COURSE OUTLINE

(1) GENERAL

SCHOOL	School of Science and Technology of Information				
ACADEMIC UNIT	Department of Statistics				
LEVEL OF STUDIES	Undergraduate – 1 st cycle				
COURSE CODE	6225	SEMESTER 5 th			
COURSE TITLE	DESIGN AND ANALYSIS OF EXPERIMENTS				
INDEPENDENT TEACHING ACTIVITIES		WEEKLY TEACHING HOURS		CREDITS	
			4		8
COURSE TYPE	Elective - Scientific Field				
PREREQUISITE COURSES:	Linear Models				
LANGUAGE OF	Greek				
INSTRUCTION and					
EXAMINATIONS:					
IS THE COURSE OFFERED	No				
TO ERASMUS STUDENTS					
COURSE WEBSITE (URL)	https://www.dept.aueb.gr/en/stat/content/experimental-				
	design-and-analysis-8-ects				

(2) LEARNING OUTCOMES

Learning outcomes

Upon completion of the course, students are expected to learn the fundamental principles of designing an experiment along with the analysis of variance (ANOVA) methodology. Specifically, they are expected to be able to propose both the appropriate statistical design of an experiment, which is called upon to answer a research question, as well as to perform the appropriate statistical analysis on the results of the experiment, allowing statistical inference and decision-making.

General Competences

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Decision-making
- Development of critical thinking.

(3) SYLLABUS

Introduction to Design and Analysis of Experiments. Single factor experiments. Multiple Comparisons. Random Effects Model. Non-parametric ANOVA. Randomized Complete Block Design: one controllable nuisance factor. Latin square design: blocking two controllable nuisance factors. Balanced Incomplete Block Design. Factorial Designs: two factors with/without interaction. The general factorial Designs: more than two factors with interactions. 2^2, 2^3 and 2^k factorial designs. Fractional factorial designs. Nested and Split Plot Designs. Examples and case studies using R.

Knowledge of Linear Algebra and Linear Models will be useful

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	Use of ICT in teaching			
	Activity	Semester workload		
TEACHING METHODS	Lectures	180		
	Exercises	20		
	Course total	200		
STUDENT PERFORMANCE EVALUATION	Examination in Greek in multiple choice questionnaires and use of negative marking. The negative score is calculated so that the expected value of the score of a person randomly selecting answers is zero. The method of examination is communicated to the students from the first lecture, and they are also informed electronically (and via email) through an announcement in the eclass page of the course.			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- D. C. Montgomery (2020). "Design and analysis of experiments", Wiley.
- V. Chasiotis and M. Chalikias (2023). "Experimental Designs and Statistical Analysis", Kallipos (in Greek) https://repository.kallipos.gr/handle/11419/11674?&locale=en.
- D. D. Voss and D. Draguljic (2017). "Design and Analysis of Experiments", Springer.
- F. J. Wu and M. S. Hamada (2021). "Experiments: Planning, Analysis, and Optimization", Wiley.
- J. Lawson (2014). "Design and Analysis of Experiments with R", Chapman & Hall.

- Related academic journals:

Journal "Significance" published from Royal Statistical Society https://rss.org.uk/news-publication/publications/significance/