COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF INFORMATION SCIENCES & TECHNOLOGY				
ACADEMIC UNIT	DEPARTMENT OF STATISTICS				
LEVEL OF STUDIES	1st Cycle (UNDERGRADUATE)				
COURSE CODE	6113	SEMESTER 8 th			
COURSE TITLE	Non-Parametric Statistics				
INDEPENDENT TEACHI	NG ACTIVITIES	;	WEEKLY TEACHING HOURS	CREDITS	
	Lectures		4	8	
	Workshops				
Labs		2			
COURSE TYPE	Elective – Sc	ientific Field			
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK				
IS THE COURSE OFFERED TO	NO				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	https://www.dept.aueb.gr/en/stat/content/non-				
	parametric-statistics-8-ects				

(2) LEARNING OUTCOMES

Learning outcomes

At the end of the course the student will be able to: Understand the non-parametric methods described and their properties. Apply these methods in real data analysis and correctly interpret the results.

General Competences

- Search, analysis and synthesis of data and information, using the necessary technologies
- Autonomous work
- Promotion of free, creative and inductive thinking

(3) SYLLABUS

Nonparametric density estimation, histograms, Nadaraya-Watson estimator: bias, variance, tradeoff between them and bandwidth choice: plug in and cross-validation methods. Nonparametric regression: smoothing techniques. Estimator based on kernels (Nadaraya-Watson), asymptotic development of bias and

variance, bandwidth choice, local polynomial regression and splines, variance estimation and confidence intervals. Generalized additive models (and regression trees). Empirical distribution function, empirical process, Kolmogorov –Smirnoff and similar tests. Statistics based on functional of the empirical distribution. Jacknife and Bootstrap: general principles, examples, parametric bootstrap, estimating parameter variance and bootstrap confidence intervals. Nonparametric tests based on ranks and concepts of robustness and asymptotic relative efficiency.

Knowledge of Linear Algebra, Estimation – Hypothesis Testing, Linear Models, Generalized Linear Models are useful.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	In Teaching	Yes	Yes Teaching with slides	
	In labs	Yes	Application Lab using R	
	In communicating with the students	Yes	eclass	
TEACHING METHODS	Activity	Se	Semester workload	
	Lectures	52		
	Tutorial		26	
	Assignment		40	
	Self Study		82	
	Course Total		200	
STUDENT PERFORMANCE EVALUATION	Written examination at the end of the semester: 80% Written Assignment (Project): 20% Information is available at eclass			

(5) ATTACHED BIBLIOGRAPHY

- Efron and Tibshirani (1998), An Introduction to the Bootstrap. Chapman & Hall.
- Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applications. Chapman & Hall.
- Fox, J. (2000). Nonparametric Simple Regression: Smoothing Scatterplots. Sage Publications.
- Hajek, J. (1969). A Course in Nonparametric Statistics. Holden Day.
- Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman and Hall.
- Hettmansperger, T. and McKean, J. (2011). Robust nonparametric Statistical Methods. Boca Ration : CRC/Taylor & Francis.
- Higgins, J. J. (2004). Introduction to Modern Nonparametric Statistics. Thomson/Brooks/Cole, New York.
- Hollander, M. and Wolfe, D. A., (1999). Nonparametric Statistical Method. Wiley.
- Shao and Tu (1995), The Jackknife an the Bootstrap, Springer.
- Sidak, Z., Sen, P. K. and Hajek, J. (1999). Theory of Rank Tests. Academic Press.
- Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall.
- Wand, M. P. and Jones, M. C. (1994). Kernel Smoothing. Chapman and Hall.
- Wasserman, L. (2006). All of Nonparametric Statistics. Springer.
- Wood, Generalized Additive Models. Chapman and Hall.
- Ξεκαλάκη, Ε. (2001). Μη παραμετρική στατιστική.
- Α. Μπατσίδης, Π. Παπασταμούλης, Κ. Πετρόπουλος, Α. Ρακιτζής (2022). Μη Παραμετρική Στατιστική, Θεωρία και εφαρμογές με χρήση R και S.P.S.S., Κάλλιπος

ανοιχτές ακαδημαικές εκδόσεις που είναι διαθέσιμο και σαν electronic ressource στην <u>http://dx.doi.org/10.57713/kallipos-102</u>

- Κούτρας, Μ. και Τριανταφύλλου, Ι. (2022). Μη Παραμετρική Στατιστική, Θεωρία και Εφαρμογές, Εκδόσεις Τσότρας
 - ٠