COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF INFORMATION SCIENCES & TECHNOLOGY				
ACADEMIC UNIT	DEPARTMENT OF STATISTICS				
LEVEL OF STUDIES	1st Cycle (UNDERGRADUATE)				
COURSE CODE	6106		SEMESTER 3 rd		
COURSE TITLE	Bayesian Statistics				
INDEPENDENT TEACHING ACTIVITIES		WEEKLY TEACHING HOURS		CREDITS	
Lectures		4		7	
Workshops					
Labs		1			
	I				
COURSE TYPE	Elective				
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES				
COURSE WEBSITE (URL)	https://www ects	v.dept.aueb.gr/e	en/stat/conten	t/ba	yesian-stat-7-

(2) LEARNING OUTCOMES

Learning outcomes

After successful completion of the course, students will be able to handle issues regarding: objective and subjective probability, features in the Bayes approach, the likelihood principle, a-priori distribution and how to choose one (conjugate, non-informative, improper, Jeffreys, a-priori mixtures), Sufficiency and sequential updating, Multivariate Bayesian statistics, Statistical inference: (decision theory, Bayes risk, Bayes rule, MINIMAX rule, point estimate, interval estimation, hypothesis testing), predictive distribution.

General Competences

(3) SYLLABUS

The aim of this course is to introduce students to the Bayesian approach to statistics and to compare the Bayesian with the classic (frequentist) approach to statistics. During this course are taught: objective and subjective probability,

features in the Bayes approach, the likelihood principle. A-priori distribution and how to choose one (conjugate, non-informative, improper, Jeffreys, a-priori mixtures). Sufficiency and sequential updating. Multivariate Bayesian statistics. Statistical inference: decision theory, Bayes risk, Bayes rule and MINIMAX. Point estimate, interval estimation, hypothesis testing. Predictive Distribution. Asymptotic theory.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face	
USE OF INFORMATION AND	YES	
COMMUNICATIONS TECHNOLOGY		
TEACHING METHODS	Activity	Semester workload
	Lectures	60
	Studying and	20
	Analyzing Bibliography	30
	Assignment	30
	Self Study	55
	Course total	175
STUDENT PERFORMANCE EVALUATION	Written examination at the Information is available at e	end of the semester class

(5) ATTACHED BIBLIOGRAPHY

٠	Δελλαπόρτας Π & Τσιαμυρτζής Π (2012) "Στατιστική κατά Bayes".					
	Πανεπιστημιακές Σημειώσεις:					
 Bernardo J. M. & Smith A. F. M., (1994). Bayesian Theory, Wiley, London. 						
•	Carlin B.P. & Louis T.A. (2000). Bayes and Empirical Bayes Methods for Data					
Analysis, Chapman and Hall/CRC.						
•	• O' Hagan A. and Forster J. (2004). Kendall's advanced Theory of Statistics, Volume					
2b: Bayesian Inference, Edward Arnold, London.						