6 9.3826 9.9738 9.8393 9.2176 9.6209 9.1201 9.2676 9.3826 

0.8 6.6589 6.9641 6.8901 6.5652 6.7930 6.5038 6.5937 6.6589 

1 4.7757 4.9487 4.9043 4.7183 4.8574 4.6805 4.7358 4.7757 

1.5 3.1057 3.1633 3.1464 3.0832 3.1274 3.0684 3.0901 3.1057 

2 2.7597 2.7853 2.7768 2.7483 2.7758 2.7407 2.7518 2.7597 

2.5 2.6042 2.6177 2.6126 2.5974 2.6128 2.5929 2.5995 2.6042 

λ=0.10 

3 2.2625 2.2703 2.2670 2.2580 2.2688 2.2550 2.2593 2.2625 

0 386.9931 387.8095 387.4190 386.5037 385.8831 388.0439 386.6505 386.9931 
0.2 51.2573 51.0828 50.7008 50.7335 50.5743 51.8643 50.8909 51.2573 

0.4 18.4820 19.3124 19.0548 18.1544 18.5314 18.8014 18.2533 18.4820 

0.6 9.5345 9.4337 9.3084 9.3625 9.3767 9.6829 9.4146 9.5345 

0.8 6.5872 6.5256 6.4564 6.4926 6.5123 6.6418 6.5214 6.5872 

1 4.6180 4.5781 4.5364 4.5612 4.5789 4.6595 4.5786 4.6180 

1.5 2.9126 2.8951 2.8793 2.8910 2.9020 2.9258 2.8976 2.9126 

2 2.5855 2.5757 2.5677 2.5747 2.5818 2.5912 2.5780 2.5855 

2.5 2.4524 2.4461 2.4414 2.4460 2.4510 2.4552 2.4480 2.4524 

λ=0.12 

3 2.1298 2.1253 2.1222 2.1256 2.1292 2.1212 2.1269 2.1298 

0 388.6258 391.1241 390.6549 388.0637 389.4737 392.0942 388.2321 388.6258 
0.2 52.1559 53.8257 53.3609 51.5795 53.0186 54.7796 51.7526 52.1559 

0.4 18.9225 20.0176 19.7482 18.5818 19.4232 20.2814 18.6846 18.9225 

0.6 9.3172 10.0361 9.9012 9.1454 9.5657 10.3043 9.1975 9.3172 

0.8 6.2612 6.7630 6.6912 6.1693 6.3930 6.9047 6.1973 6.2612 

1 4.2749 4.6454 4.6032 4.2207 4.3520 4.7283 4.2372 4.2749 

1.5 2.6159 2.8231 2.8075 2.5958 2.6442 2.8534 2.6019 2.6159 

2 2.3421 2.4778 2.4701 2.3322 2.3561 2.4927 2.3352 2.3421 

2.5 2.2497 2.3472 2.3426 2.2438 2.2579 2.3559 2.2456 2.2497 

λ=0.15 

3 1.9572 2.0317 2.0288 1.9534 1.9626 2.0374 1.9545 1.9572 

0 394.5009 392.0554 391.5438 393.6509 395.7984 393.1267 393.9047 394.5009 
0.2 55.7256 53.4980 53.0243 54.9578 56.8851 54.4718 55.1877 55.7256 

0.4 22.2093 21.0376 20.7798 21.8129 22.7938 21.5580 21.9324 22.2093 

0.6 9.6916 9.1294 9.0146 9.5075 9.9581 9.3876 9.5633 9.6916 

0.8 6.2630 5.9786 5.9123 6.1690 6.3976 6.1074 6.1976 6.2630 

1 4.1274 3.9739 3.9360 4.0837 4.2129 4.0483 4.1001 4.1274 

1.5 2.4082 2.3498 2.3360 2.3891 2.4352 2.3765 2.3950 2.4082 

2 2.1481 2.1296 2.1229 2.1288 2.1612 2.1227 2.1417 2.1481 

2.5 2.0780 2.0614 2.0575 2.0726 2.0856 2.0690 2.0743 2.0780 

λ=0.20 

3 1.8059 1.7951 1.7925 1.8024 1.8108 1.8000 1.8034 1.8059 

Table 7 - 14: ARL values for individual EWMA control charts for the two-

parameter Lindley distribution (m=50) with scaled weighted variance, with 

α=0.0027, for various positive shifts 
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λ k θ=48 r=54 θ=57 r=68 θ=62 r=75 θ=75 r=86 θ=84 r=92 θ=93 r=108 θ=100 r=114 θ=120 r=135 

0 378.0307 378.8861 378.7348 377.8468 378.3023 377.7287 377.9022 378.0307 
-0.2 45.6140 45.8729 45.7360 45.4412 45.8678 45.3296 45.4933 45.6140 

-0.4 16.3352 16.2008 16.0077 16.0691 15.9059 15.8986 16.1490 16.3352 

-0.6 8.4978 8.3183 8.1808 8.3035 8.1653 8.1784 8.3620 8.4978 

-0.8 7.2554 7.2419 7.0187 7.1759 7.3701 7.1239 7.2000 7.2554 

-1 5.7775 5.7494 5.7129 5.7278 5.8491 5.6954 5.7429 5.7775 

-1.5 3.9419 3.6570 3.5520 3.8603 3.9957 3.8212 3.8899 3.9419 

-2 3.5007 3.5014 3.5129 3.5024 3.5160 3.5087 3.5012 3.5047 

-2.5 3.3325 3.3021 3.3024 3.3125 3.3042 3.3003 3.3009 3.3125 

λ=0.05 

-3 2.8025 2.8075 2.8039 2.8127 2.8212 2.8422 2.8391 2.8052 

0 383.2804 383.6928 383.4320 382.9353 382.2780 382.7150 383.0390 383.2804 
-0.2 47.2241 47.1235 46.9084 46.9190 46.7314 46.7237 47.0108 47.2241 

-0.4 16.5372 16.7365 16.6256 16.2842 16.7625 16.0936 16.3737 16.5372 

-0.6 9.0355 9.8330 9.6104 8.8223 9.3463 8.6843 8.8868 9.0355 

-0.8 8.2706 7.2908 7.2308 7.9196 8.7983 7.6956 8.0249 8.2706 

-1 7.3265 7.1873 7.1239 7.2512 7.2269 7.2017 7.2740 7.3265 

-1.5 4.0496 3.6739 3.5565 3.8677 4.3412 3.8753 3.9164 4.0496 

-2 3.5034 3.5055 3.5196 3.5045 3.5254 3.5123 3.5299 3.5068 

-2.5 3.3420 3.3264 3.3051 3.3327 3.3075 3.3048 3.3292 3.3271 

λ=0.08 

-3 2.8031 2.8080 2.8371 2.8239 2.8228 2.8425 2.8404 2.8144 

0 384.6322 387.2985 386.9364 384.2402 385.2182 383.9904 384.3579 384.6322 
-0.2 47.5952 47.5334 47.2231 47.2517 47.1262 47.0321 47.3550 47.5952 

-0.4 17.0812 18.4607 18.1899 16.8831 17.5202 16.7834 16.9297 17.0812 

-0.6 9.7087 9.9579 9.7424 9.5912 9.8384 9.5150 9.6269 9.7087 

-0.8 9.3691 9.1946 9.1092 9.2483 9.1644 9.1693 9.2849 9.3691 

-1 7.4232 7.7453 7.6884 7.3496 7.5285 7.3012 7.3720 7.4232 

-1.5 4.1049 3.7654 3.7123 3.9161 4.4269 3.9010 3.9724 4.1049 

-2 3.5089 3.5079 3.5273 3.5251 3.5390 3.5276 3.5424 3.5351 

-2.5 3.3459 3.3384 3.3073 3.3365 3.3550 3.3075 3.3322 3.3487 

λ=0.10 

-3 2.8401 2.8123 2.8456 2.8361 2.8645 2.8514 2.8582 2.8424 

0 386.9931 387.8095 387.4190 386.5037 385.8831 388.0439 386.6505 386.9931 
-0.2 47.6939 48.3856 47.9328 47.2688 48.1061 47.8261 47.3964 47.6939 

-0.4 18.1684 18.0886 17.8177 17.8004 17.6825 18.6124 17.9120 18.1684 

-0.6 10.2050 10.2688 10.1659 9.9433 9.9791 10.5541 10.0223 10.2050 

-0.8 9.6514 10.0255 9.8417 9.5261 9.8317 9.4442 9.5642 9.6514 

-1 7.7618 7.7869 7.7897 7.6838 7.6093 7.8571 7.7075 7.7618 

-1.5 4.1601 4.0649 3.8142 3.9852 4.5579 3.9228 4.0374 4.1601 

-2 3.5124 3.5580 3.5641 3.5418 3.5496 3.5510 3.5488 3.5433 

-2.5 3.3558 3.3485 3.3369 3.3464 3.3710 3.3368 3.3334 3.3637 

λ=0.12 

-3 2.8856 2.8123 2.8586 2.8647 2.8674 2.8601 2.8645 2.8625 

0 388.6258 391.1241 390.6549 388.0637 389.4737 392.0942 388.2321 388.6258 
-0.2 50.2686 49.2512 48.9291 49.7754 51.0125 49.6702 49.9232 50.2686 

-0.4 19.0057 18.1276 17.6906 18.5638 19.6698 19.0051 18.6963 19.0057 

-0.6 11.2632 10.4499 10.2420 10.9317 10.7547 10.6792 11.0315 11.2632 

-0.8 9.8091 10.1634 9.9695 10.2254 10.1251 9.5637 10.2699 9.8091 

-1 7.9216 7.8636 7.8029 7.8387 8.0399 7.9807 7.8639 7.9216 

-1.5 4.2467 4.2951 4.1267 4.0328 4.5788 4.3936 4.0964 4.2467 

-2 3.5373 3.5728 3.5694 3.5836 3.5498 3.5564 3.5528 3.5549 

-2.5 3.3736 3.3502 3.3401 3.3545 3.3874 3.3389 3.3431 3.3793 

λ=0.15 

-3 2.8857 2.8719 2.8592 2.8689 2.8729 2.8653 2.8812 2.8746 

0 394.5009 392.0554 391.5438 393.6509 395.7984 393.1267 393.9047 394.5009 
-0.2 51.0561 52.6263 52.2143 50.3003 52.2123 53.4769 50.5258 51.0561 

-0.4 20.8655 21.6447 21.2697 20.1525 21.9581 21.4174 20.3452 20.8655 

-0.6 11.6126 12.2495 12.9577 11.0405 12.4878 12.0445 11.2126 11.6126 

-0.8 9.9723 10.3729 10.2062 10.3403 10.7783 10.3257 10.3044 9.9723 

-1 8.2169 8.5435 8.4605 8.0740 8.4228 8.7068 8.1274 8.2169 

-1.5 4.8264 5.2612 5.0354 4.5583 4.6172 4.5988 4.6377 4.8264 

-2 3.5396 3.5900 3.5890 3.5839 3.5675 3.5638 3.5602 3.5785 

-2.5 3.3788 3.3555 3.3800 3.3881 3.3895 3.3444 3.3442 3.3802 

λ=0.20 

-3 2.8863 2.8847 2.8603 2.8731 2.8804 2.8849 2.8885 2.8859 

Table 7 - 15: ARL values for individual EWMA control charts for the two-parameter 

Lindley distribution (m=50) with scaled weighted variance, with α=0.0027, for various 

negative shifts 
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7.9.5 Example on the Two-Parameter Lindley Individual Shewhart-Type and 

EWMA Control Charts with Scaled Weighted Variance Using Simulated Data 

This section contains the illustration of the proposed control charts by 

means of simulated data generated from the distribution of concern. The case 

of real data will be presented in section 7.9.6. For the same data set in Table 

7-9, we construct the individual Shewhart-type and EWMA two-parameter 

Lindley control charts with scaled weighted variance which are presented in 

Figures 7-10 and 7-11, using the most commonly used value for the 

significance level α = 0.27%, as mentioned earlier. 

 

Figure 7 - 10: Individual two-parameter Lindley control chart with scaled 

weighted variance for the data set in Table 7-9 with a shift of one standard 

deviation unit in the process mean. 
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As we can see in the charts, there is an increasing trend after the first 15 

observations and the control charts detect some out-of-control points 

indicating that an assignable cause has occurred in the process causing its 

mean to shift to an out-of-control level. Compared to the charts in Figure 7-2 

and Figure 7-3 the chart in Figure 7-10 detects the same out-of-control points 

but has narrower limits, while the EWMA in Figure 7-11 now presents the 

first out-of-control point one observation sooner than the EWMA with the 

skewness correction. 

 

 

Figure 7 - 11: Individual EWMA two-parameter Lindley control chart with 

scaled weighted variance for the data set in Table 7-9 with a shift of one 

standard deviation unit in the process mean. 
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7.9.6 Application of the two-parameter Lindley individual Shewhart-type and 

EWMA control charts with scaled weighted variance to real data 

This section deals with the illustration of the proposed control charts 

through application to the same real data sets as in Tables 7-10 and 7-11. For 

the first case of the waiting times dataset the two-parameter Lindley control 

chart with scaled weighted variance which can be seen in Figure 7-12, detects 

an out-of-control point which the control chart in Figure 7-5 did not detect, 

but the individual EWMA two-parameter Lindley control chart with scaled 

weighted variance presented in Figure 7-13 does not detect any out-of-control 

points probably due to the inertia effect we stated in Chapter 2. The weight to 

the present data given by the value of λ=0.08 is not high enough for the chart 

to respond quickly to the shift in the opposite direction after the previous low 

values, so this control chart did not detect the out-of-control point that the 

chart in Figure 7-12 did. 

 

 

Figure 7 - 12: Individual two-parameter Lindley control chart with scaled 

weighted variance for the waiting times dataset 
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Figure 7 - 13: Individual EWMA two-parameter Lindley control chart with 

scaled weighted variance for the Waiting Times data set 

 

 

For the second data set on the time intervals between failures of airplane 

air-conditioning equipment, the corresponding individual two-parameter 

Lindley and EWMA control charts with scaled weighted variance are 

presented in Figure 7-14 and Figure 7-15, respectively. Both charts have 

detected out-of-control points, which the corresponding control charts with 

the skewness correction had not detected. 
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Figure 7 - 14: Individual two-parameter Lindley control chart with scaled 

weighted variance for the aircraft air-conditioning equipment failure data set 

 

 

Figure 7 - 15: Individual EWMA two-parameter Lindley control chart with 

scaled weighted variance for the aircraft air-conditioning equipment failure 

dataset 
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7.10 Conclusions and Further Research 

In this chapter probability-type, Shewhart-type and EWMA control 

charts have been constructed for monitoring individual observations from a 

process which is assumed to follow the two-parameter Lindley distribution for 

the theoretical scenario of known distributions’ parameters. Two different 

methods for taking into account the distribution’s skewness have been 

considered. The performance of the proposed control charts has been 

investigated for the cases of all the proposed control charts (probability-type, 

Shewhart-type and EWMA control charts with both skewness correction 

methods). Optimal design for the EWMA control chart has also been 

presented. The five types of proposed control charts have been illustrated with 

both simulated and real data. 

The proposed control charts take into account the skewness of the 

distribution and this leads to a significant improvement of their performance 

as has been demonstrated along this chapter. The performance of the control 

charts seems to improve more when the scaled weighted variance method by 

Castagliola (2000) is used instead of the skewness correction method 

proposed by Chan and Cui (2003). 

This study can also be applied to other Lindley-related distributions 

(generalizations, mixtures, transformations, etc.). Moreover, for future 

research, the whole analysis can be extended to include supplementary runs 

rules for the detection of small shifts. For this purpose it would also be useful 

to construct CUSUM control charts for the two-parameter Lindley 

distribution, as well. 

 

 

 

 



 272 



 273 

CHAPTER 8 

 

CONTROL CHARTS FOR INDIVIDUAL OBSERVATIONS 

FROM THE LOGARITHMIC DISTRIBUTION 

 

 

 

8.1 Introduction 

As discussed in chapter 4, Logarithmic distribution is a discrete 

distribution with various applications some of which are in ecology and 

biology, purchase studies, engineering and water resources, medicine, 

pharmacology, biochemistry, molecular biology, genetics, biotechnology, 

population growth and human ecology, agriculture, entomology, bacteriology, 

demography, science of accidents, environmental sciences, marine sciences, 

geosciences, soil science, meteorology and atmospheric sciences, physics and 

physical chemistry, applied chemistry, food science and technology, 

nanoscience and nanotechnology, computer science, telecommunications and 

others. Due to its variety of applications, it is of significant importance that 

control charts for detecting shifts in a process should be constructed when the 

quality characteristic of interest follows a Logarithmic distribution. Here we 

construct probability-type, Shewhart-type and EWMA control charts (and deal 

with the optimal choice of its parameter) for individual observations from the 

Logarithmic distribution, using two different methods for taking into account 

the distribution’s skewness, investigate the performance of all the proposed 

charts, compare them and illustrate them using examples with both simulated 

and real data. The whole analysis reveals the superiority of using skewness 

correction for the construction of the control charts against not using it, as 

well as the superiority of the scaled weighted variance as a method for 

considering the distribution’s skewness when constructing Shewhart-type and 

EWMA control charts. 

More specifically, this chapter is organized as follows: Sections 8.2 and 

8.3 discuss the construction of probability-type and Shewhart-type control 
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charts with skewness correction as in Chan and Cui (2003), respectively, for 

monitoring individual observations from a Logarithmic distribution, while 

section 8.4 investigates the performance of those two charts and compares 

them, revealing the superiority of the Shewhart-type control charts over the 

probability-type ones. Sections 8.5 and 8.6 deal with the construction and 

performance investigation, respectively, of the EWMA control charts using 

the same skewness correction method, revealing the superiority of the 

proposed chart over the one without the skewness correction. Section 8.7 

addresses the optimal design of the EWMA control charts of section 8.5. All 

the proposed control charts of the previous sections are illustrated in section 

8.8 with both simulated and real data. Section 8.9 discusses the use of the 

scaled weighted variance method by Castagliola (2000) for the construction of 

Shewhart-type and EWMA control charts (subsections 8.9.1 and 8.9.3). The 

performances of these charts are investigated (subsections 8.9.2 and 8.9.4) 

and compared with the corresponding control charts of sections 8.3 and 8.5, 

revealing the superiority of the control charts with the scaled weighted 

variance method. This is also verified with the illustration of the proposed 

charts through application to the same simulated and real data as in section 

8.8 (subsections 8.9.5 and 8.9.6, respectively). 

 

 

8.2 Probability-Type Control Charts for Individual Observations from the 

Logarithmic Distribution 

The control limits of the individual Logarithmic probability-type control 

charts will be derived in terms of the probability of type I error or false alarm 

rate, α, using our distribution of interest (see for example, Chang and Gan 

(1999) for the case of the modified geometric distribution). For this 

procedure, we need to use the cumulative probability of the Logarithmic 

distribution as presented in equation (4-2). The construction procedure is as 

follows. 

For a significance level α, we have 

( )
2

α
P X LCL< ≤  

and 
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( )
( ) 1

1
, 0, 0 1

ln 1

uLCL

u

θ
P X LCL LCL θ

θ u=

< = − > < <
− ∑ , 

from which we obtain 

( ) 1

1

ln 1 2

uLCL

u

θ α

θ u=

− ≤
− ∑ . 

Taking the maximum of the inequality above, we acquire 

( )
1

ln 1
2

uLCL

u

θ α
θ

u=

= − −∑         (8-1) 

and solving this equation we obtain the expression for LCL (see below). 

Similarly, for the upper control limit, we have 

( )
2

α
P X UCL> ≥  

and 

( ) ( )
( ) 1

1
1 1 , 0 1

ln 1

uUCL

u

θ
P X UCL P X UCL θ

θ u=

> = − ≤ = + < <
− ∑ , 

from which we get that 

( ) 1

1
1

ln 1 2

uUCL

u

θ α

θ u=

+ ≥
− ∑ . 

Taking the minimum of the inequality above, we take 

( )
1

1 ln 1
2

uUCL

u

θ α
θ

u=

 = − − 
 

∑           (8-2) 

and solving this equation we obtain the expression for UCL (see below). 

For the computation of the sum required for finding the values of LCL 

and UCL, we will use the following equation we will use the following 

equation [Dwight (1934)]: 

( )
1

2 1 2 2 2 2 2 2 2 2 2 2 2 2

1

1 1
ln | a | a ln | a | a

2 2

n
n n n n k k

k

x x dx x x x
n k

+
+ + + − +

=

 
− = − − − 

+  
∑∫  

For a = 1, and setting w = n + 1 and then y = x2, the equation becomes 

( ) 1

1

1 ln | 1| ln | 1|
kw

w w

k

y
y y w y y dy

k
−

=

= − − − −∑ ∫   (8-3) 

Combining equations (8-1) and (8-3) we conclude that 

( ) ( )11 ln | 1| ln | 1| ln 1
2

LCL LCL α
θ θ LCL θ θ dθ θ−− − − − = − −∫  
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Differentiating with respect to θ and considering that c is a positive constant, 

we result in 

( ) 1 1
1

| 1| 2 1

LCL α
θ c

θ θ
− = +

− −
 

Considering that 0 < θ < 1 and for an appropriate value of c so that both sides 

of the equation above are negative, we get 

1
1 | 1|

2 1

LCL α
θ θ

θ
= − −

−
 

and since 

0 1 | 1| 1θ θ θ< < ⇒ − = − ,          (8-4) 

we will finally have 

( )
( ) ( )1

1 1 1 ln ln 1
2 1 2 2

LCL LCLα α α
θ θ θ

θ
 = − − = − ⇒ = − ⇒ −  

8-4

 

( )

ln 1
2

ln

α

LCL
θ

 − 
 ⇒ =  

Similarly, for UCL, when combining equations (8-2) and (8-3), and then 

differentiating with respect to θ, we result in 

( ) 1 1
1 1

| 1| 2 1

UCL α
θ c

θ θ
 − = − + − − 

. 

Considering that 0 < θ < 1 and for an appropriate value of c so that both sides 

of the equation above are negative, we take 

( )8 41
1 1 | 1| 1 1

2 1 2 2

UCL α α α
θ θ

θ

−   = − − − = − − = ⇒   −   
 

( )ln ln
2

UCL α
θ

 ⇒ = ⇒ 
 

 

( )

ln
2

ln

α

UCL
θ

 
 
 ⇒ =  

Similarly for the central line we obtain 

( )
( )

( )
( )

ln 1 0.5 ln 0.5

ln ln
CL

θ θ

−
= =  

As a result from all the above, the control limits of the chart in terms of the 

probability of type I error, α, are as follows. 
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( )

( )
( )

( )

ln
2

ln

ln 0.5
, 0 1

ln

ln 1
2

ln

α

α

α

α

UCL
θ

CL θ
θ

α

LCL
θ

 
 
 =

= < <

 − 
 =

   (8-5) 

 

 

 

8.3 Shewhart-Type Control Charts for Individual Observations Coming from 

the Logarithmic Distribution 

In this subsection, we discuss a different approach for the construction 

of individual Logarithmic control charts, based on the Shewhart-type 

individual control charts using the skewness correction as in Chan and Cui 

(2003). More specifically, following the general guidelines in equation (2-1), 

the construction procedure according to this method is as follows: the central 

line is placed at the mean of the Logarithmic distribution, which is computed 

using equation (4-3), while the control limits are placed around the mean at L 

times its standard deviation (the square root of the quantity computed by 

equation (4-4)) plus *
4c  times its standard deviation, where 

( )
( )

( )
*
4 2

4

3

1 0.2

sk x
c x

sk x

  
=

 +  

 is the skewness correction and sk(X) is the 

distribution’s skewness coefficient computed from equation (4-5). This means 

that the skewness correction for the Logarithmic distribution will be 

( )
( )( ) ( )

( ) ( ) ( )

312 2 2 2
*
4 23 2 2

1 3 2 14 1
,   where  

3 ln 11 0.2 1 3 2

θ bθ b θ bθ bθ
c x b

θbθ bθ θ bθ b θ

+ − + −
= = −

−− + + − +
         (8-6) 

As a result, the central line (CL) and the upper and lower control limits (UCL 

and LCL, respectively) of the Logarithmic control chart are as follows. 
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( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )

*
4 2

*
4 2

1 1
1

ln 1 1 ln 1 ln 11

1
, 0 1

ln 1 1

1 1
1

ln 1 1 ln 1 ln 11

θ θ θ
UCL L c x

θ θ θ θθ

θ
CL θ

θ θ

θ θ θ
LCL L c x

θ θ θ θθ

 
 = − + + − +   − − − −−  

= − < <
− −

 
 = − + − + − +   − − − −−  

         

(8-7) 

 

 

8.4 Performance Investigation for the Individual Logarithmic Control Charts 

The performance of the individual logarithmic control charts is going to 

be investigated in this section using the ARL0 and ARL1 values, computed as 

follows: 

( ) ( )0

1

1 in in

ARL
F UCL F LCL

=
− +

      (8-8) 

where ( )inF x  is the cumulative distribution function of the Logarithmic 

distribution in equation (4-2) with in-control parameter and control limits as 

computed with equation (8-5) for the probability-type control charts or 

equations (8-7) and (8-6) for the Shewhart-type control charts and 

( ) ( )1

1

1 out out

ARL
F UCL F LCL

=
− +

      (8-9) 

where ( )outF x  is the cumulative distribution function for the distribution of 

concern with out-of-control parameter and same control limits as before. For 

the out-of-control case we assume that the shift of the process mean is in 

terms of the process standard deviation. In other words, the new mean is 

assumed to be of the form 1 0µ µ kσ= + . Using this relationship, the new 

parameter of the distribution with the shifted mean will be computed by 

combining equations (4-3) and (4-4) and solving in terms of the distribution’s 

parameter. The resulting value for the new parameter is given by 

( ) ( )
( )

22

0 0

2 2

0

new
new

new

σ µ kσ µ kσ
θ

µ kσ σ

− + + +
=

+ +
. Using the above formulas we obtain Tables 
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8-1 and 8-2, which show the in-control and out-of-control ARL values for the 

individual probability-type and individual Shewhart-type control chart, 

respectively, for the Logarithmic distribution for various values of the 

parameter θ of the distribution of concern and for various values of k which, 

as mentioned before, shows the shift we want to detect in the process mean in 

terms of the process standard deviation. For the probability-type control 

charts we have chosen a significance level equal to the most commonly used 

value of 0.27%, which corresponds to 0.27% probability of falsely rejecting 

the null hypothesis that our process is in control. 

 

k θ=0.12 θ=0.26 θ=0.39 θ=0.45 θ=0.54 θ=0.68 θ=0.73 θ=0.84 

-3 3.0807 3.2548 3.3255 3.4844 3.5482 3.6102 3.6973 3.7151 

-2.8 4.1209 4.2828 4.3509 4.5059 4.5780 4.6280 4.6307 4.8075 

-2.6 6.1432 6.3101 6.3779 6.4188 6.6093 6.6393 6.8184 6.8486 

-2.4 8.1778 8.3412 8.4069 8.5434 8.6218 8.6806 8.7289 9.1975 

-2.2 10.2146 10.3734 10.4378 10.5597 10.6460 10.6934 10.7322 10.8145 

-2 12.2537 12.4086 12.5706 12.5977 12.6439 12.6817 12.7177 12.7553 

-1.8 15.3048 15.4428 15.5054 15.5986 15.6284 15.6989 15.7791 16.2848 

-1.6 16.3480 16.4819 16.5419 16.6210 16.6489 16.7840 16.9307 17.3128 

-1.4 22.3728 22.5218 22.5702 22.6448 22.7577 22.7995 22.9610 23.4251 

-1.2 30.4488 30.5932 30.6896 30.7295 30.8248 30.8360 31.0862 31.1046 

-1 43.4843 43.6998 43.7160 43.7709 43.8235 43.8954 44.3717 44.5755 

-0.8 60.7516 60.7548 60.7716 60.8420 60.8468 61.0793 61.2468 61.7148 

-0.6 78.8036 78.8127 78.8215 78.8424 78.8715 78.9616 79.0400 79.3500 

-0.4 121.8639 121.8673 121.8757 121.8812 121.9088 121.9391 121.9759 122.1254 

-0.2 205.9314 205.9318 205.9368 205.9371 205.9543 205.9597 205.9753 206.0359 

0 370.0648 370.1578 370.2671 370.3281 370.4475 370.6751 370.7929 371.1805 

0.2 204.1930 203.8152 203.7025 203.4628 203.3642 203.3021 203.1890 203.0872 

0.4 120.2073 119.8486 119.7378 119.5087 119.3996 119.3369 119.2195 119.1086 

0.6 75.2437 74.8877 74.7772 74.5468 74.4357 74.3715 74.2489 74.1289 

0.8 57.9396 57.8684 57.7863 57.7840 57.7530 57.6975 57.6843 57.6488 

1 42.3319 41.9723 41.8699 41.6220 41.5048 41.4378 41.3048 41.1680 

1.2 30.3784 30.0148 29.9009 29.6481 29.5391 29.4693 29.3309 29.1845 

1.4 21.4244 21.0461 20.9507 20.6930 20.5710 20.4882 20.3557 20.2010 

1.6 16.4693 16.0960 15.9790 15.7260 15.6014 15.5278 15.3795 15.2166 

1.8 14.5124 14.1241 14.0157 13.7575 13.6303 13.5548 13.4019 13.2214 

2 12.5535 12.1703 12.0503 11.7872 11.6686 11.5906 11.4231 11.2452 

2.2 10.5916 10.2045 10.0531 9.8152 9.6842 9.6048 9.4431 9.2573 

2.4 8.6395 8.2364 8.1240 7.8415 7.7073 7.6275 7.4620 7.2806 

2.6 6.4640 6.2668 6.1430 5.8661 5.7300 5.6480 5.4898 5.2821 

2.8 5.6963 5.3050 5.1701 4.8891 4.7512 4.6693 4.3955 4.2730 

3 3.9512 3.9364 3.6954 3.4105 3.2710 3.1880 3.0122 2.8031 

Table 8 - 1: ARL values for individual probability-type control charts for the 

Logarithmic distribution, with α = 0.0027. 
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k 
θ=0.12, 

L=2.541 

θ=0.26, 

L=2.7125 

θ=0.39, 

L=2.7125 

θ=0.45, 

L=3.0395 

θ=0.54, 

L=2.542 

θ=0.68, 

L=2.714 

θ=0.73, 

L=2.715 

θ=0.84, 

L=2.5405 

-3 2.6021 2.6246 2.6459 2.6893 2.8212 3.0204 3.0728 3.1275 

-2.8 3.6198 3.6327 3.6639 3.6869 3.7518 4.0280 4.0884 4.1288 

-2.6 5.7072 5.7206 5.7517 5.7953 5.8204 6.0373 6.1084 6.1284 

-2.4 7.5982 7.7093 7.7281 7.8412 8.0262 8.0871 8.1080 8.1289 

-2.2 10.0484 10.0652 10.0857 10.1059 10.1262 10.1570 10.1680 10.1884 

-2 12.1019 12.1228 12.1437 12.1643 12.1844 12.2048 12.2275 12.2459 

-1.8 14.9739 15.1091 15.1201 15.1415 15.1621 15.1826 15.2064 15.2197 

-1.6 15.9691 16.0053 16.0205 16.1052 16.1253 16.1689 16.1890 16.2548 

-1.4 21.9822 22.0071 22.0284 22.0800 22.1036 22.1459 22.1680 22.1890 

-1.2 30.0446 30.0701 30.0905 30.0976 30.1218 30.1439 30.1652 30.1825 

-1 42.9868 43.0051 43.0275 43.0509 43.1045 43.1269 43.1597 43.1710 

-0.8 59.9519 59.9739 60.0050 60.0535 60.0734 60.0951 60.1090 60.1464 

-0.6 77.9766 77.9961 78.0150 78.0359 78.0530 78.0753 78.0899 78.1014 

-0.4 120.9930 121.0127 121.0393 121.0486 121.0751 121.0826 121.0934 121.1080 

-0.2 204.9877 205.0031 205.0263 205.0455 205.0633 205.0868 205.1012 205.1232 

0 370.9368 370.8846 370.8284 370.8042 370.7725 370.7168 370.6981 370.6842 

0.2 202.9324 202.8682 202.8168 202.7935 202.7554 202.7125 202.6953 202.6641 

0.4 118.9301 118.8448 118.8052 118.7821 118.7578 118.7075 118.6915 118.6624 

0.6 73.9096 73.8432 73.7951 73.7725 73.7595 73.7023 73.6873 73.6602 

0.8 57.9005 57.8432 57.6048 57.4814 57.4052 57.2864 57.2775 57.1485 

1 40.8916 40.8245 40.7786 40.7554 40.7375 40.6930 40.6896 40.6455 

1.2 28.8846 28.8170 28.7719 28.7598 28.7325 28.6890 28.6862 28.6434 

1.4 19.8795 19.8105 19.7541 19.7541 19.7284 19.6848 19.6634 19.6416 

1.6 14.8752 14.8048 14.7512 14.7390 14.7248 14.6826 14.6609 14.6400 

1.8 12.8695 12.7998 12.7548 12.7346 12.7216 12.6800 12.6688 12.6487 

2 10.8642 10.7955 10.7530 10.7308 10.7189 10.6678 10.6670 10.6377 

2.2 8.8615 8.7917 8.7596 8.7275 8.7168 8.6645 8.6459 8.6368 

2.4 6.8482 6.7882 6.7368 6.7245 6.7148 6.6844 6.6442 6.6362 

2.6 4.8453 4.7854 4.7542 4.7220 4.7133 4.6631 4.6432 4.6357 

2.8 3.8426 3.7828 3.7521 3.7219 3.7198 3.6620 3.6424 3.6354 

3 2.8402 2.7805 2.7502 2.7178 2.7108 2.6612 2.6418 2.6352 

Table 8 - 2: ARL values for individual Shewhart-type control charts for the 

Logarithmic distribution 

 

Comparison of Tables 8-1 and 8-2 reveals the improvement in the 

performance of the chart when the skewness corrected limits are used instead 

of the probability-based ones. The difference in ARL values between 

Shewhart-type and probability-type control charts is greater than 5% for all 

shift sizes of magnitude equal or greater than k=1.6. Comparison of the ARL 

values for positive and negative shifts shows that, although the control charts 
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can detect both positive and negative shifts well, there are some slight 

differences with most values being a little higher for the negative shifts than 

for the corresponding positive ones. This holds for either the probability-type 

or the Shewhart-type control chart. The differences (in either direction) that 

are above 5% concern the shifts corresponding to large values of k for large 

values of the parameter θ of the logarithmic distribution for the probability-

type control charts and values of k between 0.6 and 1.8 for the Shewhart-type 

control charts. 

 

 

8.5 Construction of the EWMA Control Charts for Individual Observations 

from the Logarithmic distribution 

When monitoring individual observations, besides Shewhart-type control 

charts we need to construct EWMA charts, too, as a better alternative (see 

Section 2.14.2). So it is useful to also construct EWMA control charts for the 

Logarithmic distribution. In order to do that, we need to remember the general 

form (2-3) for constructing EWMA control charts and the plotting statistic in 

equation (2-2), bearing in mind that the constant λ represents the weight 

assigned to each of the past values and needs to be smaller for detecting 

smaller shifts. The control limits in (2-3) will be constructed here using the 

skewness correction in Chan and Cui (2003), since the distribution of concern 

is asymmetric and, as also mentioned in Weiß and Atzmüller (2011), this is an 

easily applied method for taking the distribution’s skewness into 

consideration and leads to a better ARL performance of the resulting control 

chart. In the next section, where we deal with the performance investigation 

of the constructed control chart, we will further demonstrate the need for this 

adjustment considering the asymmetry of the distribution and the 

improvement in the performance of the chart when using the skewness 

correction contrary to not using it but using the traditionally used symmetric 

EWMA control limits instead. 

The construction procedure for the individual Logarithmic control charts 

will be the following: in equation (2-3) we will replace L by L plus *
4c , where 
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( )
( )

( )
*
4 2

4
sk

3

1 0.2 sk

x
c x

x

  
=

 +  

 is the skewness correction and sk(X) is the 

distribution’s skewness coefficient. EWMA control charts for individual 

observations from the Logarithmic distribution are constructed using the mean 

of the Logarithmic distribution, which is computed using equation (4-3), its 

standard deviation (the square root of the quantity computed by equation (4-

4)) and the distribution’s skewness coefficient computed from equation (4-5). 

This means that the skewness correction for the Logarithmic distribution will 

be 

( )
( )( ) ( )

( ) ( ) ( )

312 2 2 2
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4 23 2 2

1 3 2 14 1
,   where  

3 ln 11 0.2 1 3 2
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−− + + − +
        (8-10) 

As a result, the central line (CL) and the upper and lower control limits (UCL 

and LCL, respectively) of the Logarithmic EWMA control chart are as 

follows. 
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  = − + + − + − −      − − − − −−  

= −
− −

 
  = − + + − + − −      − − − − −−  

   (8-11) 

 

The plotting statistic will be the one in equation (2-2) with xi being the 

observations from our Logarithmic distribution. 

 

 

8.6 Performance Investigation for the EWMA Control Charts for Individual 

Observations from the Logarithmic Distribution 

We will investigate the performance of the control chart constructed 

above, using the ARL, following Lucas and Saccucchi (1990). In other words, 

the ARL of the EWMA control chart will be computed through the Markov 
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chain method and discretization of the control statistic. More specifically, 

according to this method, the region between the upper and lower control 

limits is divided into 2m+1 subintervals. Each subinterval Sj (j=1,2,…,2m+1) 

is taken to be represented by its midpoint sj and then if δ is the half size of 

each subinterval, which means that 
( )2 2 1

UCL LCL
δ

m

−
=

+
, then whenever 

j i js δ Z s δ− < < +  the process is in a transient state. Otherwise, the process is 

in the absorbing state. Therefore, the in-control transition probability from 

one transient state Sj to another transient state Sk is given by 

( )
( )

( )( )
( ) ( )

1

1

1 11

1 1
, , 1,2, , 2 1

kj i k i j

k i k i j

k i i k i j

k j k j
i

p P Z S Z S

P s δ Z s δ Z s

P s δ λX λ Z s δ Z s

s δ λ s s δ λ s
P X j k m

λ λ

−

−

− −

= ∈ ∈

= − < < + =

= − < + − < + =

− − − + − − 
= < < = + 

 
…

 (8-12) 

The ith-stage transition probability matrix Pi is, then, defined as 

( )
1

i i
i

T

 −
=   
 

R I R 1
P

0
, where R is the (2m+1, 2m+1) matrix of the transient 

probabilities pkj mentioned in (8-12) above and 0T=(0,0,…,0), i.e. 0T is the 

transpose of 0 which is a vector of 2m+1 zeros. The ith-stage transition 

probability matrix Pi contains the probabilities that the control statistic goes 

from one transient state to another in i steps and is used for the computation 

of the ARL of the EWMA control chart, which is given by 

 

( ) 1TARL
−

= −p I R 1      (8-13) 

 

where ( )1 1, , ,
T

m m m mp p p p− − + −=p …  is the vector of the initial probabilities 

related to the 2m+1 transient states. 

For the transient probabilities in (8-12) the cumulative distribution 

function for the Logarithmic distribution, i.e. equation (4-2), is going to be 

used with either in-control parameter for the case of computing the in-control 

ARL value or the out-of-control parameter for the case of the out-of-control 

ARL, with the asymptotic control limits as computed with equations (8-11) 
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and (8-10) for i→∞ . This means that the control limits that will be used for 

the computation of ARL will be of the form 

 

 

( )
( )

( ) ( ) ( )
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( ) ( ) ( )
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4 2
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1 1
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 = − + + − +    − − − − −−  

  

  (8-14) 

 

 

For the out-of-control case we assume that the shift of the process mean is in 

terms of the process standard deviation. In other words, the new mean is 

assumed to be of the form 1 0µ µ kσ= + . Using this relationship, the new 

parameter of the distribution with the shifted mean will be computed by 

combining equations (4-3) and (4-4) and solving in terms of its parameter, as 

for the Shewhart-type control chart. 

Using those formulae we get Tables 8-3, 8-4, 8-5, which show the in-

control and out-of-control ARL values for the individual EWMA control chart 

for the Logarithmic distribution for various values of the parameter θ of the 

distribution of concern and for various values of k which shows the shift of 

the process mean in terms of the process standard deviation. More 

specifically, Table 8-3 contains the ARL values for λ=0.3 and L=6.876 

(combination which gives in-control ARL value close to 370) for various 

values of the m for the subintervals into which the region between the upper 

and lower control limits is divided, as mentioned earlier. From this table we 

see that when keeping λ and L the same, the ARL value increases as the 

number m of subintervals increases and the rate of this increase is high until 

the value of about m=180, above which ARL increases very slightly. Thus, 

the suggested value of m for the computation of ARL in the formulae above is 

m=180. Therefore, Tables 8-4 and 8-5 show the ARL values for m=180 for 

various values of L and λ for positive and negative shifts, respectively. 
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Comparing those two tables, we observe that the proposed control chart 

can detect both positive and negative shifts well, but there are some slight 

differences in ARL values between those two tables, with most of the 

differences being in favour of the ARL values for negative shifts. In general, 

for values of the parameter θ of the logarithmic distribution equal to or 

greater than 0.45 the ARL value is bigger for the negative shifts. This is 

sensible, because the larger the value of the parameter the easier it is to get 

out of control with a positive shift than for a negative one, and vice-versa. 

This is probably the reason that the differences (in either direction) are above 

5% for large shifts for both very small and very large values of the parameter 

θ. 

The need for using the skewness correction for the construction of the 

individual EWMA control charts for the Logarithmic distribution is justified 

by the fact that if we had used the traditional symmetric EWMA control limits 

without the skewness correction term ( )*
4c x  in equation (8-14) above, the 

ARL performance of the chart would have been worse, as can be seen when 

comparing the results in Table 8-6 for the case of not using the skewness 

correction term against the results in Table 8-4 for the case of using it. It 

should be noted that the ARL values in Table 8-6 have resulted from using the 

same values for λ and L as the ones in Table 8-4 for the shake of making 

comparisons between the two tables easier. The differences between the ARL 

values in Tables 8-4 and 8-6 are almost all higher than 5%. The only values 

for which the difference is less than 5% concern the values of k=±0.2 for all 

the values of the parameter θ and the values of k=±0.8 for values of θ equal to 

or greater than 0.45. Comparison is similar for the case of negative shifts so 

the corresponding table is omitted for space reasons. 
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m k θ=0.12 θ=0.26 θ=0.39 θ=0.45 θ=0.54 θ=0.68 θ=0.73 θ=0.84 

0 370.7242 370.1580 370.0642 370.5489 370.2684 370.3737 370.5414 370.2848 

0.2 54.7255 54.5730 54.5431 54.4036 53.3154 53.3024 53.1895 52.0882 

0.5 17.9975 17.9604 17.6369 17.6223 17.5754 17.4355 17.4012 17.1727 

1 10.8128 10.6919 10.6886 10.5312 10.4403 10.4393 10.3080 9.1734 

1.5 7.8810 7.7591 7.7535 7.6079 7.5184 7.5121 7.3730 6.2208 

2 5.8441 5.8417 5.8288 5.6872 5.5784 5.4332 5.3784 4.2635 

2.5 4.9991 4.9046 4.8848 4.7371 4.6400 4.6370 4.4845 3.3017 

80 

3 3.7031 3.6882 3.5343 3.5312 3.4575 3.3906 3.3357 3.0454 

0 370.6871 370.1580 370.0642 370.7770 370.2684 370.4377 370.6481 370.3284 

0.2 54.7980 54.6887 54.6826 54.4822 53.3637 53.3023 53.1895 52.0882 

0.5 18.4818 18.4206 18.4087 18.1209 18.0617 18.0303 18.0073 18.0055 

1 10.9336 10.8272 10.7848 10.6239 10.5082 10.4400 10.3080 9.1735 

1.5 8.0378 7.9175 7.8684 7.7123 7.5909 7.5180 7.3731 6.2212 

2 6.0212 5.9975 5.9315 5.7937 5.5775 5.4648 5.4334 4.2642 

2.5 5.0916 5.0648 5.0050 4.8618 4.7281 4.6484 4.4848 3.3030 

100 

3 3.7843 3.7009 3.6484 3.6226 3.5318 3.5202 3.3375 3.2486 

0 371.1896 371.1684 371.0754 371.8030 371.2777 371.4481 371.6842 371.3378 

0.2 55.2030 54.8466 54.7237 54.4848 53.3734 53.3240 53.2122 52.1098 

0.5 18.7597 18.6205 18.6064 18.4507 18.3202 18.2573 18.2355 18.0428 

1 12.3910 12.0348 10.9323 10.6875 10.5719 10.5039 10.3717 9.2372 

1.5 8.5089 8.1448 8.0286 7.7848 7.6624 7.5799 7.4454 6.2846 

2 6.5172 6.2454 6.1254 5.8737 5.6693 5.5457 5.5144 4.3452 

2.5 5.6128 5.3350 5.2120 4.9543 4.8218 4.7321 4.5786 3.3954 

120 

3 3.8957 3.8736 3.8706 3.7916 3.7754 3.6212 3.6093 3.4268 

0 371.6893 371.6480 371.5442 372.2846 371.7573 371.9377 372.1737 371.8284 

0.2 55.7042 55.3377 55.2250 54.9950 53.8866 53.8252 53.7123 52.6120 

0.5 18.8460 18.7332 18.6845 18.5284 18.3621 18.3482 18.2488 18.1215 

1 12.8771 12.5209 12.4084 12.1737 12.0580 10.9901 10.8488 9.7234 

1.5 8.9935 8.6304 8.5142 8.2704 8.1480 8.0755 7.9312 6.7784 

2 7.0015 6.7288 6.6100 6.3572 6.1535 6.0288 5.9984 4.8286 

2.5 6.0227 5.7354 5.6228 5.3643 5.2322 5.1528 4.9889 3.8064 

150 

3 4.3778 4.3643 4.3630 4.2848 4.2688 4.1228 4.1018 3.9193 

0 371.9793 371.9580 371.8642 372.5936 372.0684 372.2377 372.4848 372.1284 

0.2 57.0042 55.6378 55.5250 55.2840 54.1866 54.1251 54.0123 52.9120 

0.5 18.8727 18.7504 18.7086 18.5734 18.4186 18.3552 18.2845 18.1439 

1 12.8203 12.7079 12.4842 12.3573 12.2893 12.1754 12.1573 10.0228 

1.5 9.2842 8.9312 8.8148 8.5710 8.4487 8.3757 8.2319 7.0789 

2 7.3012 7.0286 6.9096 6.6488 6.4526 6.3288 6.2884 5.1284 

2.5 6.4843 6.1252 5.9932 5.7345 5.6020 5.5214 5.3579 4.1759 

180 

3 4.6875 4.6645 4.6625 4.5722 4.5484 4.4122 4.4012 4.2188 

0 372.3793 372.3580 372.2642 372.9936 372.4684 372.6377 372.8737 372.5284 

0.2 57.3932 57.0278 55.9150 55.6840 54.5754 54.5151 54.4023 53.3010 

0.5 18.9878 18.8682 18.8246 18.7557 18.6288 18.5439 18.4355 18.2428 

1 12.8736 12.7578 12.6897 12.5770 12.5577 12.2207 12.1084 10.4232 

1.5 9.6953 9.3312 9.2150 8.9712 8.8488 8.7759 8.6320 7.4890 

2 7.7019 7.4303 7.3104 7.0573 6.8432 6.7304 6.6991 5.5289 

2.5 6.8934 6.5153 6.3935 6.1246 6.0021 5.9315 5.7590 4.5750 

200 

3 5.0879 5.0648 5.0630 4.9825 4.9688 4.8124 4.8012 4.6190 

0 372.5793 372.5580 372.4642 373.1936 372.6684 372.8487 373.0737 372.7284 

0.2 57.5932 57.2278 57.1250 55.8840 54.7754 54.7151 54.6023 53.5010 

0.5 18.9954 18.9382 18.9008 18.8272 18.7375 18.5939 18.5412 18.5175 

1 12.9572 12.8891 12.7754 12.7571 12.4201 12.3077 12.0730 10.6226 

1.5 9.8937 9.5306 9.4144 9.1705 9.0482 8.9753 8.8414 7.6884 

2 7.9015 7.6287 7.5099 7.2579 7.0527 6.9379 6.8986 5.7284 

2.5 7.0932 6.7160 6.5932 6.3353 6.2027 6.1222 5.9597 4.7757 

220 

3 5.2881 5.2648 5.2633 5.1827 5.1684 5.0127 5.0017 4.8193 

0 372.6893 372.6480 372.5442 373.2846 372.7573 372.9377 373.1737 372.8284 

0.2 57.7042 57.3378 57.2250 55.9950 54.8866 54.8252 54.7123 53.6120 

0.5 19.0828 18.9578 18.9361 18.8418 18.8275 18.7506 18.6930 18.5200 

1 12.9898 12.8759 12.8484 12.5206 12.4082 12.1735 12.0577 10.7231 

1.5 9.9935 9.6304 9.5141 9.2703 9.1480 9.0754 8.9312 7.7782 

2 8.0021 7.7304 7.6104 7.3573 7.1539 7.0305 6.9993 5.8400 

2.5 7.1931 6.8159 6.6930 6.4352 6.3027 6.2230 6.0596 4.8754 

240 

3 5.3775 5.3643 5.3624 5.2843 5.2684 5.1221 5.1010 4.9186 

Table 8 - 3: ARL values for individual EWMA control charts for the Logarithmic 

distribution (λ=0.3 and L=4.9802) 
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λ, L k θ=0.12 θ=0.26 θ=0.39 θ=0.45 θ=0.54 θ=0.68 θ=0.73 θ=0.84 

0 370.1814 370.1571 370.0643 370.7935 370.2684 370.4390 370.5755 370.3286 

0.2 55.1846 54.8161 54.7032 54.4826 53.3641 53.3026 53.1897 52.0884 

0.4 20.2082 19.8488 19.7379 19.5101 18.4008 18.3481 18.2207 17.1209 

0.6 14.9948 14.8893 14.7788 14.5489 14.4378 14.3734 14.2512 14.1228 

0.8 12.9320 12.8207 12.5780 12.4844 12.4081 12.2879 12.2808 12.1542 

1 10.3340 9.9757 9.8632 9.6268 9.5104 9.4421 9.3096 8.1750 

1.5 8.4508 8.0842 7.9646 7.7195 7.5961 7.5228 7.3779 6.2243 

2 6.4595 6.1822 6.0616 5.8041 5.5966 5.4843 5.4404 4.2698 

2.5 5.4646 5.2693 5.1454 4.8793 4.7542 4.6628 4.5070 3.6124 

λ=0.05 

L=3.061 

3 3.8441 3.8175 3.8048 3.7350 3.7215 3.5488 3.5351 3.3593 

0 370.1807 370.1481 370.0642 370.7932 370.2686 370.4379 370.6953 370.3284 

0.2 55.1828 54.8157 54.7028 54.4825 53.3640 53.3025 53.1896 52.0882 

0.4 20.2072 19.8482 19.7282 19.5098 18.4005 18.3379 18.2206 17.1206 

0.6 14.9935 14.8884 14.7779 14.5484 14.4373 14.3730 14.2509 14.1424 

0.8 12.9306 12.8193 12.5971 12.4825 12.4075 12.2860 12.2803 12.1534 

1 10.3312 9.9736 9.8610 9.6253 9.5090 9.4409 9.3089 8.1737 

1.5 8.4445 8.0781 7.9615 7.7159 7.5936 7.5198 7.3780 6.2215 

2 6.4482 6.1721 6.0516 5.7970 5.5904 5.4875 5.4366 4.2648 

2.5 5.5343 5.2527 5.1280 4.8646 4.7327 4.6425 4.4804 3.6041 

λ=0.08 

L=3.375 

3 3.8196 3.7935 3.7887 3.7061 3.7052 3.5379 3.5377 3.3391 

0 370.1801 370.1680 370.0642 370.7939 370.2673 370.4378 370.6841 370.3284 

0.2 55.1823 54.8153 54.7025 54.4823 53.3639 53.3023 53.1895 52.0882 

0.4 20.2064 19.8486 19.7379 19.5096 18.4002 18.3375 18.2203 17.1205 

0.6 14.9919 14.8877 14.7773 14.5489 14.4368 14.3725 14.2504 14.1222 

0.8 12.9193 12.8184 12.5964 12.4826 12.4068 12.2845 12.2796 12.1531 

1 10.3393 9.9719 9.8696 9.6242 9.5077 9.4399 9.3077 8.1733 

1.5 8.4401 8.0754 7.9575 7.7135 7.5796 7.5175 7.3734 6.2204 

2 6.4395 6.1645 6.0461 5.7937 5.5752 5.4620 5.4319 4.2628 

2.5 5.5224 5.2424 5.1204 4.8608 4.7243 4.6459 4.4843 3.6006 

λ=0.10 

L=3.579 

3 3.8052 3.7816 3.7771 3.6969 3.6884 3.5279 3.5180 3.3341 

0 370.1795 370.1680 370.0752 370.7916 370.2684 370.4377 370.6848 370.3282 

0.2 55.1816 54.8148 54.7022 54.4821 53.3637 53.3023 53.1895 52.0882 

0.4 20.2057 19.8481 19.7375 19.5093 18.4001 18.3375 18.2203 17.1205 

0.6 14.9914 14.8869 14.7754 14.5373 14.4364 14.3723 14.2503 14.1422 

0.8 12.9182 12.8284 12.5755 12.4823 12.4064 12.2840 12.2793 12.1531 

1 10.3272 9.9702 9.8682 9.6228 9.5071 9.4395 9.3075 8.1732 

1.5 8.4362 8.0710 7.9557 7.7107 7.5984 7.5163 7.3727 6.2203 

2 6.4327 6.1597 6.0412 5.7878 5.5951 5.4699 5.4306 4.2626 

2.5 5.5122 5.2337 5.1230 4.8633 4.7212 4.6427 4.4812 3.6003 

λ=0.12 

L=3.793 

3 3.8034 3.7726 3.7715 3.6934 3.6848 3.5250 3.5077 3.3336 

0 370.1781 370.1578 370.0642 370.7919 370.2681 370.4375 370.6845 370.3281 

0.2 55.1803 54.8140 54.7017 54.4816 53.3633 53.3019 53.1891 52.0882 

0.4 20.2041 19.8469 19.7366 19.5086 18.3995 18.3369 18.2196 17.1205 

0.6 14.9893 14.8753 14.7754 14.5463 14.4355 14.3714 14.2591 14.1422 

0.8 12.9360 12.8157 12.5730 12.4808 12.4048 12.2804 12.2775 12.1531 

1 10.3236 9.9682 9.8460 9.6208 9.5051 9.4373 9.3048 8.1732 

1.5 8.4395 8.0754 7.9514 7.7066 7.5753 7.5121 7.3688 6.2203 

2 6.4218 6.1505 6.0341 5.7812 5.5772 5.4431 5.4227 4.2625 

2.5 5.5964 5.2205 5.1026 4.8436 4.7123 4.6326 4.4800 3.6001 

λ=0.15 

L=4.301 

3 3.7757 3.7595 3.7575 3.6889 3.6439 3.5102 3.4848 3.3352 

0 370.1775 370.1578 370.0648 370.7912 370.2680 370.4369 370.5735 370.3275 

0.2 55.1786 54.8140 54.7003 54.4808 53.3624 53.3018 53.1890 52.0872 

0.4 20.2020 19.8455 19.7348 19.5073 18.3980 18.3366 18.2193 17.1088 

0.6 14.9868 14.8824 14.7728 14.5446 14.4334 14.3709 14.2488 14.1284 

0.8 12.9335 12.8123 12.5715 12.4689 12.4042 12.2797 12.2771 12.1590 

1 10.3193 9.9639 9.8415 9.6175 9.5012 9.4363 9.3041 8.1687 

1.5 8.4218 8.0593 7.9532 7.7005 7.5771 7.5100 7.3662 6.2105 

2 6.4098 6.1409 6.0215 5.7712 5.5737 5.4419 5.4200 4.2578 

2.5 5.5797 5.2069 5.0840 4.8288 4.6957 4.6275 4.4669 3.4802 

λ=0.20 

L=4.968 

3 3.7395 3.7248 3.6821 3.6482 3.6322 3.5048 3.4870 3.3082 

Table 8 - 4: ARL values for individual EWMA control charts for the 

Logarithmic distribution (m=180) for various positive shifts 
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λ, L k θ=0.12 θ=0.26 θ=0.39 θ=0.45 θ=0.54 θ=0.68 θ=0.73 θ=0.84 

0 370.1814 370.1571 370.0643 370.7935 370.2684 370.4390 370.5755 370.3286 

-0.2 52.6218 53.7064 53.8126 53.8754 54.9891 55.2428 55.3712 55.8000 

-0.4 17.4893 18.5440 18.6848 18.7378 19.8618 20.1484 20.2873 20.8064 

-0.6 14.6828 14.7351 14.8484 14.9377 15.0717 15.4223 15.6125 15.9328 

-0.8 12.4373 12.5253 12.5416 12.5480 12.6930 12.7171 12.7800 12.9578 

-1 8.3481 9.3532 9.5024 9.6154 9.8684 10.1970 10.6159 10.9579 

-1.5 6.5751 7.5754 7.9160 8.1599 8.2263 8.2873 8.3934 8.4223 

-2 4.6264 5.6930 5.8448 6.0062 6.0937 6.2122 6.2755 6.3735 

-2.5 3.5128 4.8935 4.9312 4.9791 5.0975 5.1618 5.1893 5.3608 

λ=0.05 

L=3.061 

-3 3.3419 3.4840 3.5402 3.6428 3.6887 3.8014 3.8736 3.9022 

0 370.1807 370.1481 370.0642 370.7932 370.2686 370.4379 370.6953 370.3284 

-0.2 52.5959 53.6805 53.7877 53.8486 54.9632 55.2168 55.3451 55.7731 

-0.4 17.4598 18.5364 18.6443 18.7093 19.8424 20.1286 20.2684 20.7734 

-0.6 14.6193 14.6816 14.7937 14.8648 15.0079 15.3580 15.5484 15.8437 

-0.8 12.4089 12.4254 12.5328 12.5593 12.6843 12.6987 12.7712 12.9370 

-1 8.3157 9.3199 9.4691 9.5721 9.8440 10.0868 10.5519 10.8484 

-1.5 6.5480 7.5484 7.8887 8.0757 8.1273 8.2603 8.2873 8.3202 

-2 4.6840 5.7515 5.8403 6.0222 6.1222 6.2127 6.2731 6.3579 

-2.5 3.5931 4.9373 4.9573 5.0182 5.1288 5.1802 5.2022 5.2640 

λ=0.08 

L=3.375 

-3 3.2487 3.4848 3.5009 3.5428 3.6025 3.7548 3.8120 3.8401 

0 370.1801 370.1680 370.0642 370.7939 370.2684 370.4378 370.6841 370.3284 

-0.2 52.5432 53.6488 53.7550 53.8169 54.9304 55.1848 55.3121 55.7395 

-0.4 17.4416 18.5184 18.6261 18.6912 19.8141 20.1002 20.2489 20.7541 

-0.6 14.6250 14.6872 14.7996 14.8717 15.0127 15.3634 15.5521 15.8401 

-0.8 12.3737 12.4373 12.5487 12.5731 12.6991 12.7070 12.7861 12.9637 

-1 8.3273 9.3314 9.4806 9.5935 9.8452 10.0689 10.5486 10.8064 

-1.5 6.5248 7.5252 7.8643 8.0346 8.0884 8.2288 8.2315 8.2648 

-2 4.6159 5.6823 5.7579 5.9520 6.0234 6.1245 6.1771 6.2575 

-2.5 3.5350 4.8412 4.8780 4.9325 5.0436 5.0935 5.0962 5.1754 

λ=0.10 

L=3.579 

-3 3.2489 3.5084 3.5157 3.5484 3.6169 3.7527 3.8244 3.8412 

0 370.1795 370.1680 370.0752 370.7916 370.2684 370.4377 370.6848 370.3282 

-0.2 52.5734 53.6489 53.7751 53.8481 54.9515 55.2048 55.3330 55.7598 

-0.4 17.4542 18.5310 18.6377 18.7037 19.8268 20.1226 20.2610 20.7548 

-0.6 14.6421 14.7143 14.8268 14.8988 15.0407 15.3900 15.5780 15.8693 

-0.8 12.3591 12.4579 12.5500 12.5964 12.7214 12.7236 12.8084 12.9860 

-1 8.3344 9.3373 9.4877 9.6006 9.8418 10.0543 10.5434 10.7822 

-1.5 6.5557 7.5541 7.8961 8.0486 8.1023 8.2275 8.2595 8.2750 

-2 4.6317 5.6981 5.7712 5.9341 6.0210 6.1244 6.1759 6.2516 

-2.5 3.5284 4.8407 4.8688 4.9175 5.0208 5.0725 5.0754 5.1482 

λ=0.12 

L=3.793 

-3 3.2068 3.4842 3.4869 3.5312 3.5796 3.7377 3.7993 3.8264 

0 370.1781 370.1578 370.0642 370.7919 370.2681 370.4375 370.6845 370.3281 

-0.2 52.5541 53.6375 53.7357 53.8077 54.9312 55.1733 55.3020 55.7278 

-0.4 17.4809 18.5577 18.6443 18.7304 19.8432 20.1279 20.2868 20.7878 

-0.6 14.6464 14.7086 14.8210 14.8931 15.0348 15.3735 15.5701 15.8406 

-0.8 12.2680 12.4153 12.5284 12.5557 12.6806 12.6848 12.7577 12.9350 

-1 8.3620 9.3641 9.5153 9.6282 9.8787 10.0508 10.5543 10.7548 

-1.5 6.5173 7.5177 7.8482 7.9931 8.0373 8.1546 8.2075 8.2103 

-2 4.6431 5.7095 5.7509 5.9320 6.0126 6.1277 6.1607 6.2319 

-2.5 3.5536 4.8425 4.8714 4.9543 5.0282 5.0482 5.0712 5.2426 

λ=0.15 

L=4.301 

-3 3.2205 3.5012 3.5317 3.5484 3.6063 3.7559 3.8206 3.8484 

0 370.1775 370.1578 370.0648 370.7912 370.2680 370.4369 370.5735 370.3275 

-0.2 52.6099 53.6935 53.8016 53.8632 54.9754 55.2284 55.3571 55.7815 

-0.4 17.4800 18.5468 18.6444 18.7193 19.8421 20.1269 20.2737 20.7726 

-0.6 14.6377 14.6999 14.8123 14.8845 15.0260 15.3730 15.5579 15.8280 

-0.8 12.2096 12.4007 12.5204 12.5468 12.6455 12.6817 12.7577 12.9357 

-1 8.3248 9.3289 9.4881 9.5907 9.8402 9.9880 10.4805 10.6906 

-1.5 6.5907 7.5910 7.9302 8.0348 8.0918 8.1884 8.2552 8.2693 

-2 4.6412 5.7277 5.7539 5.9359 6.0086 6.1053 6.1601 6.2245 

-2.5 3.5487 4.8412 4.8633 4.8960 4.9937 5.0284 5.0484 5.1228 

λ=0.20 

L=4.968 

-3 3.1284 3.4124 3.4537 3.4641 3.5091 3.6844 3.7377 3.7577 

Table 8 - 5: ARL values for individual EWMA control charts for the 

Logarithmic distribution (m=180) for various negative shifts 
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λ, L k θ=0.12 θ=0.26 θ=0.39 θ=0.45 θ=0.54 θ=0.68 θ=0.73 θ=0.84 

0 360.1812 360.1571 360.0643 360.7935 360.2684 360.4370 360.6845 360.3284 

0.2 57.7845 57.4160 57.3031 57.0726 55.9641 55.9026 55.7897 54.6884 

0.4 22.4079 22.0487 21.9378 21.7101 20.6008 20.5370 20.4207 19.3109 

0.6 16.7935 16.6893 16.5787 16.3488 16.2377 16.1733 16.0512 15.9328 

0.8 14.4317 14.3205 14.0879 12.9733 12.9080 12.7873 12.7807 12.6442 

1 12.5333 12.1753 12.0628 10.8264 10.7102 10.6419 10.5096 9.3737 

1.5 9.4481 9.0819 8.9648 8.7187 8.5954 8.5221 8.3777 7.2242 

2 6.9557 6.6893 6.5595 6.3025 6.0950 5.9732 5.9301 4.7596 

2.5 6.0489 5.6444 5.5418 5.2754 5.1422 5.0600 4.8963 3.7122 

λ=0.05 

L=3.061 

3 4.0364 4.0120 4.0025 3.9348 3.9171 3.7364 3.7307 3.5488 

0 360.1802 360.1580 360.0642 360.7930 360.2684 360.4378 360.6842 360.3284 

0.2 57.7824 57.4154 57.3027 57.0723 55.9639 55.9024 55.7895 54.6882 

0.4 22.4064 22.0487 21.9370 21.7096 20.6004 20.5378 20.4204 19.3106 

0.6 16.7936 16.6878 16.5775 16.3480 16.2371 16.1728 16.0505 15.9322 

0.8 14.4286 14.3187 14.0864 12.9732 12.9072 12.7846 12.7797 12.6432 

1 12.5284 12.1720 12.0601 10.8243 10.7084 10.6406 10.5080 9.3734 

1.5 9.4400 9.0735 8.9593 8.7126 8.5912 8.5188 8.3739 7.2208 

2 6.9378 6.6445 6.5482 6.2848 6.0886 5.9648 5.9328 4.7535 

2.5 5.9309 5.6421 5.5217 5.2605 5.1286 5.0484 4.8848 3.7018 

λ=0.08 

L=3.375 

3 4.0044 3.9841 3.9828 3.9015 3.8861 3.7300 3.7175 3.5357 

0 360.1791 360.1580 360.0642 360.7935 360.2684 360.4377 360.6848 360.3284 

0.2 57.7812 57.4148 57.3021 57.0720 55.9637 55.9023 55.7895 54.6882 

0.4 22.4053 22.0488 21.9372 21.7091 20.6001 20.5375 20.4203 19.3105 

0.6 16.7908 16.6864 16.5752 16.3482 16.2364 16.1723 16.0503 15.9322 

0.8 14.4275 14.3168 14.0843 12.9723 12.9063 12.7822 12.7793 12.6431 

1 12.5260 12.1693 12.0573 10.8226 10.7071 10.6393 10.5073 9.3732 

1.5 9.4335 9.0690 8.9537 8.7099 8.5782 8.5157 8.3725 7.2203 

2 6.9377 6.6440 6.5377 6.2863 6.0842 5.9593 5.9302 4.7525 

2.5 5.9042 5.6278 5.5075 5.2508 5.1203 5.0412 4.8806 3.7000 

λ=0.10 

L=3.579 

3 3.9841 3.9712 3.9637 3.8902 3.8635 3.7240 3.7041 3.5332 

0 360.1773 360.1580 360.0642 360.7919 360.2681 360.4373 360.6844 360.3281 

0.2 57.7796 57.4141 57.3015 57.0716 55.9633 55.9019 55.7895 54.6882 

0.4 22.4031 22.0469 21.9364 21.7084 20.5993 20.5368 20.4202 19.3105 

0.6 16.7881 16.6842 16.5750 16.3461 16.2354 16.1712 16.0502 15.9321 

0.8 14.4259 14.3151 14.0846 12.9706 12.9048 12.7793 12.7786 12.6430 

1 12.5212 12.1648 12.0551 10.8203 10.7048 10.6371 10.5071 9.3732 

1.5 9.4244 9.0643 8.9373 8.7053 8.5737 8.5126 8.3719 7.2202 

2 6.9128 6.6482 6.5303 6.2786 6.0752 5.9519 5.9371 4.7524 

2.5 5.8840 5.6164 5.4868 5.2397 5.1093 5.0310 4.8789 3.6998 

λ=0.12 

L=3.793 

3 3.9701 3.9544 3.9373 3.8754 3.8454 3.7215 3.6893 3.5328 

0 360.1739 360.1578 360.0642 360.7907 360.2680 360.4372 360.6848 360.3280 

0.2 57.7750 57.4125 57.3006 57.0712 55.9631 55.9018 55.7890 54.6882 

0.4 22.3989 22.0448 21.9351 21.7079 20.5990 20.5364 20.4193 19.3105 

0.6 16.7828 16.6824 16.5732 16.3453 16.2348 16.1708 16.0487 15.9321 

0.8 14.4221 14.3126 14.0825 12.9698 12.9041 12.7770 12.7717 12.6430 

1 12.5124 12.1619 12.0517 10.8186 10.7036 10.6360 10.5040 9.3732 

1.5 9.4093 9.0553 8.9328 8.7021 8.5712 8.5093 8.3648 7.2202 

2 6.8898 6.6341 6.5203 6.2733 6.0726 5.9377 5.9193 4.7523 

2.5 5.9512 5.5968 5.4827 5.2321 5.1031 5.0254 4.8648 3.6998 

λ=0.15 

L=4.301 

3 3.9373 3.9348 3.9312 3.8695 3.7953 3.7028 3.6893 3.5327 

0 360.1682 360.1577 360.0648 360.7879 360.2644 360.4364 360.6816 360.3273 

0.2 57.7702 57.4093 57.2879 57.0703 55.9621 55.9007 55.7889 54.6872 

0.4 22.3933 22.0406 21.9315 21.7064 20.5973 20.5348 20.4193 19.3086 

0.6 16.7736 16.6848 16.5484 16.3432 16.2324 16.1682 16.0484 15.9390 

0.8 14.4148 14.3062 14.0795 12.9644 12.9004 12.7754 12.7516 12.6484 

1 12.4898 12.1526 12.0434 10.8148 10.6990 10.6312 10.5035 9.3680 

1.5 9.3789 9.0393 8.9377 8.6937 8.5728 8.5005 8.3648 7.2089 

2 6.8605 6.6105 6.4890 6.2622 6.0578 5.9350 5.9173 4.7351 

2.5 5.9128 5.5442 5.4539 5.2164 5.0844 5.0068 4.8619 3.6842 

λ=0.20 

L=4.968 

3 3.9361 3.9053 3.8951 3.8454 3.7372 3.6993 3.6486 3.5028 

Table 8 - 6: ARL values for individual EWMA control charts for the Logarithmic 

distribution (m=180) for various positive shifts for the case of not using the skewness 

correction term when constructing the control limits of the chart 
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Additionally, comparing the ARL values for the EWMA in Tables 8-4 

and 8-5 with the ARL values for the Shewhart-type control chart in Table 8-1, 

we can see that the EWMA control chart performs better than the Shewhart-

type control chart for smaller shifts, since for the case of small shifts, the 

EWMA out-of-control ARL values are smaller than the corresponding ARL 

values for the Shewhart-type charts. When it comes to large shifts, however, 

EWMA ARL values are slightly larger and, therefore, make Shewhart-type 

control charts preferable for those cases. 

 

 

8.7 Optimal Choice for the Parameters of the EWMA Control Charts for 

Individual Observations from the Logarithmic distribution 

When constructing an EWMA control chart, there are two parameters 

involved in the way the chart is going to perform, namely the constant λ 

which affects the weight we give to the past values of our observations and 

the value of L which affects the width of the chart’s control limits. Therefore, 

we need to find the combination of the values of those two parameters which 

will lead us to the optimal performance of our control chart. 

As presented in Section 6.7, the optimal design of control charts has 

been addressed a lot in relevant research by minimizing the out-of-control 

value of various performance criteria. Since all the study here has been based 

on ARL (which is the most commonly used performance criterion) the optimal 

design of the EWMA control chart will be done by minimizing the ARL. The 

algorithm applied here is as follows: 

� Step 1: Set the desired in-control ARL value (e.g. ARL0=370) and the 

size of the mean shift k to be detected (e.g. k = 0.5). 

� Step 2: Set an initial value L = 1. 

� Step 3: Vary the parameter λ (e.g. increasing by 0.01) so as λ œ (0,1] 

and (using a nonlinear equation solver) find the value of λ for which 

the ARL0 value in Step 1 is satisfied. 

� Step 4: Calculate the ARL1 value for the particular combination of λ 

and L resulting from Step 3. [The ARL1 value is obtained as described 

in the previous section, using equation (8-12) for the computation of 
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the transient probabilities along with equation (4-2) for the cumulative 

distribution function of the Logarithmic distribution.] 

� Step 5: Increase L by 0.01. 

� Step 6: Repeat Steps 3-5 until the minimum ARL1 value has been 

reached (i.e. until the ARL1 value for L+0.01 is larger than the ARL1 

value for L). 

� Step 7: Keep the combination of λ and L resulting from Step 6 for 

which the smallest ARL1 value is obtained as the desired optimal one 

for the selected shift size in Step 1. 

� Step 8: Repeat Steps 2-7 for all the desired values of shifts to be 

detected (e.g. k = {-3, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3}). 

Application of this algorithm leads to Table 8-7 and Table 8-8 which present 

the optimal combination of values of the two parameters of concern (λ and L) 

of the EWMA chart with the corresponding ARL values for various values of 

the parameter θ of the Logarithmic distribution and various positive and 

negative values, respectively, and various values of k, which shows the shift 

of the process mean in terms of the process standard deviation which we want 

to be detected by the control chart we construct.  
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k θ=0.12 θ=0.26 θ=0.39 θ=0.45 θ=0.54 θ=0.68 θ=0.73 θ=0.84 

(0.8, 3.68) (0.61, 3.97) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.74, 4.04) (0.02, 3.26) 
0.2 

(371.0643, 59.0884) (371.1581, 58.1897) (371.2684, 57.3026) (371.3285, 55.3642) (371.438, 54.4727) (371.6845, 53.7033) (371.7936, 52.8162) (372.1816, 52.1839) 

(0.79, 3.82) (0.61, 3.97) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.74, 4.04) (0.02, 3.26) 
0.4 

(371.0643, 30.1009) (371.1581, 28.2208) (371.2684, 27.3382) (371.3285, 26.4009) (371.438, 25.5103) (371.6845, 24.7391) (371.7936, 23.85) (372.1816, 22.2084) 

(0.81, 3.55) (0.61, 3.97) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.74, 4.04) (0.02, 3.26) 
0.6 

(371.0643, 20.133) (371.1581, 19.2512) (371.2684, 18.3735) (371.3285, 17.438) (371.438, 16.5492) (371.6845, 15.7792) (371.7936, 14.8898) (372.1816, 14.2452) 

(0.8, 3.68) (0.61, 3.97) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.74, 4.04) (0.02, 3.26) 
0.8 

(371.0643, 17.1545) (371.1581, 16.281) (371.2684, 15.4085) (371.3285, 14.4748) (371.438, 14.0885) (371.6845, 12.9327) (371.7936, 12.8212) (372.1816, 12.2886) 

(0.81, 3.55) (0.61, 3.97) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.74, 4.04) (0.02, 3.26) 
1 

(371.0643, 12.1755) (371.1581, 12.0301) (371.2684, 10.4427) (371.3285, 10.1541) (371.438, 9.6275) (371.6845, 8.8643) (371.7936, 8.6979) (372.1816, 8.3351) 

(0.8, 3.68) (0.61, 3.97) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.74, 4.04) (0.02, 3.26) 
1.2 

(371.0643, 10.8961) (371.1581, 10.3384) (371.2684, 9.7542) (371.3285, 9.5467) (371.438, 8.686) (371.6845, 8.4071) (371.7936, 8.0214) (372.1816, 7.9828) 

(0.8, 3.68) (0.61, 3.97) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.74, 4.04) (0.02, 3.26) 
1.4 

(371.0643, 9.5161) (371.1581, 9.366) (371.2684, 8.9089) (371.3285, 8.5814) (371.438, 8.2037) (371.6845, 7.9494) (371.7936, 7.8643) (372.1816, 7.3404) 

(0.8, 3.68) (0.61, 3.97) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.74, 4.04) (0.02, 3.26) 
1.6 

(371.0643, 8.9357) (371.1581, 8.3929) (371.2684, 7.8407) (371.3285, 7.5152) (371.438, 7.1405) (371.6845, 6.9908) (371.7936, 6.9785) (372.1816, 6.8771) 

(0.8, 3.68) (0.61, 3.97) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.74, 4.04) (0.02, 3.26) 
1.8 

(371.0643, 8.4549) (371.1581, 8.3191) (371.2684, 7.7716) (371.3285, 7.4481) (371.438, 7.0763) (371.6845, 6.9312) (371.7936, 6.1506) (372.1816, 6.0226) 

(0.8, 3.68) (0.61, 3.97) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.74, 4.04) (0.02, 3.26) 
2 

(371.0643, 6.4846) (371.1581, 6.2445) (371.2684, 6.0016) (371.3285, 5.9801) (371.438, 5.891) (371.6845, 5.8704) (371.7936, 5.6916) (372.1816, 5.5663) 

(0.8, 3.68) (0.61, 3.97) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.74, 4.04) (0.02, 3.26) 
2.2 

(371.0643, 6.2819) (371.1581, 5.9693) (371.2684, 5.7308) (371.3285, 5.1731) (371.438, 4.8448) (371.6845, 4.8084) (371.7936, 4.7314) (372.1816, 4.6082) 

(0.8, 3.68) (0.61, 3.97) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.74, 4.04) (0.02, 3.26) 
2.4 

(371.0643, 5.3097) (371.1581, 5.1934) (371.2684, 4.9592) (371.3285, 4.7512) (371.438, 4.6874) (371.6845, 4.5453) (371.7936, 4.4697) (372.1816, 4.3481) 

(0.8, 3.68) (0.61, 3.97) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.74, 4.04) (0.02, 3.26) 
2.6 

(371.0643, 5.2272) (371.1581, 4.9169) (371.2684, 4.8867) (371.3285, 4.6804) (371.438, 4.5391) (371.6845, 4.4809) (371.7936, 4.3069) (372.1816, 3.9859) 

(0.8, 3.68) (0.61, 3.97) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.74, 4.04) (0.02, 3.26) 
2.8 

(371.0643, 5.1442) (371.1581, 4.9397) (371.2684, 4.6134) (371.3285, 4.3987) (371.438, 3.9397) (371.6845, 3.9154) (371.7936, 3.8428) (372.1816, 3.7216) 

(0.8, 3.68) (0.61, 3.97) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.73, 4.04) (0.02, 3.26) 
3 

(371.0643, 3.9503) (371.1581, 3.8619) (371.2684, 3.8493) (371.3285, 3.8261) (371.438, 3.7594) (371.6845, 3.6487) (371.7936, 3.5775) (372.1816, 3.4552) 

Table 8 - 7: Optimal combinations (λ*, L*) (row above the dotted lines for each cell) for the individual EWMA control charts for the Logarithmic distribution and the 

corresponding in-control and out-of-control ARL values (ARL0, ARL1) (row below the dotted lines for each cell) for various values of positive shifts k (m=180) 
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k θ=0.12 θ=0.26 θ=0.39 θ=0.45 θ=0.54 θ=0.68 θ=0.73 θ=0.84 

(0.79, 3.82) (0.61, 3.97) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.74, 4.04) (0.02, 3.26) 
-0.2 

(371.0643, 52.2416) (371.1581, 53.1262) (371.2684, 53.8434) (371.3285, 54.5954) (371.438, 55.4089) (371.6845, 57.6627) (371.7936, 58.7912) (372.1816, 59.2201) 

(0.79, 3.82) (0.61, 3.97) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.74, 4.04) (0.02, 3.26) 
-0.4 

(371.0643, 22.3174) (371.1581, 23.8942) (371.2684, 24.8019) (371.3285, 25.867) (371.438, 26.539) (371.6845, 27.6765) (371.7936, 28.8257) (372.1816, 30.3359) 

(0.21, 3.75) (0.66, 4.04) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.74, 4.04) (0.02, 3.26) 
-0.6 

(371.0643, 14.4005) (371.1581, 14.9062) (371.2684, 15.8751) (371.3285, 16.7573) (371.438, 17.6893) (371.6845, 18.7301) (371.7936, 19.9308) (372.1816, 20.6094) 

(0.21, 3.75) (0.57, 4.04) (0.82, 4.04) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.74, 4.04) (0.02, 3.26) 
-0.8 

(371.0643, 12.3007) (371.1581, 12.8424) (371.2684, 12.9569) (371.3285, 14.2428) (371.438, 14.4819) (371.6845, 15.9037) (371.7936, 16.4871) (372.1816, 17.5902) 

(0.21, 3.75) (0.08, 17.65) (0.81, 4.04) (0.72, 4.04) (0.69, 4.04) (0.76, 4.04) (0.02, 5.52) (0.02, 3.26) 
-1 

(371.0643, 8.4509) (371.1581, 8.7046) (371.2684, 8.9538) (371.3285, 9.8268) (371.438, 10.1693) (371.6845, 10.5312) (371.7936, 12.8472) (372.1816, 12.9378) 

(0.21, 3.75) (0.13, 3.7) (0.8, 3.95) (0.72, 4.04) (0.69, 4.04) (0.4, 4.04) (0.41, 4.04) (0.02, 3.26) 
-1.2 

(371.0643, 7.9901) (371.1581, 8.1205) (371.2684, 8.5786) (371.3285, 8.7346) (371.438, 9.5794) (371.6845, 9.7875) (371.7936, 10.8612) (372.1816, 10.9344) 

(0.21, 3.75) (0.13, 3.7) (0.8, 3.95) (0.72, 4.04) (0.52, 4.04) (0.4, 4.04) (0.41, 4.04) (0.02, 3.26) 
-1.4 

(371.0643, 7.3903) (371.1581, 7.8845) (371.2684, 7.9557) (371.3285, 8.539) (371.438, 8.625) (371.6845, 8.9806) (371.7936, 9.571) (372.1816, 9.6875) 

(0.21, 3.75) (0.13, 3.7) (0.8, 3.95) (0.51, 4.04) (0.47, 4.04) (0.4, 4.04) (0.41, 4.04) (0.02, 3.26) 
-1.6 

(371.0643, 6.9012) (371.1581, 6.9878) (371.2684, 6.9973) (371.3285, 7.1732) (371.438, 7.6148) (371.6845, 7.8816) (371.7936, 8.4614) (372.1816, 8.9826) 

(0.21, 3.75) (0.13, 3.7) (0.6, 4.04) (0.47, 3.99) (0.47, 4.04) (0.4, 4.04) (0.41, 4.04) (0.02, 3.26) 
-1.8 

(371.0643, 6.1004) (371.1581, 6.1822) (371.2684, 6.9971) (371.3285, 7.1284) (371.438, 7.5716) (371.6845, 7.7905) (371.7936, 8.4508) (372.1816, 8.6037) 

(0.21, 3.75) (0.68, 4.04) (0.42, 4.04) (0.47, 3.99) (0.47, 4.04) (0.4, 4.04) (0.41, 4.04) (0.02, 3.26) 
-2 

(371.0643, 5.57) (371.1581, 5.7369) (371.2684, 5.8969) (371.3285, 8.9398) (371.438, 5.9924) (371.6845, 6.1804) (371.7936, 6.2612) (372.1816, 6.5178) 

(0.21, 3.75) (0.61, 3.97) (0.42, 4.04) (0.47, 3.99) (0.47, 4.04) (0.4, 4.04) (0.41, 4.04) (0.02, 3.26) 
-2.2 

(371.0643, 4.6251) (371.1581, 4.7502) (371.2684, 4.8248) (371.3285, 4.8691) (371.438, 5.1848) (371.6845, 5.7802) (371.7936, 5.9736) (372.1816, 6.3543) 

(0.21, 3.75) (0.61, 3.97) (0.42, 4.04) (0.47, 3.99) (0.47, 4.04) (0.4, 4.04) (0.41, 4.04) (0.02, 3.26) 
-2.4 

(371.0643, 4.3502) (371.1581, 4.4841) (371.2684, 4.5916) (371.3285, 4.6914) (371.438, 4.7642) (371.6845, 4.96) (371.7936, 5.2003) (372.1816, 5.3371) 

(0.21, 3.75) (0.4, 3.92) (0.42, 4.04) (0.47, 3.99) (0.47, 4.04) (0.4, 4.04) (0.41, 4.04) (0.02, 3.26) 
-2.6 

(371.0643, 3.99) (371.1581, 4.3406) (371.2684, 4.5064) (371.3285, 4.5442) (371.438, 4.6935) (371.6845, 4.8903) (371.7936, 4.9321) (372.1816, 5.2355) 

(0.21, 3.75) (0.4, 3.92) (0.42, 4.04) (0.47, 3.99) (0.47, 4.04) (0.4, 4.04) (0.41, 4.04) (0.02, 3.26) 
-2.8 

(371.0643, 3.7345) (371.1581, 3.8546) (371.2684, 3.9362) (371.3285, 3.9594) (371.438, 4.4046) (371.6845, 4.68) (371.7936, 4.952) (372.1816, 5.1577) 

(0.21, 3.75) (0.4, 3.92) (0.42, 4.04) (0.47, 3.99) (0.47, 4.04) (0.4, 4.04) (0.41, 4.04) (0.02, 3.26) 
-3 

(371.0643, 3.4628) (371.1581, 3.5968) (371.2684, 3.6861) (371.3285, 3.7728) (371.438, 3.8448) (371.6845, 3.8601) (371.7936, 3.8828) (372.1816, 3.9648) 

Table 8 - 8: Optimal combinations (λ*, L*) (row above the dotted lines for each cell) for the individual EWMA control charts for the Logarithmic distribution and the 

corresponding in-control and out-of-control ARL values (ARL0, ARL1) (row below the dotted lines for each cell) for various values of negative shifts k (m=180) 
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8.8 Examples on the Individual Logarithmic Probability-Type, Shewhart-Type 

and EWMA Control Charts 

This section provides illustration of the proposed control charts by means of 

both simulated data generated from the distribution of concern and real data. The 

case of simulated data is presented in Subsection 8.8.1, while the real data case is 

covered in Subsection 8.8.2. 

 

 

8.8.1 Examples with Simulated Data from the Logarithmic Distribution 

The simulation process, for which the R programming language version 

4.0.2 (R Core Team (2020)) has been used, is like this: Suppose we take a sample 

of n = 30 observations from a Logarithmic process as follows. First, we take a 

sample of 15 observations from a Logarithmic process with in-control θ value 

equal to 0.64. Now suppose that a shift of one standard deviation unit occurs in 

the process mean, and after that shift, we draw another set of 15 observations 

from the process. The resulting data set can be seen in Table 8-9. For this data 

set, we construct the individual probability-type Logarithmic control chart shown 

in Figure 8-1, using the most commonly used value for the significance level α = 

0.27%, as mentioned in Section 8-2. 

 

 

1 3 2 1 2 

1 3 2 1 2 

1 2 1 1 3 

4 3 5 4 3 

2 5 4 3 5 

Data Set 1 

3 6 2 5 4 

Table 8 - 9: Data from a Logarithmic process with in control θ = 0.64 and a shift 

of one standard deviation unit in the process mean due to an increasing shift after 

the first 15 observations (gray shading) 
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Figure 8 - 1: Individual probability-type Logarithmic control chart for the data 

set in Table 8-9 with a shift of one standard deviation unit in the process mean 

 

 

As we can see in the chart, there is an increasing trend after the first 15 

observations but control chart doe not detect any out-of-control points indicating 

that an assignable cause has occurred in the process causing its mean to shift to 

an out-of-control level. 

For the same data with one standard deviation unit shift in Table 8-9, we 

now construct the Shewhart-type Logarithmic control chart shown in Figure 8-2, 

using L = 2.682 standard deviations (which gives a desired value of in-control 

ARL close to 370). 
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Figure 8 - 2: Individual Shewhart-type Logarithmic control chart for the data set 

in Table 8-9 with a shift of one standard deviation unit in the process mean 

 

 

As we can see in the chart, there is an increasing trend after the first 15 

observations, but still the control chart does not detect any out-of-control points 

indicating that an assignable cause has occurred in the process causing its mean 

to shift to an out-of-control level. Comparing this chart to the previous one 

(Figure 8-1), we observe similar behaviour of the probability-type chart to the 

Shewhart-type chart with skewness correction but the last 15 observations are 

closer to the upper control limit than they were with the probability-type control 

chart in the previous Figure. 

Using the data set in Table 8-9 for the case of a shift of one standard 

deviation unit, we now construct the individual EWMA Logarithmic control chart 

shown in Figure 8-2, using λ=0.05 and L = 2.64 standard deviations (which gives 

a desired value of in-control ARL close to 370). As we can see, there is an 

increasing trend after the first 15 observations and the control chart gives an 

out-of-control signal after the 19th observation. 
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Figure 8 - 3: Individual EWMA Logarithmic control chart for the data set in 

Table 8-9 with a shift of one standard deviation unit in the process mean 

 

 

Comparing Figure 8-3 with Figure 8-2 we can see now that, as expected, the 

EWMA control chart detects the one-standard deviation-unit shift and as 

expected presents out-of-control points quicker than the corresponding Shewhart-

type control chart. 

 

 

 

8.8.2 Application of the Individual Logarithmic Probability-Type, Shewhart-Type 

and EWMA Control Charts to Real Data 

This section demonstrates the usefulness of the proposed control charts we have 

seen so far in this chapter through application to two real failure data sets. The 

first data set by Gaver and O’Muircheartaigh (1987), representing the number of 

pumps from several systems in a nuclear plant, is presented in Table 8-10. 
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Case No. 1 2 3 4 5 6 7 8 9 10 

Failures 1 4 14 5 22 3 1 19 5 1 

Table 8 - 10: Pump Failure Data Set 

 

First of all, when dealing with any dataset, the normality assumption should 

be checked. Both the Kolmogorov-Smirnov test and the Shapiro-Wilk normality 

test give a p-value<0.05 which is an indication that normality assumption does 

not hold for our data. For the case of the Logarithmic distribution, on the other 

hand, the Kolmogorov-Smirnov test gives an approximate p-value=0.7591 with 

the presence of ties in our data and a p-value=0.5412 without them. In both cases 

p-value is large. Therefore, we do not reject the null hypothesis that our data may 

be coming from the assumed distribution and this is an indication that the 

Logarithmic distribution fits our data well. 

The value of the parameter of our assumed Logarithmic distribution being 

equal to 0.863 is going to be used for the construction of the individual 

probability-type control chart (along with the significance level value α = 0.27%) 

and for the Shewhart-type control chart for our data, in conjunction with the 

value of L=3.8682 standard deviations (for which in-control ARL is close to 

370). The resulting control charts can be seen in Figure 8-4 and Figure 8-5 for 

the probability-type and Shewhart-type control chart, respectively, which show 

all the observations being inside the control limits. This is an indication that the 

number of pump failures is within the expected ranges. 
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Figure 8 - 4: Individual probability-type control chart for the Pump Failure 

dataset assuming Logarithmic distribution for the data 

 

For the construction of the individual EWMA control chart for our data, 

using the same parameter value of the assumed Logarithmic distribution in 

conjunction with the values of λ=0.05 and L=3.6877 standard deviations (for 

which in-control ARL is close to 370), the resulting control chart can be seen in 

Figure 8-6. This chart shows all the observations being inside the control limits, 

which, once again, is an indication that the number of pump failures is within the 

expected ranges. 
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Figure 8 - 5: Individual Shewhart-type control chart for the Pump Failure dataset 

assuming Logarithmic distribution for the data 

 

 

The second data set by Jelinski and Moranda (1972) represents the times 

between successive failures of a piece of software in days. The data set can be 

seen in Table 8-11. As far as the normality assumption is concerned, both the 

Kolmogorov-Smirnov test and the Shapiro-Wilk normality test give a p-

value<0.01 which is a very clear indication that normality assumption does not 

hold for our data. For the case of the Logarithmic distribution, on the other hand, 

the Kolmogorov-Smirnov test gives an approximate p-value= 0.6649 with the 

presence of ties in our data and a p-value= 0.7937 without them. In both cases p-

value is large. Therefore, we do not reject the null hypothesis that our data may 

be coming from the assumed distribution and this is an indication that the 

Logarithmic distribution fits our data well. As we can see, there are a few 

outliers in our dataset. Let’s see if our control charts can detect them. 
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Figure 8 - 6: Individual EWMA control chart for the Pump Failure dataset 

assuming Logarithmic distribution for the data 

 

 

9 12 11 4 7 2 5 8 

5 7 1 6 1 9 4 1 

3 3 6 1 11 33 7 91 

2 1 87 47 12 9 135 258 

16 35       

Table 8 - 11: Software Failure Data Set (days between successive failures) 

 

The value of the parameter of our assumed Logarithmic distribution being 

equal to 0.9372 is going to be used for the construction of the individual 

probability-type control chart (along with the significance level value α = 0.27%) 

and for the Shewhart-type control chart for our data, in conjunction with the 

value of L=3.1846 standard deviations (for which in-control ARL is close to 
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370). The resulting control charts can be seen in Figure 8-7 and Figure 8-8 for 

the probability-type and Shewhart-type control chart, respectively. Both the 

control charts present an increasing trend and some out-of control points, which 

are an indication that the time between failures has increased and, therefore, the 

software has improved. The difference between the two charts is the number of 

out-of-control points detected by each one of them. The probability-type control 

chart detects only two out-of-control points, while the Shewhart-type control 

chart with the skewness correction presents more out-of-control points and 

detects the out-of-control shift sooner. 

 

 

 

 

 

Figure 8 - 7: Individual probability-type control chart for the Software Failures 

dataset assuming Logarithmic distribution for the data 

 

 



 303 

 

Figure 8 - 8: Individual Shewhart-type control chart for the Software Failures 

dataset assuming Logarithmic distribution for the data 

 

 

For the construction of the individual EWMA control chart for our second 

dataset, using the same parameter value of the assumed Logarithmic distribution 

in conjunction with the values of λ=0.05 and L= 2.4182 standard deviations (for 

which in-control ARL is close to 370), the resulting control chart can be seen in 

Figure 8-9. This chart shows all the points from the 24th observation and on to be 

out-of-control, which, once again, is an indication of a quick detection that the 

time between failures of the software has shifted to an increased out-of-control 

level. 
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Figure 8 - 9: Individual EWMA control chart for the Software Failures dataset 

assuming Logarithmic distribution for the data 

 

 

8.9 Control Charts for Individual Observations from the Logarithmic Distribution 

with the Scaled Weighted Variance Method 

For the construction of the control charts for the Logarithmic distribution 

discussed in the previous sections, the skewness correction method in Chan and 

Cui (2003) has been used. Other methods for taking into consideration the 

distribution’s skewness have also been proposed in the literature, such as the 

scaled weighted variance method described in Castagliola (2000), which was 

applied there only for continuous distributions. So it would be interesting to 

present an application of this method for a discrete distribution like the 

Logarithmic distribution. The use of this method will be presented in the 

following subsections for constructing control charts for individual observations 

from the Logarithmic distribution. Their performance will be investigated and 

compared with the performance of the control charts constructed for the 

Logarithmic distribution above. 
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8.9.1. Construction of Shewhart-type Control Charts for Individual Observations 

from a Process Following the Logarithmic distribution Using the Scaled 

Weighted Variance Method 

The process to be followed according to the scaled weighted variance 

method by Castagliola (2000) is described below: the central line will be placed 

at the mean of the Logarithmic distribution, which is computed using equation 

(4-3), while the control limits will be placed around the mean at two different 

multiples of the standard deviation of the Logarithmic distribution, which is 

computed using equation (4-4). These multiples are functions of appropriate 

values of the quantiles of the standardized Normal distribution, the probability of 

type I error or false alarm rate, α, and the cumulative distribution function of the 

Logarithmic distribution, which is computed using equation (4-2). More 

specifically, the lower control limit is defined as 

( )
( ) ( )
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, while the upper control limit is defined 

as 
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= + −  − −   
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As a result, the central line (CL) and the upper and lower control limits 

(UCL and LCL, respectively) of the Logarithmic control chart are as follows. 
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8.9.2. Performance Investigation for the Individual Logarithmic Control Charts 

Constructed With the Scaled Weighted Variance Method 

In order to investigate the performance of the proposed chart we will use the 

ARL0 and ARL1 values computed with equations (8-4) and (8-5) with ( )inF x  

being the cumulative distribution function of the Logarithmic distribution in 

equation (4-2) with in-control parameter, ( )outF x  being the cumulative 

distribution function for the particular distribution with out-of-control parameter 

given by 
( ) ( )
( )

22

0 0

2 2

0

new
new

new

σ µ kσ µ kσ
θ

µ kσ σ

− + + +
=

+ +
. Using the above formulas we obtain 

Table 8-12 which shows the in-control and out-of-control ARL values for the 

individual control chart with scaled weighted variance for the Logarithmic 

distribution for various values of the parameter θ of the distribution of concern 

and for various values of k which, as mentioned before, shows the shift we want 

to detect in the process mean in terms of the process standard deviation. For the 

probability-type control charts we have chosen a significance level equal to the 

most commonly used value of 0.27%, which corresponds to 0.27% probability of 

falsely rejecting the null hypothesis that our process is in control. 

Comparison of Tables 8-12 and 8-2 reveals the improvement in the performance 

of the chart when using the scaled weighted variance instead of the skewness 

correction method. The difference in ARL values between those two control 

charts is greater than 5% for all shift sizes of magnitude equal or greater than 

k=±1.6 and k=-0.6. Comparison of the ARL values for positive and negative 

shifts shows that, although the control chart can detect both positive and negative 

shifts well, there are some differences with almost half of the values being higher 

for the negative shifts than for the corresponding positive ones. The differences 

(in either direction) that are above 5% concern the shifts corresponding to large 

values of k (larger than or equal to ±2.8) combined with the smallest and largest 

values of the parameter θ of the logarithmic distribution. Moreover, the 

differences between the ARL values for positive and negative shifts are higher 

for larger shift magnitudes. 

 

 



 307 

k θ=0.12 θ=0.26 θ=0.39 θ=0.45 θ=0.54 θ=0.68 θ=0.73 θ=0.84 

-3 2.0146 2.0233 2.0321 2.0344 2.0410 2.0505 2.1003 2.2001 

-2.8 3.0148 3.0234 3.0323 3.0370 3.0412 3.0510 3.1012 3.2004 

-2.6 4.0150 4.0235 4.0324 4.0373 4.0416 4.0512 4.1019 4.2007 

-2.4 6.0152 6.0236 6.0328 6.0398 6.0423 6.0512 6.1022 6.2012 

-2.2 8.0154 8.0241 8.0334 8.0434 8.0524 8.0575 8.1032 8.2017 

-2 10.0164 10.0248 10.0335 10.0440 10.0543 10.0648 10.1036 10.2019 

-1.8 12.0196 12.0254 12.0337 12.0448 12.0544 12.0795 12.1037 12.2023 

-1.6 14.0200 14.0264 14.0342 14.0464 14.0546 14.0934 14.1040 14.2025 

-1.4 19.0212 19.0268 19.0368 19.0488 19.0548 19.1042 19.1064 19.2032 

-1.2 28.0228 28.0284 28.0412 28.0481 28.0553 28.1046 28.1080 28.2035 

-1 40.0230 40.0335 40.0414 40.0484 40.0557 40.1050 40.1201 40.2048 

-0.8 57.0289 57.0340 57.0423 57.0488 57.0559 57.1064 57.1223 57.2151 

-0.6 73.0303 73.0354 73.0446 73.0515 73.0596 73.1227 73.1252 73.2200 

-0.4 118.0336 118.0377 118.0488 118.0606 118.0612 118.1223 118.1225 118.2684 

-0.2 202.0421 202.0482 202.0625 202.0682 202.0735 202.1263 202.1804 202.2891 

0 379.0543 379.1052 379.2030 379.2122 379.0486 379.0414 379.0336 379.0284 

0.2 202.3904 202.2097 202.1224 202.0637 202.0542 202.0480 202.0412 202.0355 

0.4 118.3735 118.2093 118.1221 118.0634 118.0557 118.0486 118.0406 118.0350 

0.6 73.3752 73.2090 73.1227 73.0630 73.0554 73.0481 73.0402 73.0346 

0.8 57.3686 57.2086 57.1222 57.0626 57.0548 57.0487 57.0397 57.0341 

1 40.3605 40.2084 40.1209 40.0621 40.0545 40.0482 40.0393 40.0336 

1.2 28.3520 28.2079 28.1204 28.0617 28.0540 28.0468 28.0378 28.0331 

1.4 19.3428 19.2075 19.1200 19.0612 19.0535 19.0462 19.0373 19.0326 

1.6 14.3332 14.2070 14.1095 14.0607 14.0530 14.0457 14.0377 14.0320 

1.8 12.3228 12.2064 12.1091 12.0602 12.0525 12.0452 12.0372 12.0315 

2 10.3126 10.2062 10.1086 10.0597 10.0520 10.0446 10.0364 10.0309 

2.2 8.2893 8.2057 8.1080 8.0593 8.0514 8.0440 8.0360 8.0303 

2.4 6.2861 6.2052 6.1075 6.0575 6.0508 6.0435 6.0354 6.0288 

2.6 4.2712 4.2048 4.1069 4.0571 4.0503 4.0428 4.0348 4.0284 

2.8 3.2544 3.2042 3.1064 3.0575 3.0487 3.0423 3.0343 3.0288 

3 2.2348 2.2036 2.1057 2.0548 2.0481 2.0418 2.0339 2.0284 

Table 8 - 12: ARL values for individual control charts with scaled weighted 

variance for the Logarithmic distribution, with α = 0.0027. 

 

We also observe that the higher the value of the θ parameter the larger the 

ARL value for the negative shifts. This makes sense if one considers that the 

values of the logarithmic distribution with a higher θ parameter value are also 

higher, which makes it more possible for them to get out of control with a 

positive shift and less possible to come out of control with a negative shift. 

Similarly smaller values of the θ parameter result in smaller observations which 

are easier to get out of control with a negative shift than a positive one. 
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8.9.3. Construction of the EWMA Control Charts For Individual Observations 

from the Logarithmic Distribution Using the Scaled Weighted Variance Method 

The scaled weighted variance method is going to be used here for the 

construction of EWMA charts, as well. This is going to improve the performance 

of the chart compared with the previously used skewness correction method, as 

we will prove in the next subsection. The method we will apply here is the 

following: in equation (2-3) we will replace L by 
( )
( ) ( )

11
Φ 1
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X X

F µ α

F µ F µ
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−  
 

 for 

the lower control limit and 
( )
( ) ( )

1Φ 1
1 4 1

X

X X

F µ α

F µ F µ
−
 
−  − −   

 for the upper control 

limit, where µ is the mean of the Logarithmic distribution, which is computed 

using equation (4-3), and FX(x) is its cumulative distribution function given by 

equation (4-2). For the construction of the EWMA control charts we will also 

need the standard deviation of the Logarithmic distribution computed from 

equation (4-4). 

As a result, the central line (CL) and the upper and lower control limits (UCL 

and LCL, respectively) of the Logarithmic EWMA control chart are as follows. 
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   (8-17) 

 

The plotting statistic will be the one in equation (2-2) with xi being the 

observations from our Logarithmic distribution. 

 

 

8.9.4. Performance Investigation for the Individual EWMA Logarithmic Control 

Charts Constructed With the Scaled Weighted Variance Method 

For the investigation of the performance of the control chart we just 

constructed, we will use the ARL value as presented in equation (8-13). For the 

transient probabilities in (8-12) the cumulative distribution function for the 

Logarithmic distribution, i.e. equation (4-2), is going to be used with either in-

control parameter for the case of computing the in-control ARL value or the out-

of-control parameter for the case of the out-of-control ARL, with the asymptotic 

control limits as computed with equation (8-17) for i→∞ . This means that the 

control limits that will be used for the computation of ARL will be of the form 
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    (8-18) 

 

 

For the out-of-control case we assume that the shift of the process mean is in 

terms of the process standard deviation. In other words, the new mean is assumed 

to be of the form 1 0µ µ kσ= + . Using this relationship, the new parameter of the 

distribution with the shifted mean will be computed by combining equations (4-

3) and (4-4) and solving in terms of its parameter, as for the Shewhart-type 

control chart. 

Using those formulae we get Tables 8-13, 8-14, and 8-15, which show the 

in-control and out-of-control ARL values for the individual EWMA control chart 

for the Logarithmic distribution for various values of the parameter θ of the 

distribution of concern and for various values of k (which shows the shift of the 

process mean in terms of the process standard deviation). More specifically, 

Table 8-13 contains the ARL values for λ=0.3 for various values of the m for the 

subintervals into which the region between the upper and lower control limits is 

divided, as mentioned earlier. From this table we see that when keeping λ the 

same, the ARL value increases as the number m of subintervals increases and the 

rate of this increase is high until the value of about m=180, above which ARL 

increases very slightly. As a result, the suggested value of m for the computation 

of ARL in the formulae above is m=180. Therefore, Tables 8-14 and 8-15 show 

the ARL values for m=180 for various values of λ for positive and negative 

shifts, respectively. 
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 m k θ=0.12 θ=0.26 θ=0.39 θ=0.45 θ=0.54 θ=0.68 θ=0.73 θ=0.84 

0 371.1476 371.0129 370.9164 370.7986 370.7231 370.6496 370.6179 370.5158 

0.2 52.1475 52.0121 51.9153 51.7787 51.7230 51.6479 51.5954 51.4707 

0.5 17.1474 16.9121 16.7229 16.5764 16.4676 16.4100 16.2944 16.0870 

1 10.1238 9.8878 9.6902 9.5607 9.4437 9.3744 9.2765 9.0750 

1.5 7.1404 6.8698 6.6969 6.5623 6.4503 6.3468 6.2827 6.0817 

2 6.1408 5.8390 5.6972 5.5457 5.4503 5.3472 5.2580 5.0822 

2.5 5.1255 4.8426 4.6705 4.5229 4.4248 4.3404 4.2399 4.0637 

80 

3 4.0889 3.8258 3.6386 3.4917 3.4156 3.3310 3.2171 3.0545 

0 370.4258 370.3522 370.3206 370.2961 370.2271 370.1855 370.0870 370.0647 

0.2 51.3984 51.3206 51.3205 51.2635 51.2064 51.1559 51.0647 51.0647 

0.5 17.2576 17.2470 16.9283 16.9277 16.7809 16.7803 16.6212 16.5714 

1 10.1686 10.1678 9.9154 9.8321 9.7672 9.7006 9.6060 9.5520 

1.5 7.1427 6.9120 6.7181 6.5929 6.5029 6.4325 6.2891 6.1605 

2 6.1427 5.9124 5.7182 5.5907 5.4971 5.4052 5.2896 5.1610 

2.5 5.1464 4.9002 4.7120 4.5718 4.5002 4.3975 4.2876 4.1276 

100 

3 4.1260 3.8878 3.7006 3.5625 3.4571 3.3695 3.2783 3.1284 

0 371.1457 370.8438 370.7025 370.5426 370.4649 370.3523 370.2700 370.0870 

0.2 52.1456 51.8436 51.7022 51.5226 51.4556 51.3432 51.2628 51.0870 

0.5 16.4681 16.4258 16.4095 16.3390 16.2917 16.2274 16.1658 16.0647 

1 9.4000 9.3869 9.3292 9.3087 9.2169 9.2153 9.1264 9.0527 

1.5 7.3697 7.2515 7.0531 7.0527 6.8693 6.7931 6.6444 6.6453 

2 6.3205 6.2517 5.9968 5.9964 5.8308 5.7767 5.6247 5.6246 

2.5 5.2554 4.9269 4.7799 4.6185 4.5634 4.4463 4.2939 4.1846 

120 

3 4.2462 3.9173 3.7703 3.6084 3.5121 3.4022 3.2842 3.1556 

0 371.1933 370.9274 370.7786 370.5968 370.5094 370.4122 370.2944 370.1658 

0.2 52.1801 51.9019 51.7124 51.5961 51.5094 51.4100 51.2886 51.1658 

0.5 17.1799 16.9001 16.7121 16.5727 16.4671 16.3796 16.2700 16.1559 

1 10.1679 9.8318 9.7000 9.5528 9.4538 9.3319 9.2508 9.1264 

1.5 6.5374 6.5041 6.4605 6.3743 6.3359 6.2575 6.2356 6.1233 

2 5.5178 5.4610 5.4206 5.3342 5.3341 5.2226 5.2016 5.1238 

2.5 5.4230 5.3739 5.1241 5.0574 4.9149 4.8716 4.7215 4.6708 

150 

3 4.3967 4.3645 4.0877 4.0480 3.8905 3.8236 3.6915 3.6402 

0 371.3252 371.0574 370.7984 370.6493 370.5654 370.4556 370.3521 370.2409 

0.2 52.3251 52.0016 51.7984 51.6296 51.5649 51.4373 51.3206 51.2064 

0.5 17.3057 17.0014 16.7810 16.6295 16.5643 16.4350 16.2949 16.1856 

1 10.2714 9.9889 9.7644 9.6155 9.5120 9.4084 9.2829 9.1736 

1.5 7.2512 6.9226 6.7733 6.6124 6.4964 6.4047 6.2891 6.1605 

2 6.1751 5.8961 5.7080 5.6128 5.4971 5.3936 5.2652 5.1512 

2.5 4.5951 4.5644 4.4643 4.4363 4.3974 4.2934 4.2690 4.1549 

180 

3 3.5859 3.5323 3.4156 3.4027 3.3310 3.2598 3.2525 3.1284 

0 371.4230 371.1475 371.1262 370.8761 370.7986 370.6721 370.6709 370.5676 

0.2 52.4061 52.1457 52.1257 51.8743 51.7787 51.6706 51.6490 51.5676 

0.5 17.3764 17.0989 16.8368 16.6706 16.5645 16.4674 16.3781 16.2409 

1 10.3634 10.0865 9.8233 9.6583 9.5292 9.4436 9.3401 9.2289 

1.5 7.3693 7.0539 6.7933 6.6435 6.5174 6.4325 6.3327 6.2012 

2 6.3216 6.0527 5.7938 5.6438 5.5045 5.4210 5.3158 5.2016 

2.5 5.3246 5.0012 4.7777 4.6285 4.5010 4.4090 4.2939 4.1846 

200 

3 4.3148 3.9907 3.7685 3.6190 3.4555 3.3998 3.2846 3.1754 

0 370.4556 370.3986 370.3520 370.2949 370.2700 370.1856 370.1560 370.0870 

0.2 51.4258 51.3414 51.3205 51.2628 51.2628 51.1560 51.1560 51.0647 

0.5 17.4256 17.2565 17.1277 16.9278 16.9150 16.7812 16.7196 16.5727 

1 10.4124 10.1678 10.1245 9.8635 9.8318 9.7002 9.6872 9.5607 

1.5 7.4179 7.1298 6.8700 6.6445 6.5673 6.5041 6.3746 6.2832 

2 6.4181 6.1277 5.8388 5.6470 5.5628 5.4623 5.3751 5.2361 

2.5 5.4074 5.0991 4.8353 4.6497 4.5638 4.4648 4.3510 4.2399 

220 

3 4.3962 4.0889 3.8259 3.6386 3.5324 3.4454 3.3289 3.2171 

0 371.4063 371.0979 370.7988 370.6487 370.5426 370.4374 370.3391 370.2064 

0.2 52.4060 52.0457 51.7789 51.6485 51.5222 51.4128 51.3205 51.2064 

0.5 16.5019 16.4671 16.4123 16.4100 16.2949 16.2886 16.1864 16.1658 

1 9.4899 9.3863 9.3863 9.3292 9.2580 9.2154 9.1444 9.1264 

1.5 7.3199 6.9957 6.8309 6.6241 6.5169 6.4605 6.3338 6.2012 

2 6.3701 6.0528 5.8706 5.6470 5.5595 5.5046 5.3751 5.2361 

2.5 5.4054 5.0971 4.9000 4.7012 4.5944 4.5417 4.4122 4.2690 

240 

3 4.4121 4.1251 3.9061 3.7128 3.6077 3.5575 3.4276 3.2842 

Table 8 - 13: ARL values for individual EWMA control charts with scaled weighted variance 

with α = 0.0027 for the Logarithmic distribution (λ=0.3) for various values of m. 
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λ k θ=0.12 θ=0.26 θ=0.39 θ=0.45 θ=0.54 θ=0.68 θ=0.73 θ=0.84 

0 371.4718 371.1812 371.1695 370.9650 370.8152 370.7650 370.7010 370.6561 
0.2 52.4497 52.1789 52.1264 51.9439 51.7928 51.7389 51.6740 51.6305 

0.4 17.4127 17.0910 16.9146 16.7040 16.5938 16.5821 16.4535 16.3014 

0.6 14.8543 14.5256 14.3684 14.1554 14.0570 14.0459 13.9267 13.1774 

0.8 12.7755 12.4421 12.3008 12.0872 12.0224 11.9792 11.8919 11.6470 

1 10.2416 9.9065 9.7716 9.5580 9.4769 9.0714 8.9512 7.8147 

1.5 7.2083 6.8704 6.7409 6.5269 6.4512 6.4122 6.2916 6.1657 

2 6.1786 5.8356 5.7098 5.4945 5.4373 5.3867 5.2678 4.1476 

2.5 4.4212 4.3633 4.3581 4.3021 4.2422 4.1895 4.1212 3.0883 

λ=0.05 

3 3.3894 3.3281 3.3278 3.2672 3.2151 3.1580 3.1083 3.0653 

0 371.5122 371.1933 371.1769 371.0016 370.8123 370.7756 370.6972 370.6742 
0.2 52.4807 52.1748 52.1548 51.9745 51.7912 51.7468 51.6712 51.6338 

0.4 17.4358 17.1028 16.9369 16.7099 16.6122 16.5969 16.4560 16.3026 

0.6 14.8739 14.5368 14.3868 14.1597 14.0784 14.0482 13.9274 13.1776 

0.8 12.7887 12.4491 12.3149 12.0910 12.0390 11.9820 11.8931 11.6483 

1 10.2527 9.9122 9.7835 9.5612 9.4905 9.0691 8.9515 7.8152 

1.5 7.2175 6.8749 6.7507 6.5293 6.4535 6.4223 6.2921 6.1657 

2 6.1865 5.8392 5.7178 5.4963 5.4358 5.3939 5.2682 4.1477 

2.5 4.4229 4.3636 4.3621 4.3010 4.2425 4.1887 4.1212 3.0882 

λ=0.08 

3 3.3908 3.3318 3.3274 3.2644 3.2153 3.1577 3.1083 3.0652 

0 371.5418 371.2121 371.1735 371.0292 370.8127 370.8034 370.6950 370.6945 
0.2 52.5081 52.1728 52.1714 52.0006 51.7900 51.7719 51.6490 51.6422 

0.4 17.4568 17.1253 16.9564 16.7271 16.6241 16.6175 16.4835 16.3232 

0.6 14.8887 14.5449 14.4012 14.1735 14.0907 14.0632 13.9507 13.1953 

0.8 12.7985 12.4544 12.3246 12.1000 12.0475 11.9912 11.9125 11.6612 

1 10.2608 9.9164 9.7915 9.5684 9.4955 9.0681 8.9632 7.8219 

1.5 7.2242 6.8782 6.7571 6.5350 6.4606 6.4256 6.2993 6.1708 

2 6.1920 5.8417 5.7230 5.5006 5.4352 5.3964 5.2737 4.1515 

2.5 4.4283 4.3655 4.3609 4.2998 4.2464 4.1886 4.1219 3.0880 

λ=0.10 

3 3.3947 3.3331 3.3264 3.2659 3.2180 3.1576 3.1200 3.0651 

0 371.5670 371.2307 371.1701 371.0527 370.8229 370.8101 370.7016 370.6914 
0.2 52.5293 52.1889 52.1681 52.0224 51.7902 51.7887 51.6485 51.6445 

0.4 17.4750 17.1283 16.9749 16.7424 16.6273 16.6220 16.4917 16.3240 

0.6 14.8988 14.5507 14.4124 14.1812 14.0939 14.0643 13.9586 13.1958 

0.8 12.8059 12.4588 12.3324 12.1059 12.0498 11.9929 11.9160 11.6615 

1 10.2648 9.9198 9.7978 9.5730 9.4968 9.0643 8.9659 7.8222 

1.5 7.2290 6.8808 6.7621 6.5385 6.4620 6.4263 6.3012 6.1708 

2 6.1959 5.8437 5.7269 5.5032 5.4339 5.3970 5.2751 4.1515 

2.5 4.4294 4.3659 4.3604 4.2997 4.2475 4.1883 4.1226 3.0880 

λ=0.12 

3 3.3954 3.3334 3.3263 3.2658 3.2187 3.1575 3.1200 3.0651 

0 371.5991 371.2553 371.1652 371.0812 370.8380 370.8081 370.7225 370.6873 
0.2 52.5539 52.2031 52.1633 52.0422 51.8001 51.7870 51.6842 51.6442 

0.4 17.4942 17.1412 16.9920 16.7537 16.6431 16.6383 16.4946 16.3353 

0.6 14.9120 14.5616 14.4257 14.1894 14.1120 14.0753 13.9623 13.2038 

0.8 12.8127 12.4638 12.3400 12.1094 12.0643 11.9980 11.9202 11.6655 

1 10.2730 9.9236 9.8038 9.5757 9.4985 9.0658 8.9680 7.8239 

1.5 7.2339 6.8837 6.7647 6.5405 6.4631 6.4316 6.3021 6.1726 

2 6.1999 5.8458 5.7304 5.5046 5.4321 5.4010 5.2757 4.1527 

2.5 4.4315 4.3688 4.3576 4.2988 4.2479 4.1865 4.1285 3.0870 

λ=0.15 

3 3.3973 3.3353 3.3245 3.2653 3.2189 3.1565 3.1204 3.0647 

0 371.6543 371.2928 371.1582 371.1212 370.8778 370.8053 370.7490 370.6808 
0.2 52.5973 52.2336 52.1563 52.0828 51.8310 51.7846 51.7038 51.6575 

0.4 17.5231 17.1600 17.0207 16.7729 16.6486 16.6484 16.5199 16.3388 

0.6 14.9310 14.5716 14.4436 14.2021 14.1295 14.0820 13.9778 13.2043 

0.8 12.8249 12.4708 12.3524 12.1189 12.0756 12.0042 11.9286 11.6680 

1 10.2815 9.9287 9.8122 9.5828 9.5009 9.0704 8.9718 7.8252 

1.5 7.2403 6.8873 6.7738 6.5456 6.4618 6.4374 6.3072 6.1742 

2 6.2049 5.8484 5.7356 5.5081 5.4353 5.4051 5.2793 4.1537 

2.5 4.4305 4.3715 4.3567 4.2960 4.2503 4.1864 4.1285 3.0882 

λ=0.20 

3 3.3994 3.3371 3.3239 3.2635 3.2203 3.1564 3.1208 3.0659 

Table 8 - 14: ARL values for individual EWMA control charts with scaled 

weighted variance with α = 0.0027 for the Logarithmic distribution (m=180) for 

various positive shifts. 
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λ k θ=0.12 θ=0.26 θ=0.39 θ=0.45 θ=0.54 θ=0.68 θ=0.73 θ=0.84 

0 371.4718 371.1812 371.1695 370.9650 370.8152 370.7650 370.7010 370.6561 
-0.2 51.5415 51.6255 51.7323 51.7926 51.9157 52.2106 52.4704 52.9078 

-0.4 16.5174 16.5942 16.7007 16.7643 16.9037 17.1515 17.4049 17.7760 

-0.6 13.7393 13.7684 13.8745 13.9641 14.0859 14.3438 14.5129 14.8912 

-0.8 11.6269 11.7379 11.8565 11.9461 12.0852 12.3414 12.4887 12.8882 

-1 8.2093 8.2427 8.3540 8.4419 9.0574 9.3789 9.5056 9.5823 

-1.5 6.5074 6.5305 6.6277 6.6912 6.7312 6.8234 6.9642 7.1812 

-2 4.5676 4.6363 4.6454 4.7031 5.2589 5.4820 5.4954 5.5284 

-2.5 3.4459 3.5358 3.5631 3.6142 4.1308 4.2439 4.2729 4.2946 

λ=0.05 

-3 3.0924 3.1247 3.1293 3.1788 3.2310 3.2391 3.2672 3.3121 

0 371.5122 371.1933 371.1769 371.0016 370.8123 370.7756 370.6972 370.6742 
-0.2 51.5415 51.6255 51.7326 51.7930 51.9165 52.2187 52.5099 52.9552 

-0.4 16.5174 16.5942 16.7014 16.7644 16.9044 17.1583 17.4106 17.7893 

-0.6 13.7468 13.7709 13.8748 13.9642 14.0865 14.3473 14.5169 14.9312 

-0.8 11.6401 11.7379 11.8567 11.9463 12.0858 12.3431 12.4890 12.8964 

-1 8.2106 8.2467 8.3681 8.4697 9.0640 9.4329 9.5151 9.6520 

-1.5 6.5089 6.5344 6.6495 6.6940 6.7709 6.8714 7.0223 7.2037 

-2 4.6028 4.6390 4.6495 4.7189 5.3039 5.4821 5.5068 5.5486 

-2.5 3.4782 3.5410 3.5682 3.6190 4.1717 4.2475 4.2745 4.3006 

λ=0.08 

-3 3.1090 3.1250 3.1548 3.1849 3.2314 3.2398 3.2841 3.3843 

0 371.5418 371.2121 371.1735 371.0292 370.8127 370.8034 370.6950 370.6945 
-0.2 51.5416 51.6259 51.7327 51.7942 51.9186 52.2239 52.5406 52.9783 

-0.4 16.5174 16.5942 16.7015 16.7647 16.9062 17.1712 17.4147 17.7992 

-0.6 13.7627 13.7714 13.8749 13.9645 14.0879 14.3498 14.5190 14.9645 

-0.8 11.6523 11.7379 11.8568 11.9468 12.0872 12.3445 12.4900 12.9023 

-1 8.2129 8.2525 8.3796 8.4741 9.0653 9.4432 9.5178 9.6553 

-1.5 6.5107 6.5489 6.6535 6.7076 6.7780 6.8827 7.0775 7.2083 

-2 4.6031 4.6394 4.6863 4.7499 5.3325 5.4897 5.5161 5.5719 

-2.5 3.5191 3.5437 3.5799 3.6212 4.1829 4.2496 4.2840 4.3122 

λ=0.10 

-3 3.1205 3.1282 3.1644 3.1936 3.2343 3.2455 3.2858 3.3879 

0 371.5670 371.2307 371.1701 371.0527 370.8229 370.8101 370.7016 370.6914 
-0.2 51.5416 51.6260 51.7330 51.7943 51.9196 52.2278 52.5681 52.9971 

-0.4 16.5174 16.5942 16.7015 16.7649 16.9071 17.1719 17.4181 17.8065 

-0.6 13.7627 13.7759 13.8750 13.9647 14.0886 14.3546 14.5207 15.0022 

-0.8 11.6548 11.7379 11.8568 11.9469 12.0879 12.3465 12.4904 12.9065 

-1 8.2142 8.2570 8.3857 8.4839 9.1494 9.4438 9.5287 9.7020 

-1.5 6.5162 6.5512 6.6891 6.7082 6.7864 6.8922 7.1009 7.2318 

-2 4.6287 4.6408 4.6899 4.7610 5.4535 5.4918 5.5176 5.6586 

-2.5 3.5246 3.5455 3.5882 3.6269 4.2234 4.2498 4.2853 4.3129 

λ=0.12 

-3 3.1225 3.1283 3.1708 3.1968 3.2358 3.2512 3.2883 3.3887 

0 371.5991 371.2553 371.1652 371.0812 370.8380 370.8081 370.7225 370.6873 
-0.2 51.5416 51.6260 51.7332 51.7948 51.9202 52.2312 52.5984 53.0189 

-0.4 16.5218 16.5993 16.7017 16.7653 16.9075 17.1740 17.4219 17.8512 

-0.6 13.7627 13.7900 13.8751 13.9651 14.0890 14.3569 14.5225 15.0144 

-0.8 11.6578 11.7379 11.8568 11.9471 12.0883 12.3490 12.4912 12.9107 

-1 8.2169 8.2642 8.3937 8.4842 9.1730 9.4465 9.5434 9.7647 

-1.5 6.5171 6.5544 6.6893 6.7101 6.7880 6.8968 7.1269 7.2341 

-2 4.6302 4.6436 4.6937 4.7621 5.4724 5.4947 5.5237 5.7244 

-2.5 3.5322 3.5479 3.5886 3.6405 4.2326 4.2525 4.2907 4.3393 

λ=0.15 

-3 3.1231 3.1286 3.1733 3.2120 3.2365 3.2549 3.2901 3.3948 

0 371.6543 371.2928 371.1582 371.1212 370.8778 370.8053 370.7490 370.6808 
-0.2 51.5416 51.6262 51.7333 51.7952 51.9214 52.2365 52.6564 53.0559 

-0.4 16.5222 16.5997 16.7019 16.7656 16.9085 17.1749 17.4269 17.9509 

-0.6 13.7627 13.7928 13.8751 13.9653 14.0897 14.3588 14.5245 15.0256 

-0.8 11.6853 11.7379 11.8569 11.9472 12.0890 12.3575 12.4928 12.9162 

-1 8.2324 8.2912 8.4148 8.4843 9.1841 9.4563 9.5505 9.7756 

-1.5 6.5275 6.5548 6.6899 6.7150 6.7893 6.8968 7.1296 7.2637 

-2 4.6309 4.6454 4.7012 4.7645 5.4815 5.4952 5.5256 5.7491 

-2.5 3.5328 3.5564 3.6104 3.6471 4.2393 4.2573 4.2919 4.3412 

λ=0.20 

-3 3.1241 3.1291 3.1747 3.2127 3.2386 3.2644 3.2918 3.4022 

Table 8 - 15: ARL values for individual EWMA control charts with scaled 

weighted variance with α = 0.0027 for the Logarithmic distribution (m=180) for 

various negative shifts. 
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Comparing those two tables, we observe that the proposed control chart can 

detect both positive and negative shifts well, but there are some differences in 

ARL values between those two tables, with almost half of the ARLs for negative 

shifts being larger than the corresponding ones for the positive shifts. This is 

valid for the larger values of the parameter θ, which makes sense since a larger θ 

value gives a larger observation which is less possible to get out of control with a 

negative shift than with a positive one, and vice-versa. This is probably the 

reason that the differences (in either direction) are above 5% for shifts larger 

than ±0.6 for the smallest and largest values of θ. 

Additionally, comparing the ARL values for the EWMA in Tables 8-14 (8-

15) and 8-4 (8-5), we can see that the EWMA control chart with the scaled 

weighted variance performs better than the corresponding one with the skewness 

correction method, since the in-control ARL values with the scaled weighted 

variance are larger and the out-of-control ARL values are smaller than the 

corresponding ones with the skewness correction method. All the differences are 

significant since they are larger than 5%. 

 

 

8.9.5 Example on the Logarithmic individual Shewhart-type and EWMA control 

charts with scaled weighted variance using simulated data 

This section presents the illustration of the proposed control charts using 

simulated data generated from the distribution of concern. The case of real data 

will be presented in section 8.9.6. For the same dataset in Table 8-9, we construct 

the individual Shewhart-type Logarithmic control charts with scaled weighted 

variance presented in Figure 8-10, using the most commonly used value for the 

significance level α = 0.27%, as mentioned earlier.  
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Figure 8 - 10: Individual Logarithmic control chart with scaled weighted variance 

for the data set in Table 8-9 with a shift of one standard deviation unit in the 

process mean 

 

 

As we can see the control chart detects some out-of-control points 

indicating that an assignable cause has occurred in the process causing its mean 

to shift to an out-of-control level, which the Shewhart-type chart with skewness 

correction had not detected. 

Using the same data set, we now construct the individual EWMA 

Logarithmic control chart with scaled weighted variance shown in Figure 8-11, 

using λ=0.05. As we can see, there is an increasing trend after the first 15 

observations and the control chart gives an out-of-control signal after the 19th 

observation. 
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Figure 8 - 11: Individual EWMA Logarithmic control chart with scaled weighted 

variance for the data set in Table 8-9 with a shift of one standard deviation unit 

in the process mean 

 

 

Comparing Figure 8-11 with Figure 8-3 for the skewness correction we can 

see that the EWMA control chart detects the one-standard deviation-unit shift 

quickly and presents out-of-control points quicker than the corresponding EWMA 

control chart with skewness correction. 

 

 

8.9.6 Application of the Logarithmic individual Shewhart-type and EWMA 

control charts with scaled weighted variance to real data 

This section contains the illustration of the proposed control charts through 

application to the same real datasets as earlier (Tables 8-10 and 8-11) and for the 

same values of the parameter of our assumed Logarithmic distribution. As we can 

see, for the first case of the pump failure data, the resulting control charts 
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(Figures 8-12 and 8-13) present out-of-control points that the corresponding 

control charts with skewness correction had not detected. 

 

Figure 8 - 12: Individual control chart with scaled weighted variance for the 

Pump Failure dataset assuming Logarithmic distribution for the data 

 

 

 

Figure 8 - 13: Individual EWMA control chart with scaled weighted variance for 

the Pump Failure dataset assuming Logarithmic distribution for the data 
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For the second data set by Jelinski and Moranda (1972) representing the 

times between successive failures of a piece of software in days, the resulting 

individual logarithmic and individual logarithmic EWMA control charts with 

scaled weighted variance are presented in Figure 8-14 and Figure 8-15, 

respectively. For the EWMA the value of λ=0.05 was chosen. The charts once 

again, present more out-of-control points than the corresponding ones with the 

skewness correction. 

 

 

 

 

Figure 8 - 14: Individual control chart with scaled weighted variance for the 

Software Failures dataset assuming Logarithmic distribution for the data 
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Figure 8 - 15: Individual EWMA control chart with scaled weighted variance for 

the Software Failures dataset assuming Logarithmic distribution for the data 

 

 

 

8.10 Conclusions and Further Research 

In this chapter probability-type, Shewhart-type and EWMA control charts 

have been constructed for monitoring individual observations from a process 

which is assumed to follow the Logarithmic distribution for the theoretical 

scenario of known distributions’ parameters. Two different methods for taking 

into account the distribution’s skewness have been considered. The performance 

of the proposed control charts has been investigated for the cases of all the 

proposed control charts (probability-type, Shewhart-type and EWMA control 

charts with both skewness correction methods). Optimal design for the EWMA 

control chart has also been presented. The five types of proposed control charts 

have been illustrated with both simulated and real data. 

The proposed control charts take into account the skewness of the 

distribution and this leads to a significant improvement of their performance as 

has been demonstrated along this chapter. The performance of the control charts 
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seems to improve more when the scaled weighted variance method by Castagliola 

(2000) is used instead of the skewness correction method proposed by Chan and 

Cui (2003). 

This study can also be applied to other Logarithmic-related distributions 

(generalizations, mixtures, transformations, etc.). Moreover, for future research, 

the whole analysis can be extended to include supplementary runs rules for the 

detection of small shifts. For this purpose it would also be useful to construct 

CUSUM control charts for the Logarithmic distribution, as well. 
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CHAPTER 9 

 

CONTROL CHARTS FOR INDIVIDUAL OBSERVATIONS 

FROM THE PARETO DISTRIBUTION 

 

 

 

9.1 Introduction 

As presented in Chapter 5, Pareto distribution is a continuous distribution 

with various applications some of which are in finance and actuarial sciences, 

reliability and engineering, life testing and survival analysis, ecology, 

meteorology, sociology, demography, agriculture, hydrology, geosciences, 

computer science and communications, computing and data transmission, 

medicine, biology, sociology, astronomy and astrophysics, and modelling of 

industrial accidents, injuries in road accidents, athletic events etc. Due to its 

variety of applications, some control charts for detecting shifts in a process have 

been constructed under the assumption that the quality characteristic of interest is 

Pareto distributed, as indicated in section 2.29.13. As it was presented, there, 

however, most of the control charts were concentrated on monitoring a (function 

of a) parameter of the distribution or were constructed for the Pareto II 

distribution. Here we present control charts for observations from the Pareto I 

distribution. More specifically, we construct probability-type, Shewhart-type and 

EWMA control charts (and deal with the optimal choice of its parameters) for 

individual observations from the Pareto I distribution using two different 

methods for taking into consideration the distribution’s skewness for the 

construction of the Shewhart-type and EWMA charts, investigate their 

performance and illustrate them using examples with both simulated and real data 

(same for all charts for easy comparisons). The whole analysis reveals the 

superiority of using skewness correction for the construction of the control charts 

against not using it and the superiority of the scaled weighted variance method 

for taking into account the distribution’s skewness during the construction of the 

proposed control charts. More specifically, the chapter is outlined as follows: 
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Sections 9.2 and 9.3 describe the construction of probability-type and Shewhart-

type control charts (with the skewness correction method proposed by Chan and 

Cui (2003)), respectively, for individual observations from the Pareto 

distribution, with both control charts’ performances investigated and compared 

with each other in section 9.4. Sections 9.5 and 9.6 present the construction and 

performance investigation, respectively, of the corresponding EWMA charts with 

the same skewness correction method as for the Shewhart-type charts. Section 

9.7 addresses the optimal design of the EWMA chart considered in Section 9.5. 

Section 9.8 provides illustration of all the proposed charts of the previous 

sections through application to both simulated and real data. Section 9.9 

discusses control charts for individual observations from the Pareto distribution 

using the scaled weighted variance method proposed by Castagliola (2000) for 

taking into account the distribution’s skewness. More specifically, subsections 

9.9.1 and 9.9.2 present the construction and performance investigation of 

Shewhart-type control charts, while subsections 9.9.3 and 9.9.4 address the 

construction and performance investigation of EWMA charts. Both charts are 

illustrated through application to simulated and real data (the same data of 

Section 9.8 for easy comparison). Both performance investigation and examples 

reveal the superiority of the scaled weighted variance method for taking into 

account the distribution’s skewness. 

 

 

9.2 Probability-Type Control Charts for Individual Observations from the Pareto 

Distribution 

The control limits of the probability-type control charts for individual 

Pareto distributed observations will be obtained in terms of the probability of 

type I error or false alarm rate, α, for the Pareto distribution (as, for example, in 

Chang and Gan (1999) for the case of the modified geometric distribution). In 

order to do that we need to use the cumulative probability of the Pareto 

distribution as presented in equation (5-2). The construction procedure is as 

follows. 

For a significance level α, we have 

( )
2

α
P X LCL< =  
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and 

( ) 1 , , 0

d
r

P X LCL LCL r r d
LCL
 < = − ≥ ≥ > 
 

, 

from which we obtain 

1
1

2
1

2

d

d

r α r
LCL

LCL α

 − = ⇒ = 
   − 

 

, 

Similarly, for the upper control limit, we have 

( )
2

α
P X UCL> =  

and 

( ) ( )1 , , 0

d
r

P X UCL P X UCL UCL r r d
UCL
 > = − ≤ = ≥ ≥ > 
 

, 

from which we get that 

12

2

d

d

r α r
UCL

UCL α

  = ⇒ = 
   

 
 

 

Similarly for the central line we obtain 

1

(0.5) d

r
CL =  

As a result from all the above, the control limits of the chart in terms of the 

probability of type I error, α, are as follows. 

( )

1

1

1

2

, 0
0.5

1
2
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α
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α
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UCL
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 − 
 

             (9-1) 

 

 



 324 

 

9.3 Shewhart-Type Control Charts for Individual Pareto Observations 

Now a different approach is considered for the construction of control charts 

for individual observations from the Pareto distribution, based on the 

Shewhart-type individual control charts using the skewness correction as in Chan 

and Cui (2003). More specifically, the construction will be as follows: the central 

line will be placed at the mean of the Pareto distribution, which is computed 

using equation (5-3), and the control limits will be placed around the mean at L 

times its standard deviation (the square root of the quantity computed by 

equation (5-4)) plus *
4c  times its standard deviation, where ( )

( )

( )
*
4 2

4
sk

3

1 0.2 sk

x
c x

x

  
=

 +  

 

is the skewness correction and sk(X) is the distribution’s skewness coefficient 

computed from equation (5-5). This means that the skewness correction for the 

Pareto distribution will be 

( )
( )

( ) ( )( ) ( )
( ) ( )( )

* *
4 42 2 2

8 1 2
8 1 3 23 3

3 3 2.4 2 12 1 2
1 0.2

3

d d
d d d dd dc x c x

d d d dd d

d d

+ −
+ − −−= ⇒ =
− + − + + −

+  − 

  (9-2) 

As a result, the central line (CL) and the upper and lower control limits (UCL 

and LCL, respectively) of the Pareto control chart are as follows. 

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

-1 -2 -1* 2

4

-1

-1 -2 -1* 2

4

-1 -1 - 2

-1 , 3

-1 - -1 - 2

UCL dr d L c x dr d d

CL dr d d

LCL dr d L c x dr d d

 = + + 

= >

 = + + 

       (9-3) 

 

 

 

9.4 Performance Investigation for the Individual Pareto Control Charts 

In order to investigate the performance of the above proposed control charts 

we can use again the ARL0 and ARL1 values, with the following formulae: 



 325 

( ) ( )0

1

1 in in

ARL
F UCL F LCL

=
− +

      (9-4) 

with ( )inF x  being the cumulative distribution function of the Pareto distribution 

from equation (5-2) with in-control parameters and control limits as computed 

from equation (9-1) for the probability-type control charts or equations (9-3) and 

(9-2) for the Shewhart-type control charts and 

( ) ( )1

1

1 out out

ARL
F UCL F LCL

=
− +

      (9-5) 

with ( )outF x  being the cumulative distribution function for our distribution with 

out-of-control parameters and same control limits as before. For the out-of-

control case we assume that the shift of the process mean is in terms of the 

process standard deviation. In other words, the new mean is assumed to be of the 

form 1 0µ µ kσ= + . Using this relationship, the new parameters of the distribution 

with the shifted mean will be computed by solving equations (5-3) and (5-4) in 

terms of the distribution’s two parameters. The resulting values for them are 

given by 
( )22

0
1new

σ µ kσ
d

σ

+ +
= +  and ( )

( )

( )

22

0

0 22

0

new

σ µ kσ
r µ kσ

σ σ µ kσ

+ +
= +

+ + +
. 

Using the above formulas we obtain Table 9-1 and Table 9-2, which show the in-

control and out-of-control ARL values for the individual probability-type and 

individual Shewhart-type control chart, respectively, for the Pareto distribution 

for various values of the two parameters d and r of the specific distribution and 

for various values of k which, as mentioned before, shows the shift we want to 

detect in the process mean in terms of the process standard deviation. For the 

probability-type control charts we have chosen a significance level equal to the 

most commonly used value of 0.27%, which corresponds to 0.27% probability of 

falsely rejecting the null hypothesis that our process is in control. 

Comparing Tables 9-1 and 9-2 we observe that the performance of the 

chart improves significantly when using the skewness corrected limits instead of 

the probability based ones. The  difference in ARL values between Shewhart-type 

and probability-type control charts is greater than 5% for all shift sizes except 

k=±0.2 where it is slightly smaller than 5%. Comparison of the ARL values for 

positive and negative shifts shows that, although the control charts can detect 
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both positive and negative shifts well, there are some slight differences with most 

values being a little smaller for the negative shifts than for the corresponding 

positive ones. This holds for either the probability-type or the Shewhart-type 

control chart. The only differences that are above 5% concern shift sizes of k 

between 2.4 and 2.8 for the Shewhart-type control chart, while for the 

probability-type one, they concern shift sizes of k between 2.2 and 2.6 for large 

values of the distribution’s parameters and k between 1.6 and 2 for small values 

of the distribution’s parameters. 

 

 

k d=25, r=37 d=42, r=68 d=57, r=93 d=86, r=112 d=105, r=154 d=128, r=185 d=210, r=250 d=300, r=310 

-3 3.5488 3.5502 3.5507 3.5512 3.5514 3.5516 3.5518 3.5520 
-2.8 6.0596 6.0617 6.0625 6.0632 6.0634 6.0636 6.0640 6.0642 

-2.6 9.0733 9.0761 9.0772 9.0781 9.0785 9.0787 9.0792 9.0795 

-2.4 10.0907 10.0943 10.0957 10.0970 10.0973 10.0978 10.0986 10.0988 

-2.2 12.1227 12.1275 12.1293 12.1210 12.1216 12.1220 12.1228 12.1233 

-2 14.1412 14.1472 14.1496 14.1518 14.1525 14.1532 14.1543 14.1548 

-1.8 16.1782 16.1861 16.1891 16.1919 16.1928 16.1937 16.1951 16.1957 

-1.6 20.2273 20.2375 20.2414 20.2450 20.2463 20.2473 20.2493 20.2501 

-1.4 36.2842 36.3072 36.3122 36.3169 36.3186 36.3199 36.3224 36.3235 

-1.2 60.3978 60.4046 60.4122 60.4173 60.4195 60.4212 60.4244 60.4259 

-1 75.5244 75.5468 75.5553 75.5735 75.5464 75.5587 75.5728 75.5748 

-0.8 105.0368 105.0571 105.0789 105.0900 105.0930 105.0972 105.1040 105.1057 

-0.6 154.1010 154.1444 154.1614 154.1775 154.1831 154.1878 154.1961 154.2000 

-0.4 177.8437 177.9140 177.9301 177.9557 177.9750 177.9824 177.9957 178.0020 

-0.2 235.0884 235.2328 235.2895 235.3433 235.3625 235.3782 235.4062 235.4193 

0 370.3704 370.3704 370.3704 370.3704 370.3704 370.3704 370.3704 370.3704 

0.2 235.1834 233.4402 231.0369 230.8157 229.6684 228.7348 227.0694 226.2891 

0.4 181.8882 179.5125 177.9693 175.6481 173.8848 172.3789 169.7082 168.4545 

0.6 154.6412 152.9515 150.1855 148.8450 146.6015 144.7815 141.5476 140.0379 

0.8 108.5382 107.1980 105.8678 103.0302 100.6184 98.6646 95.1995 93.6846 

1 78.8640 77.0837 75.6477 72.7324 70.3128 68.3493 64.8710 63.2528 

1.2 57.1601 55.7700 53.5376 51.8500 48.5045 46.6098 44.2609 42.7053 

1.4 43.1498 41.7001 39.8699 37.5798 35.3798 33.6048 30.4825 28.9197 

1.6 32.7261 30.5575 28.2469 27.4579 25.4484 23.8109 20.9435 19.6154 

1.8 25.9308 23.2296 21.4978 19.2593 17.4362 15.9688 14.0871 12.8931 

2 19.9364 18.7779 17.6431 16.9642 15.3428 14.0375 12.8439 10.6844 

2.2 14.0288 12.4103 10.8634 10.7353 9.3052 9.1526 9.1403 8.2105 

2.4 10.5975 10.4632 9.4840 8.8646 7.6168 6.6157 5.8612 5.0527 

2.6 9.3732 9.1230 8.9034 7.7733 6.6934 5.8278 5.3126 4.6152 

2.8 6.4845 6.4804 6.3254 6.1797 5.2517 4.5086 4.4082 4.0107 

3 3.9046 3.8688 3.4682 3.4097 3.3793 3.3708 3.3022 3.2621 

Table 9 - 1: ARL values for individual probability-type control charts for the 

Pareto distribution, with α = 0.0027. 
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k d=25 r=37 d=42 r=68 d=57 r=93 d=86 r=112 d=105 r=154 d=128 r=185 d=210 r=250 d=300 r=310 

-3 2.5486 2.5501 2.5507 2.5512 2.5514 2.5516 2.5518 2.5520 

-2.8 4.0595 4.0616 4.0624 4.0632 4.0634 4.0636 4.0640 4.0642 

-2.6 5.0632 5.0761 5.0771 5.0781 5.0785 5.0787 5.0793 5.0795 

-2.4 6.0806 6.0843 6.0857 6.0870 6.0874 6.0878 6.0884 6.0888 

-2.2 8.0936 8.0974 8.0993 8.1009 8.1015 8.1020 8.1028 8.1035 

-2 10.1410 10.1482 10.1495 10.1517 10.1525 10.1532 10.1543 10.1548 

-1.8 12.1780 12.1860 12.1890 12.1918 12.1928 12.1937 12.1951 12.1957 

-1.6 19.2272 19.2375 19.2414 19.2448 19.2462 19.2482 19.2493 19.2501 

-1.4 30.2840 30.3072 30.3121 30.3169 30.3184 30.3199 30.3223 30.3235 

-1.2 40.3975 40.4045 40.4120 40.4172 40.4193 40.4212 40.4244 40.4259 

-1 63.5241 63.5364 63.5452 63.5534 63.5553 63.5587 63.5728 63.5748 

-0.8 92.7364 92.7669 92.7787 92.7899 92.7939 92.7971 92.8030 92.8054 

-0.6 114.1005 114.1441 114.1612 114.1772 114.1820 114.1877 114.1960 114.2000 

-0.4 165.8430 165.9126 165.9398 165.9646 165.9748 165.9824 165.9957 166.0020 

-0.2 225.0869 225.2419 225.2888 225.3428 225.3621 225.3779 225.4060 225.4193 

0 370.7502 370.7503 370.7504 370.7546 370.7784 370.8261 370.8445 370.8482 

0.2 230.9932 232.2808 230.6861 229.2268 228.3742 227.6487 226.4033 225.8172 

0.4 180.4442 177.5910 174.5730 171.7534 170.7579 169.9348 168.5048 167.8451 

0.6 130.0618 122.3279 119.4069 116.6810 115.7315 114.9369 113.5787 112.9501 

0.8 108.3741 101.3882 98.6824 96.1084 95.2230 94.7937 94.2214 93.6284 

1 75.5399 69.4464 67.2007 65.1260 64.3950 63.7987 62.7845 62.2822 

1.2 52.1833 47.4084 45.6419 44.0375 43.4682 43.0215 42.2251 41.8646 

1.4 35.8427 32.2425 30.9294 29.7284 29.3133 28.9752 28.3751 28.1234 

1.6 24.4873 21.8497 20.8987 20.0325 19.7339 19.4910 19.0684 18.8731 

1.8 15.0754 14.3675 12.7549 12.1995 12.0084 10.8436 10.5732 10.4599 

2 12.3872 10.9654 10.4548 9.9964 9.8484 9.7101 9.4873 9.3953 

2.2 10.1648 8.9871 8.5571 8.1876 8.0573 7.9518 7.7886 7.6842 

2.4 6.1631 5.4444 5.1901 4.9612 4.8828 4.8193 4.7096 4.6480 

2.6 5.0332 4.4487 4.2424 4.0571 3.9937 3.9526 3.8439 3.8130 

2.8 4.1048 3.6319 3.4657 3.3164 3.2645 3.2243 3.1530 3.1203 

3 2.9542 2.6207 2.5041 2.3998 2.3643 2.3357 2.2861 2.2633 

Table 9 - 2: ARL values for individual Shewhart-type control charts for the 

Pareto distribution 

 

 

9.5 Construction of the EWMA Control Charts for Individual Observations from 

the Pareto Distribution 

When dealing with individual observations, besides Shewhart-type control 

charts we also construct EWMA charts, which (as mentioned in Section 2.14.2) 

are a better alternative in that case. So it is useful to construct EWMA control 

charts for individual observations from the Pareto distribution. For that purpose, 

we need to remember the general instructions for constructing an EWMA chart as 

summarized in equation (2-3) and the plotting statistic in equation (2-2), with the 

value of the constant λ being the weight assigned to each of the past values and 

chosen to be smaller when we are interested in detecting smaller shifts. 
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The construction of the individual Pareto control charts is going to be done 

based on the EWMA control charts (2-3) using the skewness correction as in 

Chan and Cui (2003), since the distribution of concern is asymmetric and, as also 

mentioned in Weiß and Atzmüller (2011), this is an easily applied method for 

taking the distribution’s skewness into consideration and leads to a better ARL 

performance of the resulting control chart. In the next section, where we deal 

with the performance investigation of the constructed control chart, we will 

further demonstrate the need for this adjustment considering the asymmetry of 

the distribution and the improvement in the performance of the chart when using 

the skewness correction contrary to not using it but using the traditionally used 

symmetric EWMA control limits instead. 

The method for constructing this control chart is the following: in equation 

(2-3) we replace L by L plus *
4c , where ( )

( )

( )
*
4 2

4
sk

3

1 0.2 sk

x
c x

x

  
=

 +  

 is the skewness 

correction and sk(X) is the distribution’s skewness coefficient. EWMA control 

charts for individual observations from the Pareto distribution are constructed 

using the mean of the Pareto distribution, which is computed using equation (5-

3), its standard deviation (the square root of the quantity computed by equation 

(5-4)) and the distribution’s skewness coefficient computed from equation (5-5). 

This means that the skewness correction for the mean of the Pareto distribution is 

( )
( )( ) ( )
( ) ( )( )

*
4 2 2

8 1 3 2

3 3 2.4 2 1

d d d d
c x

d d d d

+ − −
=

− + − +
   (9-6) 

As a result, the central line (CL) and the upper and lower control limits (UCL 

and LCL, respectively) of the Pareto EWMA control chart are as follows. 

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )

-1 -2 -1 2* 2
4

-1

-1 -2 -1 2* 2
4

-1 -1 - 2 1 1
2

-1 , 3

-1 - -1 - 2 1 1
2

i

i

λ
UCL dr d L c x dr d d λ

λ

CL dr d d

λ
LCL dr d L c x dr d d λ

λ

  = + + − −   −

= >

  = + + − −   −

    (9-7) 

The plotting statistic will be the one in equation (2-2) with xi being the 

observations from the Pareto distribution. 
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9.6 Performance Investigation for the EWMA Control Charts for Individual 

Observations from the Pareto Distribution 

For the investigation of the performance of the proposed control chart 

above, we will use the ARL, based on the method by Lucas and Saccucchi 

(1990). In other words, the ARL of the EWMA control chart will be computed 

with the Markov chain method and discretization of the control statistic. More 

specifically, according to this method, the region between the upper and lower 

control limits is divided into 2m+1 subintervals. Each subinterval Sj 

(j=1,2,…,2m+1) is taken to be represented by its midpoint sj and then if δ is the 

half size of each subinterval, which means that 
( )2 2 1

UCL LCL
δ

m

−
=

+
, then whenever 

j i js δ Z s δ− < < +  the process is in a transient state. Otherwise, the process is in 

the absorbing state. Therefore, the in-control transition probability from one 

transient state Sj to another transient state Sk is given by 

( )
( )

( )( )
( ) ( )

1

1

1 11

1 1
, , 1,2, , 2 1

kj i k i j

k i k i j

k i i k i j

k j k j
i

p P Z S Z S

P s δ Z s δ Z s

P s δ λX λ Z s δ Z s

s δ λ s s δ λ s
P X j k m

λ λ

−

−

− −

= ∈ ∈

= − < < + =

= − < + − < + =

− − − + − − 
= < < = + 

 
…

 (9-8) 

The ith-stage transition probability matrix Pi is, then, defined as 

( )
1

i i
i

T

 −
=   
 

R I R 1
P

0
, where R is the (2m+1, 2m+1) matrix of the transient 

probabilities pkj mentioned in (9-8) above and 0T=(0,0,…,0), i.e. 0T is the 

transpose of 0 which is a vector of 2m+1 zeros. The ith-stage transition 

probability matrix Pi contains the probabilities that the control statistic goes from 

one transient state to another in i steps and is used for the computation of the 

ARL of the EWMA control chart, which is given by 

( ) 1TARL
−

= −p I R 1      (9-9) 

where ( )1 1, , ,
T

m m m mp p p p− − + −=p …  is the vector of the initial probabilities related 

to the 2m+1 transient states. 
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For the transient probabilities in (9-8) the cumulative distribution function 

for the Pareto distribution, i.e. equation (5-2), is going to be used with either in-

control parameters for the case of computing the in-control ARL value or the out-

of-control parameters for the case of the out-of-control ARL, with the asymptotic 

control limits as computed with equations (9-7) and (9-6) for i→∞ . This means 

that the control limits that will be used for the computation of ARL will be of the 

form 

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

-1 -2 -1* 2
4

-1

-1 -2 -1* 2

4

-1 -1 - 2
2

-1 , 3

-1 - -1 - 2
2

λ
UCL dr d L c x dr d d

λ

CL dr d d

λ
LCL dr d L c x dr d d

λ

 = + +  −

= >

 = + +  −

     (9-10) 

For the out-of-control case we assume that the shift of the process mean is in 

terms of the process standard deviation. In other words, the new mean is assumed 

to be of the form 1 0µ µ kσ= + . Using this relationship, the new parameters of the 

distribution with the shifted mean will be computed by solving equations (5-3) 

and (5-4) in terms of its two parameters, as for the Shewhart-type control chart. 

Using those formulae we get Tables 9-3, 9-4 and 9-5, which show the in-

control and out-of-control ARL values for the individual EWMA control chart for 

the Pareto distribution for various values of the two parameters d and r of the 

distribution of concern and for various values of k which shows the shift of the 

process mean in terms of the process standard deviation. More specifically, Table 

9-3 contains the ARL values for λ=0.3 and L=4.2802 (combination which gives 

in-control ARL value close to 370) for various values of the m for the 

subintervals into which the region between the upper and lower control limits is 

divided, as mentioned earlier. From this table we see that when keeping λ and L 

the same, the ARL value increases as the number m of subintervals increases and 

the rate of this increase is high until the value of about m=150, above which ARL 

increases very slightly. Consequently, the suggested value of m for the 

computation of ARL in the formulae above is m=150. Therefore, Tables 9-4 and 
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9-5 show the ARL values for m=150 for various values of L and λ for positive 

and negative shifts, respectively. 

Comparing those two tables, we observe that the proposed control chart can 

detect both positive and negative shifts well, but there are some differences in 

ARL values between those two tables, with most of the differences being in 

favour of the ARL values for negative shifts. The only cases for which the ARL 

values for negative shifts are bigger are for small values of lambda (up to 0.10). 

For lamda values larger than 0.10 the ARL values for positive shifts are higher 

than the ones for negative shifts. 

The need for using the skewness correction for the construction of the 

individual EWMA control charts for the Pareto distribution is justified by the fact 

that if we had used the traditional symmetric EWMA control limits without the 

skewness correction term ( )*
4c x  in equation (18) above, the ARL performance of 

the chart would have been worse, as can be seen when comparing the results in 

Table 9-6 for the case of not using the skewness correction term against the 

results in Table 9-4 for the case of using it. It should be noted that the ARL 

values in Table 9-6 have resulted from using the same values for λ and L as the 

ones in Table 9-4 for the shake of making comparisons between the two tables 

easier. The difference between the ARL values in Tables 9-4 and 9-6 are all 

higher than 10%. Comparison is similar for the case of negative shifts so the 

corresponding table is omitted for space reasons. 

Additionally, comparing the ARL values for the EWMA in Tables 9-4 and 

9-5 with the ARL values for the Shewhart-type control chart in Table 9-2, we can 

see that the EWMA control chart performs better than the Shewhart-type control 

chart for almost all shifts, since the EWMA out-of-control ARL values are 

smaller than the corresponding ARL values for the Shewhart-type charts. When it 

comes to large shifts of magnitude 3 standard deviation units, however, EWMA 

ARL values are slightly larger only for positive. 
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m k d=25 r=37 d=42 r=68 d=57 r=93 d=86 r=112 d=105 r=154 d=128 r=184 d=210 r=250 d=300 r=310 

0 370.3249 370.1734 370.1244 370.4785 370.4629 370.4507 370.4287 370.4203 

0.2 60.2597 60.6483 60.6136 60.5837 60.5736 60.5657 60.5520 60.5458 

0.5 14.1478 15.8559 18.8582 22.3207 27.8594 31.5967 34.5804 37.6919 

1 6.4380 6.4179 6.4121 6.4050 6.403 6.4012 6.3984 6.3971 

1.5 4.2496 4.2422 4.2412 4.2409 4.241 4.2412 4.2416 4.2418 

2 4.1553 4.1418 4.1279 4.1248 4.1226 4.1241 4.1218 4.1212 

2.5 2.9261 2.9319 2.935 2.9384 2.9397 2.8408 2.9428 2.9438 

10 

3 2.8390 2.8473 2.8412 2.8454 2.8482 2.8486 2.8612 2.8622 

0 372.8154 373.5748 373.4971 373.4315 373.4098 373.3928 373.3637 373.3506 

0.2 61.6806 61.9365 61.8849 61.8422 62.2148 62.1985 62.1709 62.1586 

0.5 14.1500 15.8597 18.8891 22.4071 28.4054 31.9773 35.1028 38.3823 

1 7.4449 7.5837 7.9093 7.8825 7.8739 7.8683 7.8562 7.8412 

1.5 5.1283 5.3847 5.5755 5.541 5.5466 5.5432 5.5375 5.535 

2 4.9619 5.0777 5.0618 5.0485 5.0441 5.0408 5.0348 5.0322 

2.5 3.5227 3.6714 3.6602 3.6404 3.6472 3.6446 3.6402 3.6382 

20 

3 3.1273 3.235 3.2336 3.1593 3.0408 3.0057 3.0912 3.0451 

0 376.4743 375.8694 375.6494 376.7775 376.6843 376.6121 375.4807 376.4369 

0.2 63.1951 62.8206 62.6296 63.6885 64.6048 63.5394 63.429 63.3798 

0.5 14.1521 15.8684 18.9584 25.4187 28.4619 32.3134 36.3387 40.6634 

1 9.5690 9.1343 10.2641 10.0939 10.038 9.9954 9.9204 9.8873 

1.5 7.2930 6.9997 6.8862 7.4706 7.4219 7.2828 7.3724 7.343 

2 5.5708 6.9178 6.8014 6.7862 6.7528 6.7264 7.3187 7.2895 

2.5 4.4104 4.553 4.4884 4.1814 4.4128 4.3962 4.3691 4.3546 

50 

3 3.3133 3.2875 3.2752 3.3543 3.2287 3.2412 3.218 3.079 

0 379.8438 380.0651 379.468 380.8988 380.1476 380.9664 380.645 380.5326 

0.2 66.473 67.0368 66.4626 67.5274 68.6968 67.5233 66.3782 67.2609 

0.5 14.1548 15.8736 18.9994 25.5808 28.72 32.867 37.1145 43.0096 

1 12.9936 12.5612 12.3591 12.2791 12.1491 12.0486 12.8754 12.7984 

1.5 8.7563 10.4123 8.0539 10.1268 9.9829 10.8791 10.7046 10.6271 

2 8.0250 8.1923 7.9957 7.8276 7.2648 8.2122 8.1201 8.0785 

2.5 4.7750 4.8275 4.8463 4.4212 4.6804 4.6310 4.7766 4.5746 

80 

3 3.3574 3.3015 3.3218 3.4881 3.2848 3.2871 3.2409 3.2128 

0 382.5175 382.3686 384.1016 383.1883 382.8531 383.5751 384.8227 384.568 

0.2 68.7734 69.3108 70.2784 70.0997 70.7898 69.5977 71.0907 70.8589 

0.5 14.1559 15.8804 22.6024 25.608 29.3161 33.418 37.3591 43.6922 

1 15.4494 15.3053 14.6463 16.2296 15.9785 15.7845 15.4643 15.3231 

1.5 12.6085 12.5006 10.9642 12.9444 12.7502 12.5996 12.3462 12.2437 

2 8.8927 8.8310 8.6804 8.9639 8.4206 8.8081 8.6908 8.6379 

2.5 5.0100 5.6918 5.5459 4.6848 5.2460 5.5419 5.5807 4.7591 

120 

3 3.4573 3.395 3.5591 3.6912 3.4284 3.3246 3.2737 3.2645 

0 384.2239 386.5796 385.1288 387.373 385.8407 386.4388 386.7839 386.0365 

0.2 70.5153 71.5145 72.6398 73.1801 72.3037 72.9716 72.3399 72.0671 

0.5 14.1577 15.9015 22.7188 25.8141 29.6804 34.1542 39.5554 43.8253 

1 16.9408 18.6601 17.5451 19.7698 18.6539 20.3257 18.7867 18.5526 

1.5 12.2134 14.2683 12.5088 14.4206 14.1628 14.9637 14.631 14.4841 

2 9.0667 8.8644 8.822 10.0023 8.6487 9.0408 8.7816 9.1538 

2.5 5.5612 5.6926 5.5704 5.6486 5.4084 5.5755 5.6012 5.4612 

150 

3 3.5090 3.5400 3.7306 3.8208 3.482 3.4801 3.5093 3.4282 

0 387.447 388.2507 389.6179 389.1504 388.8049 389.4549 389.103 388.5301 

0.2 73.1508 74.9996 75.4294 74.8515 75.7082 76.5914 75.5420 74.1564 

0.5 14.1597 19.214 23.3741 26.4671 32.882 36.3196 40.7514 44.7805 

1 22.5858 22.7572 23.0163 24.3722 24.7106 24.4037 21.8757 25.246 

1.5 16.2569 16.0478 17.6469 17.9284 14.7109 16.8002 17.8221 16.2505 

2 12.3286 9.7895 9.6321 10.8232 9.2857 9.7366 9.4044 10.464 

2.5 6.1657 6.1475 5.9915 7.6160 5.9785 5.9303 5.9601 6.0182 

200 

3 3.8975 3.8469 3.9399 3.9309 3.8899 3.8759 3.8542 3.9593 

0 388.4575 391.5186 391.5157 390.2163 389.5464 390.7034 390.2602 390.9128 

0.2 73.1754 75.4085 75.5103 74.9469 77.1557 77.7566 76.2458 75.7910 

0.5 14.1608 19.4126 23.9368 27.4073 34.6230 38.1640 41.0873 47.4505 

1 23.8308 23.8382 24.3542 24.9451 24.9974 24.6088 22.0255 25.3442 

1.5 16.9938 17.6424 18.5751 18.2018 15.5393 17.3372 18.5917 17.4301 

2 12.4228 10.0785 9.846 10.844 9.7027 10.2025 10.7507 10.6497 

2.5 6.3920 6.3641 6.2022 8.0253 6.2669 6.2242 6.1504 6.2414 

240 

3 3.9073 3.9527 3.9826 3.9822 3.9737 3.9182 3.9805 3.9689 

Table 9 - 3: ARL values for individual EWMA control charts for the Pareto distribution (λ=0.3 

and L=4.2802) 
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λ, L k d=25 r=37 d=42 r=68 d=57 r=93 d=86 r=112 d=105 r=154 d=128 r=184 d=210 r=250 d=300 r=310 

0 371.0686 372.2257 372.3168 372.5054 372.1251 371.8435 372.5403 372.3044 

0.2 60.9335 61.3753 61.4515 63.3798 63.0688 62.8168 63.4250 63.2101 

0.4 15.1390 15.5543 15.6407 15.8120 15.5393 15.3280 15.8912 15.7070 

0.6 12.4804 12.0728 12.0710 12.1016 12.8840 12.7145 12.0243 12.8800 

0.8 8.7751 8.9702 9.0216 9.1079 8.9888 8.8953 9.1535 9.0730 

1 6.3109 6.3460 6.2750 6.2272 6.1390 6.0693 6.1500 6.0930 

1.5 4.4522 4.3461 4.3275 4.3170 4.2848 4.3400 4.2848 4.2750 

2 4.0555 4.0040 3.9982 4.0016 3.9861 3.9737 4.0017 3.9912 

2.5 3.2793 3.2668 3.2390 3.2231 3.2245 3.2171 3.2041 3.1980 

λ=0.05 

L=2.0355 

3 2.8437 2.7061 2.6939 2.6812 2.8757 2.6812 2.6682 2.6645 

0 370.4842 370.7579 372.7135 372.5057 372.0361 372.8279 372.1437 371.8464 

0.2 63.1757 63.0248 63.5782 63.3593 62.9842 63.7219 63.1709 63.8057 

0.4 15.0033 15.4289 15.3570 16.0682 15.7553 15.5143 15.7799 15.5730 

0.6 12.5791 12.1462 12.9577 12.8035 12.1628 12.9519 12.1910 12.0084 

0.8 8.4028 8.1820 8.0226 8.2868 8.1248 8.0084 8.1828 8.0777 

1 8.1239 8.0370 9.1668 9.0843 8.9715 9.1842 9.0213 8.9578 

1.5 5.4807 5.4145 5.3914 5.3604 5.4130 5.3968 5.4024 5.3793 

2 4.0890 4.0512 4.0271 4.0234 4.0325 4.0191 3.9957 4.0305 

2.5 3.0341 3.0231 3.0321 3.0187 3.0109 3.0289 3.0182 3.0128 

λ=0.08 

L=2.2624 

3 2.6488 2.6260 2.6218 2.6099 2.6179 2.6135 2.6079 2.6042 

0 370.9905 373.8230 372.2101 375.0144 373.4530 373.0275 372.3300 372.0275 

0.2 60.8019 62.9125 61.5730 63.1695 62.6962 62.3361 61.7534 61.4844 

0.4 15.4884 17.0339 15.9055 15.6489 16.8413 16.5570 16.0704 15.8464 

0.6 12.1021 12.5522 12.5575 14.0202 12.3032 14.0484 12.5957 12.4018 

0.8 8.7157 9.5357 8.9073 10.0518 10.8010 10.6066 10.2796 10.1344 

1 7.7246 8.4026 7.9357 8.3457 8.1932 8.0739 7.8706 7.7795 

1.5 5.8480 5.7060 6.5024 6.3605 6.3123 6.2739 6.4395 6.4048 

2 4.1690 4.1751 4.1215 4.1446 4.1270 4.1228 4.0880 4.0786 

2.5 3.3484 3.3040 3.3107 3.2842 3.2736 3.2759 3.2860 3.2893 

λ=0.10 

L=2.5995 

3 2.8245 2.8279 2.8082 2.8148 2.8082 2.8028 2.7935 2.7891 

0 371.6042 372.6375 372.5218 373.9336 373.5260 373.2069 373.9198 373.7154 

0.2 62.1015 62.1257 62.7357 63.6827 63.2840 64.0288 63.4697 64.6481 

0.4 14.9310 15.0096 15.0516 15.7251 15.6861 15.4044 15.4879 16.2260 

0.6 14.6826 12.7936 14.0540 14.0270 14.3968 14.1548 12.9396 14.2786 

0.8 10.2007 10.2239 10.1687 10.0687 9.8436 10.3935 10.0606 9.9131 

1 9.0259 9.1227 9.1840 9.1939 9.4860 9.3253 9.5140 9.3984 

1.5 6.2060 6.1714 6.1528 6.1412 6.0781 6.0280 6.0788 6.0373 

2 4.9324 4.8880 4.8427 4.8259 4.8122 4.8451 4.8093 4.8235 

2.5 3.6912 3.6884 3.6875 3.6880 3.6848 3.6468 3.6431 3.6450 

λ=0.12 

L=3.1037 

3 2.9771 2.9500 2.9357 2.9315 2.9348 2.9360 2.9164 2.9109 

0 371.5590 372.4697 373.7539 373.0068 373.5302 373.1688 373.1214 373.8128 

0.2 63.4884 63.6420 64.7217 64.9357 64.4886 64.1639 64.1053 64.8208 

0.4 16.0108 16.2301 16.2823 16.3968 17.4687 17.1434 16.6075 17.6282 

0.6 12.8993 12.9775 15.0414 15.3425 14.9752 16.0971 14.5148 14.2663 

0.8 12.3548 12.9324 14.1602 14.3154 14.0050 12.7573 14.3984 14.1808 

1 9.8242 9.4884 9.5245 9.7506 9.5410 9.3784 9.6816 9.5439 

1.5 6.6378 6.4809 6.5517 6.5460 6.4805 6.6378 6.5454 6.4840 

2 5.0978 5.0918 5.0053 5.0189 5.0464 5.0332 4.9828 4.9734 

2.5 3.8060 3.8090 3.7939 3.7554 3.7720 3.7510 3.7516 3.7578 

λ=0.15 

L=3.2512 

3 3.0930 3.0457 3.0455 3.0332 3.0255 3.0195 3.0214 3.0163 

0 372.4402 371.0686 372.7930 372.8423 372.7573 372.3402 371.6871 372.8643 

0.2 64.3964 63.4610 62.8841 64.4840 64.3953 64.0289 64.4451 64.3914 

0.4 14.6188 15.3008 15.3572 14.9712 17.0968 17.6863 17.1286 17.1906 

0.6 14.3508 14.2048 14.3648 14.4060 12.6848 15.8004 14.2889 14.8708 

0.8 10.4488 12.0810 10.3487 10.6133 10.2395 10.4646 10.0982 12.0703 

1 8.8404 10.4643 10.2506 10.5789 10.3772 10.0348 9.6933 9.9371 

1.5 6.5982 7.4577 7.0014 6.6306 6.5090 8.6027 8.3322 8.2217 

2 6.4334 6.7846 6.6148 6.4663 6.4164 6.3759 7.0030 6.9625 

2.5 4.5289 4.5990 4.5324 4.4645 4.4543 4.4371 4.6484 4.6331 

λ=0.20 

L=3.9786 

3 3.3575 3.3753 3.3457 3.3188 3.3093 3.3019 3.2886 3.2793 

Table 9 - 4: ARL values for individual EWMA control charts for the Pareto 

distribution (m=150) for various positive shifts 

 



 334 

 

λ, L k d=25, r=37 d=42, r=68 d=57, r=93 d=86, r=112 d=105, r=154 d=128, r=185 d=210, r=250 d=300, r=310 

0 371.0686 372.2257 372.3168 372.5054 372.1251 371.8435 372.5403 372.3044 
-0.2 61.5107 61.9370 62.0895 61.6233 61.9641 61.8428 61.6091 62.0128 

-0.4 14.8954 16.0704 16.0378 15.7715 15.9339 15.8697 15.7323 15.9368 

-0.6 12.2709 12.3648 12.4021 12.2572 12.4091 12.3684 12.2881 12.3968 

-0.8 10.1777 10.8150 10.7934 10.6930 10.7371 10.7212 10.6845 10.7312 

-1 9.5712 9.5781 9.5981 9.5364 9.5984 9.5712 9.5516 9.6125 

-1.5 6.2316 6.2052 6.1993 6.1881 6.1781 6.1702 6.1757 6.1693 

-2 5.4875 5.4457 5.4284 5.4157 5.4148 5.4101 5.4018 5.4036 

-2.5 3.9936 3.9621 3.9371 3.9373 3.9341 3.9309 3.9371 3.9345 

λ=0.05 

L=2.0355 

-3 2.3643 2.5010 2.4844 2.4871 2.4844 2.4846 2.4805 2.4899 

0 370.4842 370.7579 372.7135 372.5057 372.0361 372.8279 372.1437 371.8464 
-0.2 60.5452 60.5703 60.4481 61.6039 61.4844 61.3726 61.5000 61.4173 

-0.4 14.0640 14.0353 14.1014 14.0528 14.1254 14.0918 14.8048 14.7548 

-0.6 12.1721 12.1288 12.0889 12.1054 12.0750 12.1037 12.0626 12.0989 

-0.8 9.5228 9.4684 9.4575 9.4318 9.4399 9.4253 9.4289 9.4173 

-1 8.7320 8.7048 8.7090 8.6870 8.6912 8.6815 8.6896 8.6819 

-1.5 5.5932 5.5442 5.5484 5.5436 5.5375 5.5328 5.5353 5.5316 

-2 4.8443 4.8448 4.8286 4.8222 4.8235 4.8212 4.8187 4.8170 

-2.5 3.4072 3.3900 3.3732 3.3793 3.3775 3.3757 3.3733 3.3734 

λ=0.08 

L=2.2624 

-3 2.0844 2.1757 2.1703 2.1648 2.1631 2.1617 2.1593 2.1571 

0 370.9905 373.8230 372.2101 375.0144 373.4530 373.0275 372.3300 372.0275 
-0.2 59.9330 59.9606 59.6448 60.6224 60.5214 60.4419 60.7532 60.6864 

-0.4 12.3055 12.8444 12.9026 12.9686 12.9315 12.8844 12.8205 12.7916 

-0.6 10.8912 10.8481 10.8700 10.7968 10.7723 10.8423 10.8079 10.7933 

-0.8 9.1800 9.0804 9.0789 9.0842 9.0708 9.0593 9.0399 9.0812 

-1 8.3489 8.3228 8.3212 8.2840 8.3154 8.3084 8.2848 8.2801 

-1.5 5.1806 5.1593 5.3142 5.3005 5.3068 5.3031 5.2869 5.2841 

-2 4.5784 4.5712 4.5480 4.5442 4.5422 4.5407 4.5571 4.5550 

-2.5 3.2102 3.1954 3.1915 3.1882 3.1869 3.1848 3.1840 3.1842 

λ=0.10 

L=2.5995 

-3 2.0233 2.1028 2.0964 2.0912 2.0893 2.0878 2.0843 2.0845 

0 371.6042 372.6375 372.5218 373.9336 373.5260 373.2069 373.9198 373.7154 
-0.2 59.2282 59.1900 59.2191 59.2701 59.1961 59.2698 59.9317 59.8888 

-0.4 12.8105 12.2593 12.2537 12.2724 12.2361 12.2559 12.2060 12.2402 

-0.6 10.2712 10.2330 10.2328 10.2448 10.2264 10.2373 10.2121 10.2322 

-0.8 8.6187 8.5737 8.5777 8.5488 8.8487 8.8281 8.8284 8.8420 

-1 8.1500 8.1284 8.1068 8.0902 8.0870 8.0809 8.0816 8.0848 

-1.5 4.8986 5.0095 5.0037 4.9982 4.9953 4.9969 4.9952 4.9934 

-2 4.3687 4.3548 4.4484 4.4442 4.4424 4.4412 4.4397 4.4377 

-2.5 3.1223 3.1273 3.1228 3.1970 3.1952 3.1937 3.1912 3.1901 

λ=0.12 

L=3.1037 

-3 2.0355 2.0178 2.0122 2.0075 2.0060 2.0048 2.0027 2.0017 

0 371.5590 372.4697 373.7539 373.0068 373.5302 373.1688 373.1214 373.8128 
-0.2 57.5799 57.6033 57.5140 57.5716 57.5150 57.5486 57.4815 57.5721 

-0.4 12.2527 12.5543 12.5537 12.5271 12.5489 12.5271 12.5317 12.5154 

-0.6 9.6821 9.6446 9.6393 9.6309 9.6350 9.6250 9.6303 9.6225 

-0.8 8.3530 8.3044 8.3012 8.2844 8.2875 8.2812 8.2842 8.2884 

-1 7.6030 7.5716 7.5484 7.7193 7.7128 7.7127 7.7064 7.7093 

-1.5 4.7141 4.6984 4.6934 4.6895 4.6884 4.6871 4.6848 4.6848 

-2 4.2488 4.2359 4.3164 4.3128 4.3105 4.3091 4.3073 4.3063 

-2.5 3.1253 3.0973 3.0916 3.0869 3.0843 3.0841 3.0821 3.0812 

λ=0.15 

L=3.2512 

-3 1.6215 1.6214 1.6216 1.6219 1.6220 1.6221 1.6224 1.6225 

0 372.4402 371.0686 372.7930 372.8423 372.7373 372.3402 371.6871 372.8643 
-0.2 57.3446 57.2334 57.3612 57.2548 57.2222 57.4255 57.3750 57.3537 

-0.4 12.5448 12.5034 12.5536 12.5072 12.4840 12.4800 12.5543 12.5468 

-0.6 9.0842 9.0350 9.0481 9.0251 9.0172 9.0122 9.0442 9.0393 

-0.8 7.7105 7.6826 7.6845 7.6825 7.6484 7.6441 7.6487 7.6844 

-1 7.1817 7.1612 7.1517 7.1552 7.1528 7.1509 7.1488 7.1464 

-1.5 4.4375 4.4245 4.4219 4.4184 4.4172 4.4163 4.4842 4.4843 

-2 4.1289 4.1263 4.1225 4.1090 4.1079 4.1075 4.1061 4.1054 

-2.5 2.6152 2.6168 2.6175 2.6184 2.6189 2.6191 2.6196 2.6199 

λ=0.20 

L=3.9786 

-3 1.3487 1.3524 1.3541 1.3557 1.3544 1.3548 1.3577 1.3571 

Table 9 - 5: ARL values for individual EWMA control charts for the Pareto 

distribution (m=150) for various negative shifts 
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λ, L k d=25, r=37 d=42, r=68 d=57, r=93 d=86, r=112 d=105, r=154 d=128, r=185 d=210, r=250 d=300, r=310 

0 362.6182 364.0573 364.1686 364.3712 364.9842 364.6895 364.4452 364.1759 

0.2 72.7362 73.0621 73.0351 73.0684 72.7771 72.5519 72.9796 72.7848 

0.4 18.8077 19.2536 20.6937 20.8441 20.6210 20.4548 20.8909 20.7355 

0.6 17.2012 17.1073 17.0401 17.0257 16.9054 16.8106 16.9690 16.8887 

0.8 14.0863 14.2848 14.3404 14.4030 14.3251 14.2634 15.3457 15.2822 

1 12.9573 12.9044 12.8705 12.8488 12.7957 12.7535 12.8061 12.7706 

1.5 9.1023 9.0398 9.0284 9.0222 9.0548 9.0362 9.0036 9.0550 

2 7.1222 7.1279 7.0932 7.0691 7.0544 7.0464 7.0412 7.0327 

2.5 5.4819 5.4371 5.4163 5.4021 5.3995 5.3936 5.3732 5.3737 

λ=0.05 

L=2.0355 

3 3.9964 3.9734 3.9680 3.9630 3.9577 3.9552 3.9548 3.9537 

0 364.3440 364.3691 368.6142 368.1697 368.7057 368.2595 368.5737 368.2191 

0.2 73.4425 73.9720 73.6079 75.0501 73.6444 75.0579 73.4873 75.0701 

0.4 19.5484 20.7357 20.9722 20.7151 21.0121 20.8175 20.8934 20.7342 

0.6 17.4841 17.2062 17.3486 17.2757 17.3731 17.2715 17.2842 17.2021 

0.8 14.5939 14.5415 14.4018 14.4288 14.3482 14.4287 14.3127 14.3723 

1 12.5442 12.4861 12.4880 12.4469 12.4801 12.4290 12.4488 12.4127 

1.5 8.6428 8.6259 8.6120 8.6321 8.6121 8.6241 8.5953 8.5964 

2 6.6430 6.6100 6.6025 6.5906 6.5784 6.5706 6.5727 6.5753 

2.5 5.0688 5.0544 5.0545 5.0412 5.0354 5.0339 5.0257 5.0219 

λ=0.08 

L=2.2624 

3 3.9061 3.8825 3.8754 3.8714 3.8687 3.8646 4.0284 4.0260 

0 364.8935 368.2284 369.1284 368.3775 369.5209 368.9591 368.0462 368.6433 

0.2 73.8444 73.4526 73.9345 75.0212 75.5443 75.2184 73.6424 75.2154 

0.4 20.3937 20.5089 19.8219 20.1268 19.8961 20.6800 20.3263 20.1697 

0.6 16.8454 16.8417 16.9645 17.1273 16.9759 16.8648 16.6889 16.5934 

0.8 14.3506 14.3088 14.0680 14.1273 14.0600 12.9978 14.1806 14.1263 

1 12.3737 12.3409 12.3702 12.2284 12.1812 12.3187 12.2464 12.2124 

1.5 8.2805 8.2590 8.2601 8.2127 8.1975 8.5571 8.5284 8.5152 

2 6.4841 6.4593 6.4555 6.4306 6.4219 6.4379 6.4250 6.4190 

2.5 4.8457 4.9984 4.9818 4.9770 4.9714 4.9648 4.9708 4.9648 

λ=0.10 

L=2.5995 

3 3.8484 3.8484 3.8480 3.8464 3.8433 3.8406 3.8259 3.8237 

0 368.4840 366.7542 368.4163 368.7730 369.1784 368.6330 368.8232 369.5028 

0.2 73.8640 75.0075 73.3759 73.6017 73.8172 73.4872 73.6484 75.0148 

0.4 20.9642 20.9645 21.0235 20.6826 20.7935 20.5786 20.6431 20.8648 

0.6 16.6828 16.6434 17.4303 17.2330 17.2700 17.4012 17.1888 17.3080 

0.8 14.0337 12.9775 12.9550 12.9336 12.8648 12.9195 12.9195 12.8681 

1 12.2591 12.2003 12.1759 12.1573 12.1093 12.1284 12.1248 12.1018 

1.5 8.3073 8.2793 8.2548 8.2302 8.2319 8.2180 8.2040 8.2126 

2 6.3372 6.3231 6.3041 6.2898 6.2877 6.2812 6.2734 6.2690 

2.5 4.8082 4.7846 4.7772 4.7598 4.7542 4.7573 4.7548 4.7517 

λ=0.12 

L=3.1037 

3 3.7127 3.7057 3.6986 3.6972 3.6937 3.6937 3.6891 3.6931 

0 368.6882 369.5457 368.6843 369.2786 368.5773 369.2882 369.6148 369.1219 

0.2 75.0412 73.7370 73.9754 75.3406 73.8820 75.3245 73.6843 75.2062 

0.4 20.4054 21.1206 21.2848 20.9869 21.1625 20.9318 20.9908 20.8126 

0.6 17.1869 17.0122 16.8440 16.9121 17.0354 17.8486 16.9398 16.8425 

0.8 14.8052 14.8093 15.7160 15.9322 15.6448 15.2535 15.9375 15.8798 

1 10.9072 12.0348 12.0339 10.9541 10.9684 10.9373 10.9328 10.9693 

1.5 8.0431 8.0173 7.9880 7.9934 7.9778 7.9822 7.9778 7.9682 

2 6.0532 6.1914 6.1817 6.1635 6.1644 6.1593 6.1522 6.1481 

2.5 4.6455 4.6321 4.6230 4.6164 4.6143 4.6120 4.6082 4.6106 

λ=0.15 

L=3.2512 

3 3.5703 3.6488 3.6420 3.6354 3.6333 3.6314 3.6280 3.6264 

0 366.6871 369.7277 369.1909 372.2057 369.2500 370.5393 369.3996 368.9148 

0.2 75.2600 75.5364 75.0371 75.7954 75.2461 75.8284 75.1464 73.8400 

0.4 20.9364 21.2688 20.4416 21.3218 21.0290 20.8031 20.4250 20.2571 

0.6 16.8415 17.1686 16.7170 17.1263 16.9802 17.8481 16.6407 17.4128 

0.8 12.6812 14.9573 14.1863 12.9306 12.8452 12.7777 14.1206 14.0689 

1 10.6221 12.8648 12.9707 12.8264 12.5775 12.5373 10.9143 12.8793 

1.5 8.8702 8.8168 7.8445 7.7935 7.7778 9.7541 9.7354 9.8836 

2 7.8751 7.9644 7.9370 7.2377 7.2322 7.2369 7.9375 7.9331 

2.5 5.4461 5.4284 5.4190 5.5124 5.5084 5.5054 5.4898 5.4872 

λ=0.20 

L=3.9786 

3 3.8455 3.8288 3.8223 3.8161 3.8128 3.8121 3.8088 3.8073 

Table 9 - 6: ARL values for individual EWMA control charts for the Pareto distribution 

(m=150) for various positive shifts for the case of not using the skewness correction term when 

constructing the control limits of the chart 
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9.7 Optimal Choice for the Parameters of the EWMA Control Charts for 

Individual Observations from the Pareto Distribution 

When constructing an EWMA control chart, there are two parameters 

involved in the way the chart is going to perform, namely the constant λ which 

affects the weight we give to the past values of our observations and the value of 

L which affects the width of the chart’s control limits. Therefore, we need to find 

the combination of the values of those two parameters which will lead us to the 

optimal performance of our control chart. 

As discussed in Section 6.7, a lot of research has been done on optimal 

design of control charts by minimizing the out-of-control value of various 

performance criteria. Since all the study here has been based on ARL (which is 

the most commonly used performance criterion) the optimal design of the EWMA 

control chart will be done by minimizing the ARL. The algorithm applied here is 

as follows: 

� Step 1: Set the desired in-control ARL value (e.g. ARL0=370) and the size 

of the mean shift k to be detected (e.g. k = 0.5). 

� Step 2: Set an initial value L = 1. 

� Step 3: Vary the parameter λ (e.g. increasing by 0.01) so as λ œ (0,1] and 

(using a nonlinear equation solver) find the value of λ for which the ARL0 

value in Step 1 is satisfied. 

� Step 4: Calculate the ARL1 value for the particular combination of λ and L 

resulting from Step 3. [The ARL1 value is obtained as described in the 

previous section, using equation (9-8) for the computation of the transient 

probabilities along with equation (5-2) for the cumulative distribution 

function of the Pareto distribution.] 

� Step 5: Increase L by 0.01. 

� Step 6: Repeat Steps 3-5 until the minimum ARL1 value has been reached 

(i.e. until the ARL1 value for L+0.01 is larger than the ARL1 value for L). 

� Step 7: Keep the combination of λ and L resulting from Step 6 for which 

the smallest ARL1 value is obtained as the desired optimal one for the 

selected shift size in Step 1. 
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� Step 8: Repeat Steps 2-7 for all the desired values of shifts to be detected 

(e.g. k = {-3, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3}). 

Application of this algorithm yields Table 9-7 and Table 9-8 which present the 

optimal combination of values of the two parameters of concern (λ and L) of the 

EWMA chart with the corresponding ARL values for various values of the 

parameters d and r of the Pareto distribution and various positive and negative 

values, respectively, of k, which shows the shift of the process mean in terms of 

the process standard deviation which we want to be detected by the control chart 

we construct.  
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k d=25, r=37 d=42, r=68 d=57, r=93 d=86, r=122 d=105, r=154 d=128, r=185 d=210, r=250 d=300, r=310 

(0.73, 3.99) (0.73, 4.21) (0.75, 4.07) (0.73, 4.84) (0.73, 4.34) (0.75, 4.57) (0.72, 2.82) (0.75, 4.98) 0.2 
(369.8335, 60.7545) (369.9863, 60.832) (369.2348, 61.2441) (370.6121, 61.5754) (369.398, 61.1227) (369.9551, 61.4099) (369.6978, 61.4814) (369.6884, 61.1759) 

(0.73, 4.98) (0.75, 4.25) (0.75, 4.07) (0.75, 4.75) (0.73, 4.32) (0.75, 4.59) (0.75, 4.83) (0.73, 4.98) 
0.4 

(369.4259, 15.2706) (369.6205, 15.289) (369.2357, 15.061) (369.8235, 15.9093) (369.8148, 15.5072) (369.2773, 15.6428) (369.0123, 15.0036) (369.6884, 15.1028) 

(0.75, 4.99) (0.72, 2.12) (0.73, 2.97) (0.72, 2.75) (0.72, 3.38) (0.73, 3.54) (0.72, 2.82) (0.72, 3.01) 
0.6 

(369.1803, 12.5445) (369.6287, 12.3102) (369.1517, 12.2571) (369.5157, 12.1226) (369.7338, 12.1824) (369.4372, 12.1935) (369.6978, 12.2109) (369.1641, 12.3277) 

(0.73, 3.99) (0.75, 4.25) (0.75, 4.07) (0.73, 4.84) (0.73, 4.34) (0.75, 4.57) (0.75, 4.81) (0.75, 4.98) 
0.8 

(369.8335, 8.3142) (369.6205, 8.2545) (369.2357, 8.7502) (370.6121, 8.6224) (369.398, 8.4526) (369.9551, 8.4254) (370.8107, 8.6682) (369.6884, 8.8603) 

(0.73, 3.99) (0.75, 4.25) (0.75, 4.07) (0.73, 4.84) (0.75, 4.32) (0.75, 4.57) (0.75, 4.81) (0.75, 4.98) 
1 

(369.8335, 6.7017) (369.6205, 6.0457) (369.2357, 6.846) (370.6121, 6.8333) (369.8148, 6.3428) (369.9551, 6.6845) (370.8107, 6.8643) (369.6884, 6.0023) 

(0.75, 4.99) (0.75, 4.21) (0.75, 4.02) (0.75, 4.75) (0.73, 4.34) (0.75, 4.57) (0.75, 4.81) (0.73, 3.99) 
1.2 

(369.1803, 5.7062) (369.9863, 5.7389) (369.3446, 5.5393) (370.6121, 5.0961) (369.398, 5.0838) (369.9551, 5.9124) (370.8107, 5.1071) (369.3178, 5.7733) 

(0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) 
1.4 

(371.0987, 5.0937) (371.8489, 5.0103) (371.8982, 4.9822) (371.9791, 4.9632) (371.1951, 4.9861) (371.3207, 4.9754) (371.2844, 4.9682) (371.262, 4.9723) 

(0.01, 1) (0.77, 20) (0.77, 20) (0.02, 1.3) (0.02, 1.31) (0.75, 20) (0.02, 1.3) (0.75, 20) 
1.6 

(371.2209, 4.1936) (369.0535, 4.2752) (369.2183, 4.034) (371.9791, 4.4457) (371.1951, 4.4046) (369.3245, 4.2214) (371.2844, 4.3795) (369.3171, 4.2121) 

(0.03, 1.61) (0.02, 1.3) (0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) 
1.8 

(371.9642, 4.1252) (371.8489, 4.0935) (372.8936, 4.0535) (372.9375, 4.0099) (372.6463, 3.9937) (372.4575, 3.9825) (372.1512, 3.961) (17.9918, 3.951) 

(0.03, 1.61) (0.02, 1.3) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) 
2 

(371.9642, 3.6289) (371.8489, 3.6339) (371.8982, 3.6464) (371.9791, 3.6873) (371.1951, 3.6846) (371.3207, 3.6934) (371.2844, 3.6841) (371.262, 3.6354) 

(0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) 
2.2 

(371.2209, 3.4552) (372.9195, 3.378) (372.8936, 3.3557) (372.9375, 3.3548) (372.6863, 3.3517) (372.4575, 3.3505) (372.1512, 3.3507) (17.9918, 3.3524) 

(0.03, 1.61) (0.03, 1.6) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) 
2.4 

(371.9642, 3.1262) (371.1248, 3.0937) (371.8982, 3.1282) (371.9791, 3.1572) (371.1951, 3.1734) (371.3207, 3.1689) (371.2844, 3.1864) (371.262, 3.1452) 

(0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) (0.01, 1) (0.04, 1.87) 
2.6 

(371.2209, 2.9371) (372.9195, 2.951) (372.8936, 2.9615) (372.9375, 2.9712) (372.6863, 2.9701) (372.4575, 2.9716) (372.1512, 2.9798) (371.6123, 2.9848) 

(0.03, 1.61) (0.03, 1.6) (0.03, 1.6) (0.02, 1.3) (0.02, 1.31) (0.02, 1.3) (0.02, 1.3) (0.02, 1.31) 
2.8 

(371.9642, 2.7514) (371.1248, 2.751) (371.937, 2.7288) (371.9791, 2.773) (371.1951, 2.8126) (371.3207, 2.7771) (371.2844, 2.806) (371.262, 2.7933) 

(0.01, 1) (0.04, 1.87) (0.04, 1.87) (0.04, 1.87) (0.04, 1.88) (0.04, 1.87) (0.04, 1.87) (0.04, 1.87) 
3 

(371.2209, 2.6306) (371.0808, 2.6841) (371.9815, 2.6828) (371.9343, 2.6603) (371.9077, 2.638) (371.1989, 2.6435) (371.7916, 2.6459) (371.6123, 2.6424) 

Table 9 - 7: Optimal combinations (λ*, L*) (row above the dotted lines for each cell) for the individual EWMA control charts for 

the Pareto distribution and the corresponding in-control and out-of-control ARL values (ARL0, ARL1) (row below the dotted lines 

for each cell) for various values of positive shifts k (m=150) 
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k d=25, r=37 d=42, r=68 d=57, r=93 d=86, r=122 d=105, r=154 d=128, r=185 d=210, r=250 d=300, r=310 

(0.72, 3.01) (0.75, 4.25) (0.75, 4.07) (0.73, 3.75) (0.73, 4.34) (0.73, 3.54) (0.73, 3.82) (0.75, 4.99) -0.2 
(369.9802, (369.6205, (369.2357, 60.5044) (369.8805, 60.2163) (369.398, 60.938) (369.4372, (369.0546, 60.4008) (369.0307, 

(0.98, 2.57) (0.98, 2.54) (0.98, 2.57) (0.98, 2.54) (0.98, 2.54) (0.98, 2.54) (0.96, 2.54) (0.98, 2.57) 
-0.4 

(372.975, (378.0593, (377.184, 15.8488) (373.3507, 15.6444) (373.5936, (373.1078, (373.7553, 15.7184) (375.9362, 

(0.98, 2.57) (0.98, 2.54) (0.98, 2.57) (0.98, 2.54) (0.98, 2.54) (0.98, 2.54) (0.98, 2.57) (0.98, 2.57) 
-0.6 

(372.975, (378.0593, (377.184, 12.5359) (373.3507, 12.4641) (373.5936, (373.1078, (377.7787, 12.5095) (375.9362, 

(0.98, 2.57) (0.98, 2.54) (0.98, 2.57) (0.98, 2.54) (0.98, 2.54) (0.98, 2.54) (0.98, 2.57) (0.98, 2.57) 
-0.8 

(372.975, 8.9376) (378.0593, 8.9375) (377.184, 8.9806) (373.3507, 8.937) (373.5936, (373.1078, 8.9521) (377.7787, 8.9754) (375.9362, 

(0.98, 2.57) (0.98, 2.54) (0.98, 2.57) (0.98, 2.54) (0.98, 2.54) (0.98, 2.54) (0.98, 2.57) (0.98, 2.57) 
-1 

(372.975, 6.6441) (378.0593, 6.6425) (377.184, 6.6899) (373.3507, 6.4623) (373.5936, (373.1078, 6.6457) (377.7787, 6.6899) (375.9362, 

(0.98, 2.57) (0.98, 2.54) (0.98, 2.57) (0.98, 2.54) (0.98, 2.54) (0.98, 2.54) (0.98, 2.57) (0.98, 2.57) 
-1.2 

(372.975, 5.4539) (378.0593, 5.4557) (377.184, 5.4845) (373.3507, 5.484) (373.5936, (373.1078, 5.4868) (377.7787, 5.4866) (375.9362, 

(0.98, 2.57) (0.98, 2.54) (0.98, 2.57) (0.98, 2.54) (0.98, 2.54) (0.98, 2.54) (0.98, 2.57) (0.98, 2.57) 
-1.4 

(372.975, 4.3545) (378.0593, 4.3575) (377.184, 4.3709) (373.3507, 4.3642) (373.5936, (373.1078, 4.3686) (377.7787, 4.3735) (375.9362, 

(0.98, 2.57) (0.98, 2.54) (0.98, 2.57) (0.98, 2.54) (0.98, 2.54) (0.98, 2.54) (0.98, 2.57) (0.98, 2.57) 
-1.6 

(372.975, 3.2712) (378.0593, 3.2752) (377.184, 3.2843) (373.3507, 3.2797) (373.5936, (373.1078, 3.2816) (377.7787, 3.2868) (375.9362, 

(0.98, 2.57) (0.98, 2.54) (0.98, 2.57) (0.98, 2.54) (0.98, 2.54) (0.98, 2.54) (0.98, 2.57) (0.98, 2.57) 
-1.8 

(372.975, 3.2108) (378.0593, 3.2126) (377.184, 3.2212) (373.3507, 3.218) (373.5936, (373.1078, 3.2195) (377.7787, 3.2234) (375.9362, 3.224) 

(0.98, 2.57) (0.98, 2.54) (0.98, 2.57) (0.98, 2.54) (0.98, 2.54) (0.98, 2.54) (0.98, 2.57) (0.98, 2.57) 
-2 

(372.975, 3.1639) (378.0593, 3.1683) (377.184, 3.1751) (373.3507, 3.1718) (373.5936, (373.1078, 3.173) (377.7787, 3.177) (375.9362, 

(0.98, 2.57) (0.98, 2.54) (0.98, 2.57) (0.98, 2.54) (0.98, 2.54) (0.98, 2.54) (0.98, 2.57) (0.98, 2.57) 
-2.2 

(372.975, 2.1218) (378.0593, 2.1238) (377.184, 2.1282) (373.3507, 2.1264) (373.5936, 2.127) (373.1078, 2.1275) (377.7787, 2.1287) (375.9362, 

(0.98, 2.57) (0.98, 2.54) (0.98, 2.57) (0.98, 2.54) (0.98, 2.54) (0.98, 2.54) (0.98, 2.57) (0.98, 2.57) 
-2.4 

(372.975, 2.1054) (378.0593, 2.1071) (377.184, 2.1206) (373.3507, 2.1093) (373.5936, (373.1078, 2.1099) (377.7787, 2.1217) (375.9362, 2.122) 

(0.98, 2.57) (0.98, 2.54) (0.98, 2.57) (0.98, 2.54) (0.98, 2.54) (0.98, 2.54) (0.98, 2.57) (0.98, 2.57) 
-2.6 

(372.975, 2.0841) (378.0593, 2.0862) (377.184, 2.0889) (373.3507, 2.0878) (373.5936, (373.1078, 2.0883) (377.7787, 2.0897) (375.9362, 

(0.98, 2.57) (0.98, 2.54) (0.98, 2.57) (0.98, 2.54) (0.98, 2.54) (0.98, 2.54) (0.98, 2.57) (0.98, 2.57) 
-2.8 

(372.975, 1.9689) (378.0593, 1.9697) (377.184, 1.9718) (373.3507, 1.9709) (373.5936, (373.1078, 1.9712) (377.7787, 1.9724) (375.9362, 

(0.98, 2.57) (0.98, 2.54) (0.98, 2.57) (0.98, 2.54) (0.98, 2.54) (0.98, 2.54) (0.98, 2.57) (0.98, 2.57) 
-3 

(372.975, 1.9541) (378.0593, 1.9546) (377.184, 1.9572) (373.3507, 1.9575) (373.5936, (373.1078, 1.9577) (377.7787, 1.9593) (375.9362, 

Table 9 - 8: Optimal combinations (λ*, L*) (row above the dotted lines for each cell) for the individual EWMA control charts for 

the Pareto distribution and the corresponding in-control and out-of-control ARL values (ARL0, ARL1) (row below the dotted lines 

for each cell) for various values of negative shifts k (m=150) 
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9.8 Examples on the Individual Pareto Probability-Type, Shewhart-Type and 

EWMA Control Charts 

This section is dedicated to the illustration of the proposed control 

charts by means of both simulated data generated from the distribution of 

concern and real data. The case of simulated data is presented in Subsection 

9.9.1, while the real data case is discussed in Subsection 9.9.2. 

 

 

9.9.1 Examples with Simulated Data from the Pareto Distribution 

Once again, the R programming language version 4.0.2 (R Core Team 

(2020)) has been used for the simulation procedure, which is presented in the 

next lines: Suppose we take a sample of n = 30 observations from a Pareto 

process as follows. First, we take a sample of 15 observations from a Pareto 

process with in-control d value equal to 54 and in-control r value equal to 68. 

Now suppose that a shift of one standard deviation unit occurs in the process 

mean, and after that shift, we draw another set of 15 observations from the 

process. The resulting data set can be seen in Table 9-9. For this data set, we 

construct the individual probability-type Pareto control chart shown in Figure 

9-1, using the most commonly used value for the significance level α = 

0.27%, as mentioned in Section 9-2. As we can see in Figure 9-1, there is an 

increasing trend after the first 15 observations and the control chart detects an 

out-of-control point indicating that an assignable cause has occurred in the 

process causing its mean to shift to an out-of-control level. 

For the same data set, we construct the individual Shewhart-type Pareto 

control chart shown in Figure 9-2, using L = 3.5493 standard deviations 

(which gives a desired value of in-control ARL close to 370). Figure 9-2 

presents an increasing trend after the first 15 observations and the control 

chart detects two out-of-control points indicating that an assignable cause has 

occurred in the process causing its mean to shift to an out-of-control level. 

Comparing this chart to the previous one (Figure 9-1), we observe that the 

Shewhart-type chart detects the shift sooner than the probability-type control 

chart. 
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69.36051536 68.96712115 68.12968429 70.77255643 70.92393351 

68.22971246 68.05579805 71.25504484 68.23515216 70.02474861 

68.46571824 68.44581946 69.65809923 68.12931190 68.52044245 

73.72568547 70.14012411 72.21420331 69.90486487 70.37417125 

73.57554491 74.10423378 70.96487403 76.15594664 69.81805034 

Data Set 1 

70.50767778 70.21280465 77.98746171 72.12578008 74.32275503 

Table 9 - 9: Data from a Pareto process with in control d=54, in-control r=68 

and a shift of one standard deviation unit in the process mean due to an 

increasing shift after the first 15 observations (gray shading) 

 

 

 

Figure 9 - 1: Individual probability type Pareto control chart for the data set 

in Table 9-9 with a shift of one standard deviation unit in the process mean 
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Figure 9 - 2: Individual Shewhart type Pareto control chart for the data set in 

Table 9-9 with a shift of one standard deviation unit in the process mean 

 

 

 

Using the data set in Table 9-9 for the case of a shift of one standard 

deviation unit, we now construct the individual EWMA Pareto control chart 

shown in Figure 9-2, using λ=0.05 and L = 2.1812 standard deviations (which 

gives a desired value of in-control ARL close to 370). As we can see, there is 

an increasing trend after the first 15 observations and the control chart gives 

an out-of-control signal after the 21st observation which, compared to Figure 

9-1, is sooner than the Shewhart-type control chart, as expected. 
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Figure 9 - 3: Individual EWMA type Pareto control chart for the data set in 

Table 9-9 with a shift of one standard deviation unit in the process mean 

 

 

 

9.8.2 Application of the Individual Pareto Probability-Type, Shewhart-Type 

and EWMA Control Charts to Real Data 

This section presents the usefulness of the proposed control charts using 

two real datasets. The first dataset comes from Goegebeur et al. (2005), used 

among others by Vandewalle et al. (2007), representing the calcium content in 

soil in the Condroz region in Belgium. This data set, however, is very large 

(1428 observations) and it is too right-skewed and long-tailed to be fitted by a 

Pareto distribution in its whole. Smaller samples of this data set, however, are 

great for fitting this distribution. Therefore, a sample of 30 consecutive 

observations from this data set has been chosen randomly after its 10th 

observation, and this sample is presented here (with its observations in 

random order) in Table 9-10. Another scenario will be analyzed immediately 

afterwards (Table 9-11). 
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First of all, when dealing with any dataset, the normality assumption 

should be checked. Both the Kolmogorov-Smirnov test and the Shapiro-Wilk 

normality test give a p-value < 0.01 which is a very clear indication that 

normality assumption does not hold for our data. For the case of the Pareto 

distribution, on the other hand, the Kolmogorov-Smirnov test gives an 

approximate p-value=0.586 with the presence of ties in our data and a p-

value=0.7912 without them. In both cases p-value is large. Therefore, we do 

not reject the null hypothesis that our data may be coming from the assumed 

distribution and this is an indication that the Pareto distribution fits our data 

well. 

The values of the parameters of our assumed Pareto distribution being 

equal to 3.9728 and 242.9444 for d and r, respectively, are going to be used 

for the construction of the individual probability-type control chart (along 

with the significance level value α=0.27%) and for the Shewhart-type control 

chart for our data, in conjunction with the value of L=3.6376 standard 

deviations (for which in-control ARL is close to 370). The resulting control 

charts can be seen in Figure 9-4 and Figure 9-5 for the probability-type and 

Shewhart-type control chart, respectively, which show all the observations 

being inside the control limits, which is an indication that the calcium content 

in soil is within the expected ranges. The Shewhart-type control chart, 

however, presents a point close to the upper control limit which needs 

attention. 

For the construction of the individual EWMA control chart for our data, 

using the same parameter values of the assumed Pareto distribution from the 

data in conjunction with the values of λ=0.05 and L=2.0836 standard 

deviations (for which in-control ARL is close to 370), the resulting control 

chart can be seen in Figure 9-6, which shows all the observations being inside 

the control limits, which, once again, is an indication that the calcium content 

in soil is within the expected ranges. 
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Figure 9 - 4: Individual probability type Pareto control chart for the Condroz 

calcium data set in Table 9-10 

 

 

 

 

 

337 278 293 385 405 248 296 317 281 618 

289 307 245 297 483 246 301 291 259 403 

300 259 247 348 522 255 271 393 251 315 

Table 9 - 10: First dataset of calcium content in soil in Condroz region in 

Belgium 
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Figure 9 - 5: Individual Shewhart type Pareto control chart for the Condroz 

calcium data set in Table 9-10 

 

 

Figure 9 - 6: Individual EWMA Pareto control chart for the Condroz calcium 

data set in Table 9-10 
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The second dataset represents breaking angles of chocolate cakes found 

by fixing one half of a slab of cake and then pivoting the other half about the 

middle until breakage occurs. The chosen data set is a subset of the data in 

Cohran and Cox (1959) and consists of two subsets of data regarding the last 

two of the three recipes considered there for the specific temperature of 205oC 

and is presented for convenience in Table 9-11. We are going to see whether 

the choice of recipe is significant, in other words whether the observations in 

the second data subset are significantly different or still in-control relatively 

to the observations from the first subset of our dataset. For the first subset of 

this dataset (first row of Table 9-11), the Shapiro-Wilk normality test gives a 

p-value equal to 0.008101 and and the Kolmogorov-Smirnov test gives an 

approximate p-value=0.02806 with the presence of ties in our data and a p-

value=0.0336 without them. The results of both tests are a very clear 

indication that normality assumption does not hold for our data. For the case 

of the Pareto distribution the Kolmogorov-Smirnov test gives very large p-

values (an approximate p-value=0.9251 with the presence of ties in our data 

and a p-value=0.9895 without them) which are evidence that we cannot reject 

the null hypothesis that our data may be coming from the assumed Pareto 

distribution. For the case of the second subset of our dataset (second row of 

Table 9-11), the Kolmogorov-Smirnov test for a Pareto distribution gives an 

approximate p-value=0.3752 with the presence of ties in our data and a p-

value=0.2115 without them, which is an indication that we do not have 

enough evidence to reject the null hypothesis that our data may be coming 

from the assumed Pareto distribution. The two processes corresponding to the 

two recipes for chocolate cakes are different. Let’s see if our control charts 

can detect that difference. 

The values of the parameters of our assumed Pareto distribution (for the 

case of recipe 3) being equal to 4.2621 and 23.6246 for d and r, respectively, 

are going to be used for the construction of the individual probability-type 

control chart (along with the significance level value α = 0.27%) and for the 

Shewhart-type control chart for our data, in conjunction with the value of 

L=5.4457 standard deviations (for which in-control ARL is close to 370). The 

resulting control charts can be seen in Figure 9-7 and Figure 9-8 for the 



 348 

probability-type and Shewhart-type control chart, respectively. Both charts 

present an out-of-control point below the lower control limit. This is an 

indication of a process improvement due to the fact that the breaking angle 

decreased with recipe 2 compared to using recipe 3. 

 

 

 

Figure 9 - 7: Individual probability type Pareto control chart for the breaking 

angles data set of Table 9-11 

 

 

 

Recipe 3 37 35 24 27 30 24 30 26 25 35 28 25 25 46 46 

Recipe 2 49 39 35 46 35 29 26 34 31 27 28 31 27 19 26 

Table 9 - 11: Breaking angles of chocolate cakes 
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Figure 9 - 8: Individual Shewhart type Pareto control chart for the breaking 

angles data set in Table 9-11 

 

 

For the construction of the individual EWMA control chart for our data, 

using the same parameter values of the assumed Pareto distribution from the 

data in conjunction with the values of λ=0.05 and L=3.5495 standard 

deviations (for which in-control ARL is close to 370), the resulting control 

chart can be seen in Figure 9-9, which, contrarily to the previous two charts, 

does not detect the out-of-control state of the process. This is probably due to 

the small λ value which gives bigger weight to the past much bigger values. 
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Figure 9 - 9: Individual EWMA Pareto control chart for the breaking angles 
data set of Table 9-11 

 

 

9.9 Control Charts for Individual Observations from the Pareto Distribution 

with the Scaled Weighted Variance Method 

The control charts for the Pareto distribution presented so far were based 

on the skewness correction method proposed by Chan and Cui (2003). It 

would be worth also investigating some other method for taking into account 

the distribution’s skewness, such as the scaled weighted variance method 

proposed by Castagliola (2000). This method is going to be used hereafter for 

the construction and investigation of the performance of the control charts for 

individual observations from the Pareto distribution and the comparison with 

the control charts of the preceding sections of this chapter. 
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9.9.1. Construction of Shewhart-type Control Charts for Individual 

Observations from a Process Following the Pareto Distribution Using the 

Scaled Weighted Variance Method 

The method proposed by Castagliola (2000) is as follows: the central 

line is placed at the mean of the Pareto distribution, which is computed using 

equation (5-3), while the control limits are placed around the mean at two 

different multiples of the standard deviation of the Pareto distribution, which 

is computed using equation (5-4). These multiples are functions of 

appropriate values of the quantiles of the standardized Normal distribution, 

the probability of type I error or false alarm rate, α, and the cumulative 

distribution function of the Pareto distribution, which is computed using 

equation (5-2). More specifically, the lower control limit is defined as 

( )
( ) ( )

11
Φ 1

4

X

X X

F µ α
LCL µ σ

F µ F µ
−  −

= − −  
 

, while the upper control limit is 

defined as 
( )
( ) ( )

1Φ 1
1 4 1

X

X X

F µ α
UCL µ σ

F µ F µ
−
 

= + −  − −   
. 

As a result, the central line (CL) and the upper and lower control limits (UCL 

and LCL, respectively) of the Pareto control chart are as follows. 
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9.9.2. Performance Investigation for the Individual Pareto Control Charts 

Constructed With the Scaled Weighted Variance Method 

For the investigation of the performance of the control chart 

constructed above, we will use the ARL (ARL0 and ARL1) values obtained by 

equations (9-4) and (9-5) where ( )inF x  is the cumulative distribution function 

of the two-parameter Lindley distribution in equation (5-2) with in-control 

parameters, ( )outF x  is the cumulative distribution function for the distribution 

of concern with out-of-control parameters given by 
( )22

0
1new

σ µ kσ
d

σ

+ +
= +  

and ( )
( )

( )

22

0

0 22

0

new

σ µ kσ
r µ kσ

σ σ µ kσ

+ +
= +

+ + +
, as earlier, and control limits computed 

with equation (9-11) in both cases. Using the above formulas we obtain Table 

9-13 which shows the in-control and out-of-control ARL values for the 

individual Pareto control chart for various values of the two parameters d and 

r of the distribution of concern and for various values of k which, as 

mentioned before, shows the shift we want to detect in the process mean in 

terms of the process standard deviation. For the significance level the most 

commonly used value of 0.27% has been chosen which corresponds to 0.27% 

probability of falsely rejecting the null hypothesis that our process is in 

control. 

Comparing Tables 9-13 and 9-2 we observe that the performance of the 

chart improves significantly when using the scaled weighted variance method 

instead of the skewness corrected limits. The difference in ARL values 

between those two control charts is greater than 5% for all shift sizes greater 

than k=±1 while for smaller shift sizes the difference is slightly less than 5% 

for larger values of the Pareto distribution parameters. Comparison of the 

ARL values for positive and negative shifts shows that, although the control 

charts can detect both positive and negative shifts well, there are some slight 

differences with all values being a little smaller for the negative shifts than 

for the corresponding positive ones. The only differences that are above 5% 

concern shift sizes of k equal to 0.2 or between 1.2 and 1.6. 
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k d=25, r=37 d=42, r=68 d=57, r=93 d=86, r=112 d=105, r=154 d=128, r=185 d=210, r=250 d=300, r=310 

-3 2.2500 2.2503 2.2505 2.2507 2.2509 2.2510 2.2510 2.2512 
-2.8 3.0615 3.0620 3.0622 3.0625 3.0627 3.0628 3.0628 3.0631 

-2.6 3.5750 3.5754 3.5757 3.5773 3.5775 3.5777 3.5778 3.5781 

-2.4 4.0932 4.0937 4.0953 4.0959 4.0962 4.0964 4.0964 4.0970 

-2.2 7.1200 7.1203 7.1206 7.1210 7.1273 7.1284 7.1286 7.1288 

-2 8.1481 8.1484 8.1489 8.1500 8.1505 8.1510 8.1512 8.1519 

-1.8 9.1848 9.1875 9.1882 9.1896 9.1903 9.1909 9.1912 9.1930 

-1.6 17.2373 17.2393 17.2403 17.2420 17.2428 17.2436 17.2441 17.2452 

-1.4 27.3068 27.3095 27.3107 27.3120 27.3141 27.3151 27.3157 27.3170 

-1.2 40.3739 40.3973 40.4089 40.4124 40.4128 40.4146 40.4154 40.4172 

-1 60.5405 60.5428 60.5453 60.5489 60.5519 60.5557 60.5578 60.5593 

-0.8 92.0541 92.0704 92.0731 92.0784 92.0812 92.0843 92.0848 92.0880 

-0.6 110.1273 110.1463 110.1502 110.1578 110.1617 110.1648 110.1680 110.1716 

-0.4 164.8934 164.9068 164.9128 164.9312 164.9350 164.9363 164.9369 164.9396 

-0.2 224.1212 224.1608 224.1735 224.1987 224.2127 224.2221 224.2290 224.2441 

0 373.6122 373.4845 373.0184 372.2896 371.7508 372.5373 373.2699 373.9157 

0.2 224.6368 224.6182 224.6099 224.5972 224.5715 224.5509 224.5355 224.4897 

0.4 166.2370 166.2287 166.2246 166.2182 166.2103 166.1937 166.1872 166.1693 

0.6 112.2070 112.2007 112.1979 112.1936 112.1884 112.1779 112.1727 112.1606 

0.8 93.9993 93.9972 93.9939 93.9899 93.9821 93.9781 93.9691 93.0041 

1 60.9702 60.9646 60.9643 60.9620 60.9578 60.9525 60.9373 60.9321 

1.2 40.8199 40.8168 40.8153 40.8122 40.8105 40.8053 40.8027 40.7968 

1.4 28.3171 28.3145 28.3124 28.3123 28.3093 28.3048 28.3026 28.2875 

1.6 18.2437 18.2414 18.2404 18.2378 18.2369 18.2331 18.2312 18.2269 

1.8 10.1897 10.1877 10.1868 10.1848 10.1844 10.1805 10.1789 10.1752 

2 9.1484 9.1480 9.1464 9.1453 9.1439 9.1412 9.1287 9.1264 

2.2 7.2179 7.2164 7.2157 7.2148 7.2124 7.2120 7.2097 7.2070 

2.4 4.1937 4.1934 4.1918 4.1909 4.1898 4.1877 4.1864 4.1842 

2.6 3.5937 3.5937 3.5934 3.5932 3.5914 3.5796 3.5787 3.5754 

2.8 3.0800 3.0790 3.0784 3.0778 3.0770 3.0754 3.0736 3.0728 

3 2.2484 2.2482 2.2469 2.2463 2.2455 2.2441 2.2435 2.2419 

Table 9 - 12: ARL values for individual Pareto control charts with scaled 

weighted variance, with α = 0.0027. 

 

 

 

9.9.3. Construction of the EWMA Control Charts for Individual Observations 

from the Pareto Distribution Using the Scaled Weighted Variance Method 

Here we will use the scaled weighted variance method for constructing 

EWMA control charts, too. As will be exhibited in the next subsection, this 

method will improve the performance of the chart. The procedure for deriving 

the control limits of the chart with this method is the following: in equation 

(2-3) we will replace L by 
( )
( ) ( )
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X X
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F µ F µ
−  −

−  
 

 for the lower control 

limit and 
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−
 
−  − −   

 for the upper control limit, where µ 

is the mean of the Pareto distribution, which is computed with equation (5-3), 
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and FX(x) is its cumulative distribution function given by equation (5-2). For 

the construction of the EWMA control charts we will also need the standard 

deviation of the Pareto distribution computed from equation (5-4). 

As a result, the central line (CL) and the upper and lower control limits (UCL 

and LCL, respectively) of the Pareto EWMA control chart are as follows. 
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(9-12) 

 

 

9.9.4. Performance Investigation for the Individual EWMA Pareto Control 

Charts Constructed With the Scaled Weighted Variance Method 

The performance of the control chart proposed in the previous 

subsection is going to be investigated here using the ARL as obtained in 

equation (9-9). For the transient probabilities in (9-8) the cumulative 

distribution function for the Pareto distribution, i.e. equation (5-2), is going to 

be used with either in-control parameters for the case of computing the in-

control ARL value or the out-of-control parameters for the case of the out-of-

control ARL, with the asymptotic control limits as computed with equation 

(9-12) for i→∞ . This means that the control limits that will be used for the 

computation of ARL will be of the form 
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(9-13) 

For the out-of-control case we assume that the shift of the process mean is in 

terms of the process standard deviation. In other words, the new mean is 

assumed to be of the form 1 0µ µ kσ= + . Using this relationship, the new 

parameters of the distribution with the shifted mean will be computed by 

solving equations (5-3) and (5-4) in terms of its two parameters, as for the 

Shewhart-type control chart. 

Using those formulae we get Tables 9-14, 9-15 and 9-16 which show the 

in-control and out-of-control ARL values for the individual EWMA control 

chart for the Pareto distribution for various values of the two parameters d 

and r of the distribution of concern and for various values of k which shows 

the shift of the process mean in terms of the process standard deviation. More 

specifically, Table 9-14 contains the ARL values for λ=0.3 for various values 

of the m for the subintervals into which the region between the upper and 

lower control limits is divided, as mentioned earlier. From this table we see 

that when keeping λ the same, the ARL value increases as the number m of 

subintervals increases and the rate of this increase is high until the value of 

about m=150, above which ARL increases very slightly. As a result, the 

suggested value of m for the computation of ARL in the formulae above is 

m=150. Therefore, Tables 9-15 and 9-16 show the ARL values for m=150 for 

various values of λ for positive and negative shifts, respectively. 
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m k d=25 r=37 d=42 r=68 d=57 r=93 d=86 r=112 d=105 r=154 d=128 r=184 d=210 r=250 d=300 r=310 

0 371.5758 371.0168 371.0081 370.5865 370.8686 370.5524 371.5331 371.1008 

0.2 59.8295 59.3618 59.1681 58.8446 58.7309 58.4468 58.3312 56.7517 

0.5 14.9145 14.6919 14.5936 14.0530 12.8128 12.6895 12.5925 12.2326 

1 6.6781 6.6459 6.6152 6.4216 6.3107 6.1885 5.9867 5.8076 

1.5 4.2220 4.1529 4.0620 4.0502 4.0341 4.0073 4.0056 3.9923 

2 4.1054 4.0700 3.9726 3.9657 3.9238 3.8090 3.7523 3.7067 

2.5 2.9120 2.8976 2.8690 2.8590 2.8501 2.8433 2.8377 2.8277 

50 

3 2.8254 2.8057 2.7974 2.7969 2.7939 2.7914 2.7869 2.7847 

0 378.1232 377.0832 377.9046 375.8071 379.1504 378.2037 376.6732 376.0175 

0.2 65.9246 65.3759 65.0816 64.9809 64.2198 64.1701 64.1229 63.3873 

0.5 20.5240 19.8470 19.3273 19.2157 18.9803 18.4633 18.0838 17.7680 

1 8.8012 8.7410 8.5506 8.3101 8.1405 8.1208 8.0947 6.7965 

1.5 4.7353 4.5982 4.5001 4.4534 4.4037 4.3954 4.3254 4.2694 

2 4.3004 4.2774 4.2444 4.2389 4.2290 4.2171 4.0807 4.0178 

2.5 2.9122 2.8986 2.8696 2.8677 2.8625 2.8564 2.8462 2.8412 

70 

3 2.8485 2.8334 2.8246 2.8235 2.8203 2.8177 2.8129 2.8106 

0 383.6351 382.8061 383.9329 385.5677 383.8574 382.5915 386.4353 385.2196 

0.2 73.4373 72.7980 72.6190 71.3762 71.2834 70.3124 70.2994 70.1964 

0.5 25.2232 24.6547 24.5592 23.7238 23.6078 23.0156 22.7657 21.2519 

1 10.3129 9.8446 9.7098 9.6393 9.4467 9.4179 9.2276 9.1891 

1.5 5.0484 4.9864 4.7861 4.7627 4.7496 4.7086 4.7064 4.6430 

2 4.2931 4.2632 4.1993 4.1939 4.1851 4.1720 4.1697 4.1543 

2.5 3.0496 3.0163 2.9936 2.9920 2.9840 2.9829 2.9774 2.9762 

90 

3 2.8653 2.8496 2.8457 2.8364 2.8333 2.8312 2.8306 2.8257 

0 393.2872 392.3872 391.7430 391.5994 396.4727 394.1259 399.8895 397.7120 

0.2 81.8707 81.6355 81.3067 80.0159 78.1693 77.9230 77.8775 75.2450 

0.5 30.9563 30.2487 30.2325 30.1241 29.9998 28.8472 28.7415 27.8087 

1 12.7264 12.4725 12.3551 12.3042 12.2954 12.0755 10.9243 10.6524 

1.5 5.2592 5.1812 5.1274 5.0670 4.9777 4.9327 4.9044 4.8202 

2 4.4681 4.4474 4.4314 4.4107 4.3936 4.3633 4.3434 4.2779 

2.5 3.0643 3.0556 3.0486 3.0425 3.0359 3.0191 2.9778 2.9707 

120 

3 2.9198 2.9140 2.9128 2.9092 2.9072 2.8798 2.8656 2.8562 

0 402.0264 401.9673 406.9197 404.1559 400.2907 407.4877 410.0490 407.7949 

0.2 91.1765 89.6207 89.2094 88.1732 87.9252 86.6706 86.3972 83.6450 

0.5 34.3881 34.3457 34.3434 34.1554 33.2012 32.9812 32.9312 32.1297 

1 12.9677 12.6738 12.5380 12.4915 12.3512 12.2122 12.1224 12.0026 

1.5 5.7494 5.4120 5.3148 5.3144 5.2398 5.2308 5.2100 5.1061 

2 4.5298 4.5178 4.4971 4.4724 4.4542 4.4505 4.4364 4.4230 

2.5 3.0857 3.0385 3.0272 3.0160 3.0122 3.0077 2.9989 2.9931 

150 

3 2.9290 2.9224 2.9156 2.9128 2.9087 2.9037 2.9030 2.8924 

0 412.6440 409.3255 412.6762 419.3127 413.2346 419.3093 410.9173 417.3880 

0.2 98.3295 97.2621 96.4632 96.2564 95.3351 92.4808 92.1970 89.4834 

0.5 39.0394 38.2058 38.0012 37.2606 37.0861 36.7748 36.1860 36.1254 

1 14.3122 12.8481 12.7187 12.7064 12.5420 12.3579 12.2489 12.0301 

1.5 5.7396 5.5853 5.5159 5.4919 5.4724 5.4455 5.4357 5.3787 

2 4.5832 4.5425 4.5409 4.5041 4.4901 4.4782 4.4676 4.4521 

2.5 3.0903 3.0756 3.0612 3.0572 3.0526 3.0455 3.0426 3.0344 

180 

3 2.9452 2.9270 2.9194 2.9090 2.9088 2.9057 2.9007 2.9001 

0 417.6446 416.8991 417.5348 420.9717 425.0539 419.2086 419.9477 426.4312 

0.2 105.4988 103.9125 102.6883 101.7706 101.4749 100.5252 100.5173 97.6418 

0.5 42.1220 40.5233 40.4837 40.4640 40.0442 39.4334 38.8501 38.7326 

1 14.4321 14.3072 14.1999 14.1799 14.1673 14.1535 12.8564 12.8049 

1.5 5.9409 5.7518 5.6308 5.5904 5.5798 5.5291 5.4790 5.3838 

2 4.5877 4.5858 4.5503 4.5098 4.5074 4.4884 4.4798 4.4618 

2.5 3.0997 3.0860 3.0786 3.0739 3.0676 3.0581 3.0426 3.0275 

210 

3 2.9421 2.9231 2.9150 2.9076 2.9064 2.9035 2.8979 2.8978 

0 422.0406 423.9249 433.2742 433.6987 424.9526 429.4557 428.7146 435.0043 

0.2 110.9449 108.5876 107.5777 106.4571 105.1487 103.7477 102.9301 101.8321 

0.5 45.3584 44.4856 44.4084 43.8785 43.3433 43.2354 41.7069 41.2649 

1 14.8357 14.8219 14.7731 14.5459 14.5147 14.4522 14.2442 14.0989 

1.5 5.9525 5.9120 5.7641 5.7183 5.6493 5.6146 5.6141 5.5457 

2 4.6078 4.5873 4.5569 4.5358 4.5121 4.5092 4.5000 4.4817 

2.5 3.1240 3.0870 3.0772 3.0610 3.0525 3.0523 3.0468 3.0407 

240 

3 2.9401 2.9224 2.9144 2.9064 2.9026 2.9017 2.8961 2.8960 

Table 9 - 13: ARL values for individual EWMA control charts for the Pareto distribution 

(λ=0.3) with scaled weighted variance, with α = 0.0027, for various values of m. 
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λ k d=25 r=37 d=42 r=68 d=57 r=93 d=86 r=112 d=105 r=154 d=128 r=184 d=210 r=250 d=300 r=310 

0 376.3072 376.1827 375.7370 375.5070 375.3984 375.2816 375.8410 375.7201 

0.2 57.9523 57.7348 57.7324 57.4843 57.4579 57.2881 57.1935 57.0363 

0.4 14.1373 14.0148 13.7170 12.9887 12.9124 12.8706 12.7725 12.5054 

0.6 10.5434 10.3734 9.8122 9.6977 9.6848 9.5445 9.4422 8.4363 

0.8 8.1931 8.1893 8.1443 8.0790 7.9887 7.9607 7.4127 6.5684 

1 4.1069 4.0848 4.0317 3.9750 3.9016 3.8893 3.8489 3.0361 

1.5 3.2160 3.1995 3.0484 3.0412 3.0351 3.0244 3.0193 2.7978 

2 3.0906 3.0691 2.9864 2.9753 2.8487 2.7512 2.7127 2.6886 

2.5 2.3730 2.2523 2.1548 2.1416 2.1032 2.0724 2.0181 1.9931 

λ=0.05 

3 2.0060 1.9998 1.9905 1.9841 1.9818 1.9791 1.9732 1.9718 

0 377.2600 377.2270 376.8937 376.7364 376.8281 376.6396 376.5155 376.1784 

0.2 59.0557 57.7712 57.7352 57.6073 57.6057 57.4591 57.2003 57.1518 

0.4 14.3575 14.3048 14.2812 13.4215 13.2281 12.9793 12.8022 12.5754 

0.6 10.5193 10.3254 9.3612 9.2616 9.1254 8.9070 8.8820 8.3439 

0.8 8.3455 8.2328 8.1481 8.1044 8.0504 7.9608 7.9069 7.0934 

1 4.9353 4.8412 4.7819 4.6430 4.6145 4.5714 4.5437 3.8448 

1.5 3.2481 3.2307 3.2231 3.2169 3.2059 3.2008 3.1973 3.1773 

2 3.2173 3.2015 3.1757 3.1554 2.9862 2.9841 2.9773 2.9737 

2.5 3.0270 3.0126 3.0007 2.9901 2.9548 2.9373 2.9318 2.8157 

λ=0.08 

3 2.4730 2.4039 2.3803 2.3757 2.3644 2.3614 2.3428 2.2842 

0 379.8407 379.6124 378.8632 378.0722 379.3710 379.0972 378.6395 378.4375 

0.2 60.6984 60.2625 59.8030 59.6964 59.4875 59.1254 59.0789 57.8617 

0.4 14.4957 14.3484 14.3302 14.1308 14.0580 13.1914 12.8484 12.6284 

0.6 11.3284 11.1039 10.9370 10.6301 10.0323 9.8197 9.6430 9.5733 

0.8 8.4848 8.3730 8.3631 8.2372 8.0971 8.0418 8.0317 7.8797 

1 5.9369 5.8481 4.8287 4.6486 4.6484 4.5973 4.5488 4.3445 

1.5 4.0281 3.9844 3.9757 3.7264 3.6824 3.6805 3.6422 3.6420 

2 3.3548 3.3391 3.3284 3.3219 3.3169 3.3127 3.3107 3.3072 

2.5 3.1436 3.1375 3.1262 3.1171 3.1048 3.1034 3.0891 3.0842 

λ=0.10 

3 2.7578 2.7575 2.6784 2.6637 2.6548 2.6450 2.6220 2.4312 

0 380.6445 380.5486 380.2864 379.8122 379.8401 379.5955 379.5373 379.4244 

0.2 61.6393 61.4393 61.1887 60.9932 60.8489 60.6373 60.5197 59.7759 

0.4 14.5209 14.5073 14.3786 14.1578 14.1275 14.1037 14.0912 12.8193 

0.6 12.3720 11.4802 11.4551 10.6890 10.6253 10.2289 10.1884 10.0537 

0.8 8.5084 8.4377 8.4346 8.4306 8.4048 8.3288 8.2002 7.9182 

1 6.1712 6.1484 5.8464 5.6882 5.2846 5.1615 4.8480 4.4284 

1.5 4.3515 4.3200 4.3152 3.9622 3.9370 3.8937 3.8930 3.6448 

2 3.4573 3.4418 3.4275 3.4237 3.4223 3.4180 3.4104 3.4068 

2.5 3.3978 3.3635 3.3575 3.3573 3.3487 3.3434 3.3323 3.3271 

λ=0.12 

3 2.6880 2.6698 2.6424 2.6410 2.6343 2.6284 2.6127 2.4984 

0 381.2848 380.7848 380.7575 380.4370 380.3726 380.2548 379.7188 379.8971 

0.2 61.7828 61.5579 61.2068 61.0372 60.9700 60.8482 60.6410 60.2864 

0.4 14.5270 14.5259 14.4848 14.2337 14.1436 14.1273 14.1015 13.9828 

0.6 12.5937 12.4812 12.3788 12.1993 10.7373 10.4870 10.3533 10.1701 

0.8 8.8641 8.7843 8.7004 8.6575 8.5910 8.4934 8.4346 8.1482 

1 6.4030 6.2706 6.0628 5.8181 5.7120 5.5575 5.0548 4.4405 

1.5 4.4287 4.3733 4.3484 4.2884 4.2364 4.2162 4.2128 3.8626 

2 3.9334 3.9054 3.8998 3.8893 3.8809 3.8757 3.8648 3.8484 

2.5 3.5481 3.5407 3.5079 3.5004 3.4893 3.4893 3.4842 3.4840 

λ=0.15 

3 3.0336 3.0128 2.7489 2.7446 2.7353 2.7287 2.7281 2.7018 

0 382.6054 381.0557 383.2480 381.6848 381.1812 380.8028 380.1736 380.1733 

0.2 63.1889 61.7125 61.3248 61.1277 61.0240 60.9126 60.8181 60.3393 

0.4 14.5912 14.5772 14.5007 14.3754 14.3028 14.1757 14.1736 14.0164 

0.6 12.8754 12.5319 12.3793 12.2817 12.0734 12.0428 10.8880 10.8484 

0.8 8.9887 8.8328 8.7870 8.6917 8.6289 8.5778 8.5151 8.4754 

1 6.7510 6.4882 6.4812 6.3004 5.9640 5.8121 5.5173 5.4848 

1.5 4.5143 4.4484 4.4228 4.4007 4.2871 4.2612 4.2321 4.1818 

2 4.1917 4.1781 4.1542 4.1537 4.1488 4.1462 4.1425 4.1289 

2.5 3.9643 3.9375 3.9343 3.9120 3.9015 3.8848 3.8812 3.8717 

λ=0.20 

3 3.2861 3.2590 3.2575 3.2528 3.2528 3.2395 3.2371 3.2355 

Table 9 - 14: ARL values for individual EWMA control charts for the Pareto distribution 

(m=150), with scaled weighted variance, with α = 0.0027, for various positive shifts 
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λ k d=25, r=37 d=42, r=68 d=57, r=93 d=86, r=112 d=105, r=154 d=128, r=185 d=210, r=250 d=300, r=310 

0 376.3072 376.1827 375.7370 375.5070 375.3984 375.2816 375.8410 375.7201 
-0.2 57.0973 57.1406 57.2796 57.3773 57.4070 57.5340 57.7091 57.7324 

-0.4 12.0375 12.0600 12.2518 12.3617 12.4805 12.5017 12.8442 12.9579 

-0.6 7.7309 7.8812 8.0362 8.1048 8.1482 8.1982 8.2548 8.3450 

-0.8 6.3271 6.3401 6.3687 6.3732 6.4059 6.4648 6.4864 6.5359 

-1 3.2484 3.3501 3.3512 3.3537 3.3550 3.3552 3.3625 3.3645 

-1.5 2.8816 2.8843 2.8878 2.8912 2.8934 2.8981 2.9100 2.9300 

-2 2.5557 2.6379 2.6390 2.6415 2.6428 2.6448 2.6448 2.6823 

-2.5 2.4122 2.5054 2.5345 2.5573 2.6024 2.6202 2.6318 2.6486 

λ=0.05 

-3 2.1955 2.2017 2.2061 2.2157 2.2184 2.2198 2.2214 2.2284 

0 377.2600 377.2270 376.8937 376.7364 376.8281 376.6396 376.5155 376.1784 
-0.2 57.1015 57.2864 57.2889 57.5196 57.5259 57.7516 57.7990 57.8198 

-0.4 13.2224 13.4726 13.5357 13.6093 14.2512 14.8318 15.1275 15.2003 

-0.6 7.8419 8.2860 8.3243 8.3644 8.4680 8.4682 8.5464 8.6159 

-0.8 6.6448 6.6868 6.6870 6.6936 6.7041 6.7127 6.7128 6.7308 

-1 3.6206 3.6222 3.6248 3.6254 3.6287 3.6370 3.6444 3.6445 

-1.5 3.0548 3.2808 3.2814 3.2845 3.2860 3.3025 3.3099 3.3255 

-2 2.7272 2.7282 2.7301 2.7315 2.7319 2.7331 2.7364 2.7544 

-2.5 2.4846 2.5179 2.5439 2.6063 2.6198 2.6218 2.6480 2.6848 

λ=0.08 

-3 2.4040 2.4069 2.4077 2.4162 2.4170 2.4201 2.4246 2.4393 

0 379.8407 379.6124 378.8632 378.0722 379.3710 379.0972 378.6395 378.4375 
-0.2 59.0789 59.8030 59.9693 60.3175 60.4072 60.5195 60.8182 60.9772 

-0.4 13.3684 13.7899 13.8068 13.8572 14.3577 14.9790 15.3798 15.7257 

-0.6 8.1546 8.6884 9.1226 9.1712 9.1841 9.2035 9.3177 9.3648 

-0.8 6.6455 6.6881 6.7248 6.7324 6.7519 6.7848 6.7978 6.8844 

-1 3.8101 3.9812 3.9846 3.9900 3.9934 3.9936 4.0101 4.0272 

-1.5 3.4099 3.4354 3.4812 3.4848 3.4882 3.4889 3.4896 3.5462 

-2 2.8975 2.9041 2.9312 3.0426 3.0446 3.0489 3.0504 3.0536 

-2.5 2.8846 2.8846 2.8937 2.8991 2.9045 2.9064 2.9373 2.9544 

λ=0.10 

-3 2.5172 2.5573 2.6054 2.6177 2.6448 2.6890 2.7084 2.7506 

0 380.6445 380.5486 380.2864 379.8122 379.8401 379.5955 379.5373 379.4244 
-0.2 60.641 60.9126 60.97 60.9932 61.0484 61.4393 61.7201 62.0533 

-0.4 13.6014 14.0689 14.0864 14.1573 14.6888 15.125 15.1689 15.2737 

-0.6 8.4088 9.121 9.1937 9.3908 9.6844 9.8288 9.8723 9.9328 

-0.8 6.937 6.9373 6.9397 6.9553 6.9726 6.9932 6.9937 7.0284 

-1 4.0101 4.0124 4.0148 4.0161 4.0204 4.0375 4.0441 4.0703 

-1.5 3.4643 3.4691 3.759 3.7719 3.7784 3.7878 3.7933 3.8004 

-2 3.0936 3.2509 3.255 3.2595 3.2606 3.2641 3.268 3.2842 

-2.5 3.0015 3.012 3.0127 3.0337 3.0464 3.0627 3.1904 3.2716 

λ=0.12 

-3 2.5482 2.5575 2.6091 2.644 2.6484 2.7868 2.8632 2.905 

0 381.2848 380.7848 380.7575 380.437 380.3726 380.2548 379.7188 379.8971 
-0.2 61.6037 61.6048 61.8482 61.8489 62.2068 62.3044 62.5579 63.1248 

-0.4 13.8689 14.1402 14.1775 14.2624 14.8253 15.2573 15.3825 15.7005 

-0.6 9.0484 9.1248 9.2481 9.5439 9.7515 9.8407 9.9307 10.0023 

-0.8 7.5148 7.5577 7.5591 7.5796 7.6148 7.6248 7.6393 7.6984 

-1 4.1206 4.1243 4.1243 4.1255 4.1284 4.1481 4.1637 4.1848 

-1.5 3.8221 3.8284 3.84 3.8412 3.8412 3.8733 3.8848 3.9073 

-2 3.3321 3.5488 3.571 3.5723 3.5731 3.5757 3.5939 3.6048 

-2.5 3.3068 3.3324 3.3421 3.345 3.3572 3.3617 3.3702 3.4006 

λ=0.15 

-3 2.9069 2.9112 2.9395 2.958 2.9737 2.9837 2.9988 3.003 

0 382.6054 381.0557 383.248 381.6848 381.1812 380.8028 380.1736 380.1733 
-0.2 61.9782 61.9802 62.7771 63.0536 63.0612 63.2737 63.6828 63.9578 

-0.4 14.0737 14.4378 14.6525 14.7082 15.3959 16.2164 16.4641 16.773 

-0.6 9.1021 9.1406 9.6425 9.7357 9.8163 9.9875 10.0548 10.2034 

-0.8 7.5281 7.5702 7.5784 7.6051 7.6173 7.6484 7.6932 7.7369 

-1 4.5788 4.5791 4.597 4.6084 4.6435 5.127 5.1284 5.1593 

-1.5 4.4084 4.422 4.4284 4.4307 4.4323 4.4391 4.4433 4.4886 

-2 3.8104 3.8155 3.8188 3.8264 3.8424 3.8431 3.8486 3.8843 

-2.5 3.4823 3.5173 3.5377 3.539 3.5414 3.5432 3.806 3.8454 

λ=0.20 

-3 2.9542 2.9698 2.979 3.0298 3.0788 3.1045 3.1845 3.2457 

Table 9 - 15: ARL values for individual EWMA control charts for the Pareto distribution 

(m=150), with scaled weighted variance, with α = 0.0027, for various negative shifts 
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Comparing those two tables, we observe that the proposed control chart 

can detect both positive and negative shifts well, but there are some 

differences in ARL values between those two tables, with most of the 

differences being in favour of the ARL values for positive shifts. The only 

cases for which the ARL values for negative shifts are bigger are for values of 

k less than 0.4 for large values of the distribution’s parameters and for all 

values of the distribution’s parameters for shifts of magnitude k equal to or 

greater than 2.5 when lambda is very small (up to 0.05). 

When comparing Table 9-15 with Table 9-4 and Table 9-16 with Table 

9-5 the improvement of the performance of the control chart when using the 

scaled weighted variance instead of the skewness correction method is 

revealed. The in-control ARL values for the case of using the scaled weighted 

variance are greater than the corresponding ones for the case of using the 

skewness correction method, while the out-of-control ARL values are smaller 

for the scaled weighted variance than for the skewness correction method. 

The differences between the ARL values are almost all higher than 5% for 

either positive or negative shifts. 

 

 

9.9.5 Example on the Pareto individual Shewhart-type and EWMA control 

charts with scaled weighted variance using simulated data 

This section is dedicated to the illustration of the proposed control 

charts by means of simulated data generated from the Pareto distribution. The 

case of real data will be covered in section 9.9.6. For the same dataset as in 

Table 9-9 we construct the individual Shewhart-type Pareto control charts 

with scaled weighted variance presented in Figure 9-10, using the most 

commonly used value for the significance level α = 0.27%, as mentioned 

earlier. As we can see in Figure 9-10, there is an increasing trend after the 

first 15 observations and the control chart detects out-of-control points 

indicating that an assignable cause has occurred in the process causing its 

mean to shift to an out-of-control level sooner than the corresponding control 

chart with skewness correction in Figure 9-2. 
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Figure 9 - 10: Individual Pareto control chart with scaled weighted variance 

for the data set in Table 9-9 with a shift of one standard deviation unit in the 

process mean 

 

 

Using the data set in Table 9-9 for the case of a shift of one standard 

deviation unit, we now construct the individual EWMA Pareto control chart 

with scaled weighted variance shown in Figure 9-11, using λ=0.05. As we can 

see, there is an increasing trend after the first 15 observations and the control 

chart gives an out-of-control signal after the 20th observation which, 

compared to Figure 9-10, is sooner than the individual control chart with 

scaled weighted variance, as expected, and compared to Figure 9-3 it is also 

sooner than it was detected by the EWMA control chart with the skewness 

correction method. 

 

 

 



 361 

 

Figure 9 - 11: Individual EWMA Pareto control chart with scaled weighted 

variance for the data set in Table 9-9 with a shift of one standard deviation 

unit in the process mean 

 

 

 

9.9.6 Application of the Pareto individual Shewhart-type and EWMA control 

charts with scaled weighted variance to real data 

This section discusses the illustration of the proposed control charts 

through application to the same real datasets as earlier (Tables 9-10 and 9-11) 

and for the same values of the parameters of our assumed Pareto distribution. 

For the first dataset (Table 9-10) the distribution’s parameters are once again 

equal to 3.9728 and 242.9444 for d and r, respectively. For the construction of 

the control charts, the significance level value α = 0.27% has been chosen. 

The resulting control chart for the first dataset can be seen in Figure 9-12 

which presents an out-of-control point which was not detected by the 

corresponding control chart with skewness correction. 

For the construction of the individual EWMA control chart for our data, 

using the same parameter values of the assumed Pareto distribution from the 
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data in conjunction with λ=0.05, the resulting control chart can be seen in 

Figure 9-13, which does not detect any out-of-control observations. This is 

probably due to the inertia effect we mentioned in Section 2-14, because the 

small λ value gives bigger weight to the past smaller values and reacts slower 

to the shift in the opposite direction. The large value is then followed by a 

few small values and therefore the chart does not detect the shift. 

 

 

 

 

Figure 9 - 12: Individual Pareto control chart with scaled weighted variance 

for the Condroz calcium data set in Table 9-10 
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Figure 9 - 13: Individual EWMA Pareto control chart with scaled weighted 

variance for the Condroz calcium data set in Table 9-10 

 

 

Now, let’s deal with the second data set which was presented earlier in 

Table 9-11. The significance level is chosen to be equal to the value α=0.27%. 

The resulting individual Pareto control chart with scaled weighted variance 

can be seen in Figure 9-14 which also detects the out-of-control point. 

For the construction of the individual EWMA control chart for our data, 

using the same parameter values of the assumed Pareto distribution from the 

data in conjunction with the value of λ=0.05, the resulting control chart can 

be seen in Figure 9-15, which, once again, does not detect the out-of-control 

state of the process, probably due to the small λ value which gives bigger 

weight to the past much bigger values. 
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Figure 9 - 14: Individual Pareto control chart with scaled weighted variance 

for the breaking angles data set of Table 9-11 

 

Figure 9 - 15: Individual EWMA Pareto control chart with scaled weighted 

variance for the breaking angles data set of Table 9-11 
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9.10 Conclusions and Further Research 

In this chapter probability-type, Shewhart-type and EWMA control 

charts have been constructed for monitoring individual observations from a 

process which is assumed to follow the Pareto distribution for the theoretical 

scenario of known distributions’ parameters. Two different methods for 

taking into account the distribution’s skewness have been considered. The 

performance of the proposed control charts has been investigated for the cases 

of all the proposed control charts (probability-type, Shewhart-type and 

EWMA control charts with both skewness correction methods). Optimal 

design for the EWMA control chart has also been presented. The five types of 

proposed control charts have been illustrated with both simulated and real 

data. 

The proposed control charts take into account the skewness of the 

distribution and this leads to a significant improvement of their performance 

as has been demonstrated along this chapter. The performance of the control 

charts seems to improve more when the scaled weighted variance method by 

Castagliola (2000) is used instead of the skewness correction method 

proposed by Chan and Cui (2003). 

This study can also be applied to other Lindley-related distributions 

(generalizations, mixtures, transformations, etc.). Furthermore, for future 

research, the whole analysis can be extended to include supplementary runs 

rules for the detection of small shifts. For this purpose it would also be useful 

to construct CUSUM control charts for the Pareto distribution, as well. 
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CHAPTER 10 

 

CONCLUSIONS AND FURTHER RESEARCH 

 

 

 

The concept of quality is essential in every aspect of our everyday lives 

and it is of major need to keep it at the best possible level. This purpose is 

accomplished through Statistical Process Control and control charts play the 

most crucial role in this effort. Therefore, an overview of the literature on 

statistical process control charts was presented in the present essay covering 

the various types of control charts proposed over the years beginning from the 

original Shewhart control charts and proceeding to their modifications and 

alternatives (such as the CUSUM and EWMA charts). The basic assumptions 

considered when those control charts were originally proposed were covered 

in the present study. Special emphasis was given on control charts for 

individual observations as well as the assumption of Normality which is 

usually violated in real life situations. Control charts have been proposed in 

the literature for various non-Normal distributions, but there are still some 

distributions with many applications in real life which were not covered as far 

as SPC is concerned. This gap was filled with the present thesis. Examples of 

those distributions include the Lindley and Lindley-related distributions and 

the Logarithmic distribution. Pareto distribution is also a distribution which 

presents an increasing interest recently in the field of SPC, but there are still a 

lot of possibilities for new work. These were the motivations for the present 

thesis. The first part of the current study was completed with an overview of 

the research for the aforementioned distributions in order to reveal what has 

already been done for them and the lack of efforts regarding control charts for 

these distributions. 

Individual observations are very common in our everyday lives, as was 

presented in the introduction to the second part of this thesis. Therefore, 

control charts were constructed herein for individual observations from the 

one-parameter and two-parameter Lindley distributions, as well as the 
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Logarithmic and Pareto distributions. First of all probability-type control 

charts were constructed. Then Shewhart-type and EWMA control charts were 

proposed using the skewness correction method proposed by Chan and Cui 

(2003) in order to improve the performance of the charts without it. The 

corrected Shewhart-type charts with this method were proved to perform 

better than the probability-type ones and the corrected EWMA charts were 

proved to have better performance than the corrected Shewhart-type charts. 

Optimal design of the corrected EWMA charts for all the distributions was 

also discussed. The performance of all the charts was investigated and 

illustrated with both simulated and real data. Then another method for taking 

into account each distribution’s skewness was considered. This was the scaled 

weighted variance method proposed by Castagliola (2000). Shewhart-type and 

EWMA charts were constructed using this method, too, and their performance 

was compared with the corresponding charts with the other skewness 

correction method. These comparisons along with the illustrations of the 

proposed charts with the same simulated and real data revealed the superiority 

of the scaled weighted variance method. 

This dissertation contributes to SPC literature in several ways. First of 

all, control charts are created for distributions with many applications in real 

life for which control charts had not been addressed (Logarithmic and 

Lindley-related distributions) and new methods for constructing control charts 

have been proposed for the case of the Pareto distribution. Moreover, 

comparison of two different methods for taking into account each 

distribution’s skewness has been considered herein, which had not been 

conducted earlier in literature for discrete distributions, since the scaled 

weighted variance method by Castagliola (2000) was applied only to 

continuous distributions. Furthermore, the first part of chapter 7 regarding 

probability-type charts for the two-parameter Lindley distribution and 

Shewhart-type and EWMA charts with the skewness correction method by 

Chan and Cui (2003) has already been published [Demertzi and Psarakis 

(2024)] contributing to the existing literature on control charts for skewed 

distributions. 

In addition, this thesis creates the need for further research. Firstly, this 

study was concentrated on the theoretical case of known distributions’ 
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parameters. This, however, is not usually the case in real life situations. 

Therefore, the proposed control charts should also be studied for the case of 

estimated parameters and the effect of parameter estimation on the charts’ 

performance should be investigated. 

Furthermore, the present study can also be applied to other distributions 

related to the ones chosen here (generalizations, mixtures, transformations, 

etc.). Moreover, for future research, the whole analysis can be extended to 

include supplementary runs rules (but not with individual data due to risk of 

high false alarm rate) for the detection of small shifts. For this purpose it 

would also be useful to construct CUSUM control charts for the distributions 

of concern. Shewhart-EWMA and Shewhart-CUSUM charts might also be 

interesting to be developed for the specific distributions, since they have been 

proved in the literature to be effective in overall detection of small and large 

shifts. 

Additionally, the design of control charts presented so far was purely 

statistical, meaning that the construction of the control charts was based on 

the underlying distribution of our data. In practice, however, it is often 

needed to design control charts considering the economic point of view, too, 

so as to minimize some function of the costs of sampling and testing, 

producing items which are not conforming to the specifications, repairing, 

false alarms and assignable causes’ detection and elimination. Therefore, an 

economic-statistical design for the proposed control charts might also be 

interesting to be developed. Last but not least, as it was mentioned from the 

very beginning, this essay was focused on the univariate case, so the whole 

study can be further extended to cover the case of more dimensions, too. 
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