COURSE OUTLINE

(1) GENERAL

	1				
SCHOOL	SCHOOL OF INFORMATION SCIENCES & TECHNOLOGY				
ACADEMIC UNIT	DEPARTMENT OF STATISTICS				
LEVEL OF STUDIES	1st Cycle (UNDERGRADUATE)				
COURSE CODE	9079 SEMESTER 1 ST				
COURSE TITLE	Statistics I: Probabilities and Estimation				
INDEPENDENT TEACHI	INDEPENDENT TEACHING ACTIVITIES		WEEKLY TEACHING HOURS	CREDITS	
Lectures			3	6	
Labs			1		
COURSE TYPE	Elective				
PREREQUISITE COURSES:	Calculus				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	ENGLISH				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES				
COURSE WEBSITE (URL)	https://eclass.aueb.gr/courses/ERASMUS141/				

(2) LEARNING OUTCOMES

Learning outcomes

Through the teaching of this course, students will understand fundamental concepts, theorems, and applications of probability and statistics, so that they will be able, among other things:

- to clearly describe the concepts of the sample space, random experiment, and random variable,
- to distinguish between various discrete and continuous distributions and solve related problems,
- to assess whether an estimator is unbiased, consistent, and sufficient,
- to successfully apply various methods for parameter estimation (e.g., the method of maximum likelihood, the method of moments, etc.),
- to correctly construct confidence intervals for various parameters of interest.

General Competences

Adaptation to new situations Decision-making Promotion of free, creative, and inductive thinking

(3) SYLLABUS

Random Experiment. Sampe Space. Kolmogorov axiom, Probabilities Properties. Law of total Probability. Bayes formula. Discrete and continuous random variables. Mean and variance of random variables. Binomial Distribution. Geometrical Distribution. Poisson Distribution. Hypergeometric Distribution. Uniform Distribution. Exponential Distribution. Normal Distribution. Central Limit Theorem. Law of the large numbers. Estimating an unknown parameter. Unbiased estimator. Consistent estimator. Adequate Estimator. Rao-Blackwell Theorem. Cramer-Rao lower bound. Maximum Likelihood Method. Moments Method. Confidence intervals for a normal population with known and unknown variance. Confidence intervals for the difference of normal populations means. Confidence intervals for ratios. Confidence intervals for a normal population's variance.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face			
Face-to-face, Distance learning, etc.				
USE OF INFORMATION AND	Teaching support through an e-learning platform (e-class)			
COMMUNICATIONS TECHNOLOGY	Use of statistical software packages			
	Communication with students via ICT (Information and			
	Communication Technologies)			
TEACHING METHODS	Activity	Semester workload		
	Class lectures	40		
	Lab Exercise	10		
	Written assignments	20		
	Self-Study	80		
	Course total	150		
STUDENT PERFORMANCE	Written final exam and assignments.			
EVALUATION	Grading policy: 80% Final examination and 20%			
	homework assignments			

(5) ATTACHED BIBLIOGRAPHY

- S. M. Ross, "A first course in Probability", 8th Edition, 2010, Prentice Hall.
- S. M. Ross, "Introduction to Probability and Statistics for Engineers and Scientists", 3rd Edition, 2004, Elsevier.
- G. G. Roussas, "A Course in Mathematical Statistics", 2nd Edition, 1997, Academic Press