COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF INFORMATION SCIENCES & TECHNOLOGY				
ACADEMIC UNIT	DEPARTMENT OF STATISTICS				
LEVEL OF STUDIES	1st Cycle (UNDERGRADUATE)				
COURSE CODE	6023	SEMESTER 4 th			
COURSE TITLE	LINEAR MODELS				
INDEPENDENT TEACHING ACTIVITIES		WEEKLY TEACHING HOURS		CREDITS	
		4		8	
COURSE TYPE	Core - Scientific Field				
PREREQUISITE COURSES:	6012 ESTIMATION AND HYPOTHESIS TESTING				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	NO				
COURSE WEBSITE (URL)	https://www.dept.aueb.gr/en/stat/content/linear-				
	models-8-ects				

(2) LEARNING OUTCOMES

Learning outcomes

Upon completion of the course, students will be able to handle issues related to: correlation coefficient, bivariate and multivariate normal distribution, simple and multiple linear regression, inference in linear regression, hypothesis testing & diagnostics, transformations, general linear model , algorithmic methods of selecting "best" (sub) model multicollinearity and dummy variables.

General Competences

Search for, analysis and synthesis of data and information, with the use of the necessary technology

Adapting to new situations

Decision-making

Production of free, creative and inductive thinking

(3) SYLLABUS

The purpose of this course is to introduce students to the theory of linear regression and especially to the "correct" implementation. The topics covered include: relationships between continuous variables - correlation coefficient. The bivariate normal distribution.

Simple linear regression: statistical inference, prediction, hypothesis testing and diagnostics. Transformations and general linear model. Analysis of variance for model selection. Multiple linear regression using matrices. Added variable plots. Selecting "best" (sub)model, generalized F-test. Algorithmic procedures for selecting "best" (sub)model, multicollinearity and dummie variables.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to Face			
USE OF INFORMATION AND	YES			
COMMUNICATIONS TECHNOLOGY				
TEACHING METHODS	Activity	Semester workload		
	Lectures	120		
	tutorials	40		
	student's study	40		
	Course total	200		
STUDENT PERFORMANCE EVALUATION	WRITTEN EXAMINATION AT THE END OF THE SEMESTER			

(5) ATTACHED BIBLIOGRAPHY

- Κούτρας, Μ. Και Ευαγγελάρας, Χ. (2010). Ανάλυση Παλινδρόμησης: Θεωρία και Εφαρμογές, Σταμούλης
- Δ. Στογιάννης, Φ. Σιάννης (2024). Ανάλυση Παλινδρόμησης, Εκδόσεις Παπαζήση, ISBN: 978-960-02-4218-8
- Draper N.R. and Smith, Η. (1997). Εφαρμοσμένη Ανάλυση Παλινδρόμησης,
 Παπαζήσης
- Montgomery, D.C., Peck, E.A. and Vining, G.G. (2012). Introduction to Linear Regression Analysis, Wiley.
- Weisberg, S. (2014). Applied Linear Regression, Wiley