COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF INFORMATION SCIENCES & TECHNOLOGY				
ACADEMIC UNIT	DEPARTMENT OF STATISTICS				
LEVEL OF STUDIES	1st Cycle (UNDERGRADUATE)				
COURSE CODE	6127 SEMESTER 7 th				
COURSE TITLE	Methods of Statistical and Machine Learning				
INDEPENDENT TEACHI	NG ACTIVITIES		WEEKLY TEACHING HOURS	CREDITS	
		Lectures	4	8	
	Workshops				
		Labs	2		
COURSE TYPE	Elective				
PREREQUISITE COURSES:	Understanding subjects related to Statistical Inference, Distribution Theory and Linear Algebra will be useful.				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES				
COURSE WEBSITE (URL)	https://www.dept.aueb.gr/en/stat/content/methods- statistical-and-machine-learning-8-ects				

(2) LEARNING OUTCOMES

Learning outcomes

Upon completion of the course the students will be able to: apply contemporary statistical methods using the R software to analyze large volumes of data, chart and understand relationships in the data, find groups of observations, create classification rules, apply methods and work with large data sets. At the end of the course, the student will be able to construct graphs and understand relationships between data, identify observation clusters in the data, be able to build classification rules.

General Competences

• Search, analysis and synthesis of data and information, using the necessary technologies

• Adaptation to new situations

• Decision-making

• Autonomous work

Teamwork

- Working in an interdisciplinary environment
- Generation of new research ideas
- Promotion of free, creative and inductive thinking

(3) SYLLABUS

Distinguishing statistical learning methods as supervised and unsupervised and determining the type of statistical problems they treat, the concept of distance in Statistics, Clustering (K-means, Hierarchical clustering, Model-based clustering), Classification (LDA, QDA, K-nearest neighbors, decision trees, random forests, naïve Bayes, Support Vector Machines, ANN Fisher's discriminant analysis and other methods). Resampling methods (cross-validation, bootstrap), linear model selection and regularization (subset selection, shrinkage, dimension reduction), multinomial regression, , step functions, regression splines, tree methods, support vector machines, neural networks.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	Use in Teaching	Yes	During the lectures, applications of the methods using computer programs are presented.	
	In Labs	Yes	All labs are performed on PC's and computational software.	
	In communicating with the students	Yes	Virtual meetings through Microsoft Teams and email	
TEACHING METHODS	Activity	S	Semester workload	
	-			
	Lectures		52	
	Lectures Lab Exercise		52 26	
	Lectures Lab Exercise Studying and Analyzing Bibliography		52 26 50	
	Lectures Lab Exercise Studying and Analyzing Bibliography Tutorial		52 26 50 22	
	Lectures Lab Exercise Studying and Analyzing Bibliography Tutorial Assignment		52 26 50 22 50	
	Lectures Lab Exercise Studying and Analyzing Bibliography Tutorial Assignment Course Total		52 26 50 22 50 200	
STUDENT PERFORMANCE	Lectures Lab Exercise Studying and Analyzing Bibliography Tutorial Assignment Course Total		52 26 50 22 50 200	
STUDENT PERFORMANCE EVALUATION	Lectures Lab Exercise Studying and Analyzing Bibliography Tutorial Assignment Course Total		52 26 50 22 50 200	
STUDENT PERFORMANCE EVALUATION	Lectures Lab Exercise Studying and Analyzing Bibliography Tutorial Assignment Course Total Written examination at the Project: 20%	ne end c	52 26 50 22 50 200	

(5) ATTACHED BIBLIOGRAPHY

- Bartholomew D.J., Steele F., Moustaki I., Galbraithe J.I., Ανάλυση Πολυμεταβλητών Τεχνικών στις Κοινωνικές Επιστήμες, Εκδόσεις Κλειδάριθμος ΕΠΕ, 2011.
- Ιωαννίδης Δ., Αθανασιάδης Ι., Στατιστική και Μηχανική Μάθηση με την R, Εκδόσεις Τζιόλα, 2017.
- Rajaraman A., Ullman D.J., Εξόρυξη από Μεγάλα Σύνολα Δεδομένων, Εκδόσεις Νέων Τεχνολογιών, 2014.
- Sidney B., Everitt, Casella G., Fienberg, S., Ingram O., An R and S-PLUS Companion to Multivariate Analysis, Springer-Verlag London Limited, 2005.
- Hastie, Tibshirani and Friedman (2009) Elements of Statistical Learning, 2nd edition Springer
- James, Witten, Hastie and Tibshirani (2011) Introduction to Statistical Learning with applications in R, Springer
- B. S. Everitt, S. Landau, M. Leese, and D. Stahl (2011) Cluster Analysis, Fifth Edition, Wiley