COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF INFORMATION SCIENCES & TECHNOLOGY				
ACADEMIC UNIT	DEPARTMENT OF STATISTICS				
LEVEL OF STUDIES	1st Cycle (UNDERGRADUATE)				
COURSE CODE	6176	SEMESTER 5 th			
COURSE TITLE	Generalized Linear Models				
INDEPENDENT TEACHI	INDEPENDENT TEACHING ACTIVITIES		WEEKLY TEACHING HOURS		CREDITS
Lectures			4		7
Workshops					
Labs			2		
COURSE TYPE	Compulsory				
PREREQUISITE COURSES:	6012 – ESTIMATION AND HYPOTHESIS TESTING				
	6023 – LINEAR MODELS				
LANGUAGE OF INSTRUCTION and	GREEK				
EXAMINATIONS:					
IS THE COURSE OFFERED TO	NO				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	https://www.dept.aueb.gr/en/stat-courses				

(2) LEARNING OUTCOMES

Learning outcomes
Understanding generalized linear models, the statistical analysis techniques implied and their properties, as well as the ability to apply these methods in data analysis and interpreting the results, and in some depth understanding of the theoretical issues that arise.
General Competences

- Search, analysis and synthesis of data and information, using the necessary technologies
- Autonomous work
- Promotion of free, creative and inductive thinking

(3) SYLLABUS

GLM Theory: Covariance matrix and the Wald test. Maximum likelihood estimation: scores and their distribution, asymptotic distribution of the maximum

likelihood estimators and the likelihood ratio. The exponential distributions family. Generalized linear model likelihood analysis, maximum likelihood estimation in the generalized linear model: the scores, the Fisher information and the Newton-Raphson algorithm. Relation to weighted least squares. Inference for coefficients. Deviance from the saturated model. Models with an unknown scale parameter. Residuals.

Applications, examples: binomial data: Link functions, coefficients interpretation, inference, overdispersion. One factor analysis (categorical or continuous), two or more factors analysis, with or without interactions: parameterizations, design matrices, coefficients interpretation. Probit and clog-log models examples. Poisson and log-linear models. Contingency tables, odds ratio and log-linear parameters. Multinomial and multinomial product, equivalency with log-linear, log-linear and logistic regression. Independence, group independence, conditional independence, uniform dependence. Overdispersion, overdispersion test and dispersion index, the negative binomial model and other alternatives.

Prerequisite basic knowledge of Linear Algebra.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face			
USE OF INFORMATION AND	YES			
COMMUNICATIONS TECHNOLOGY				
TEACHING METHODS	Activity	Semester workload		
	Lectures	52		
	Tutorial	26		
	Assignment	20		
	Self Study	102		
	Course Total	200		
STUDENT PERFORMANCE EVALUATION				
	Written examination at the end of the semester			
	Information is available at eclass			

(5) ATTACHED BIBLIOGRAPHY

- Agresti, A. (2015), Foundations of Linear and Generalized Linear Models, Wiley Series in Probability and Statistics
- Agresti, A. (2012), Categorical Data Analysis, 3rd edition, Wiley Series in Probability and Statistics
- Dobson & Barnett (2008), An Introduction to Generalized Linear Models, Taylor & Francis.
- Fox (2008), Applied Regression Analysis and Generalized Linear Models, Kindle
- Hosmer, D.W. and Lemeshow, S. (1989, 2000), Applied Logistic Regression. New York: Wiley.
- McGullagh, P and Nelder, J.A. (1989), Generalized Linear Models, London: Chapman and Hall.