COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF INFORMATION SCIENCES & TECHNOLOGY				
ACADEMIC UNIT	DEPARTMENT OF STATISTICS				
LEVEL OF STUDIES	1st Cycle (UNDERGRADUATE)				
COURSE CODE	6051	051 SEMESTER 1 st			
COURSE TITLE	Linear Algebra I				
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS		CREDITS
Lectures		4		7,5	
Workshops		2			
Labs					
	ſ				
COURSE TYPE	Compulsory – Scientific Field				
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	NO				
COURSE WEBSITE (URL)	https://www.dept.aueb.gr/en/stat/content/linear-algebra-i- 75-ects				

(2) LEARNING OUTCOMES

Learning outcomes

In depth understanding of the concepts introduced in the course, so that the students can answer questions demonstrating this understanding, obtaining a geometric insight in concepts such as projection, and finally, applying this knowledge to solving exercises such as: obtaining the LDU factorization of a matrix, inverting a matrix and calculating a projection matrix.

General Competences

- Independent work
- Promoting free, creative and inductive thinking

(3) SYLLABUS

Elements and calculus in Rn, lines and planes in Rn. Matrices and matrix multiplication, Elementary matrices. Linear systems: The Gauss algorithm and the factorization PA=LDU. Inverse and transposed matrices, the algorithm Gauss-

Jordan. Symmetric matrices and the Cholesky factorization. Vector spaces and subspaces. Linear systems: the solution of m equations with n unknowns and the rank of a matrix. Linear independence, bases and dimension. The four fundamental subspaces of a matrix. The fundamental theorem of Linear Algebra. Linear transformations of Rn and matrices. Orthogonal subspaces, and orthogonal complement of a subspace. Projections and least squares approximations. Projections.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	YES, Teaching through slides, eclass			
TEACHING METHODS	Activity	Semester workload		
	Lectures	52		
	Tutorial	26		
	Self Study	109.5		
	Course Total	187.5		
STUDENT PERFORMANCE EVALUATION	Written examination at the end of the semester Information is available at eclass			

(5) ATTACHED BIBLIOGRAPHY

•	Gilbert Strang (1999), Γραμμική	Άλγεβρα	και	Εφαρμογές,
	Πανεπιστημιακές Εκδόσεις Κρήτης.			

- Lipschutz, S., LipsonMarcLars, Γραμμική Άλγεβρα, 5_η Έκδοση, Εκδόσεις Τζιόλα, 2013.
- Ε. Ξεκαλάκη & Ι. Πανάρετος (1993), Γραμμική Άλγεβρα για Στατιστικές Εφαρμογές, Αθήνα.
- Η. Φλυτζάνης (1999), Γραμμική Άλγεβρα & Εφαρμογές, Τεύχος Α: Γραμμική Άλγεβρα, Το Οικονομικό.
- Γ.Δονάτος-Μ.Αδάμ (2008), Γραμμική Άλγεβρα Θεωρία και Εφαρμογές, Gutenberg.
- Graybill, F. A. (1969), *Introduction to Matrices with Applications in Statistics*, Wadsworth, Belmont, CA.
- Harville, D. A. (1997), *Matrix Algebra from a Statistician's perspective*, Springer.
- Healy, M.J.R. (1995), *Matrices for Statistics*, Oxford University Press.
- Searle, S. R. (1982), Matrix Algebra Useful for Statistics, Wiley.