COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF INFORMATION SCIENCES & TECHNOLOGY			
ACADEMIC UNIT	DEPARTMENT OF STATISTICS			
LEVEL OF STUDIES	1st Cycle (UNDERGRADUATE)			
COURSE CODE	6157 SEMESTER 7 th			
COURSE TITLE	STSP: Methodological Tools of Machine Learning			
INDEPENDENT TEACH	INDEPENDENT TEACHING ACTIVITIES		WEEKLY TEACHING HOURS	CREDITS
Lectures		2	7	
Workshops				
Labs			2	
COURSE TYPE	Elective			
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION	GREEK			
and EXAMINATIONS:				
IS THE COURSE OFFERED TO	No			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)	https://www.dept.aueb.gr/en/stat/content/special-topics- statistics-and-probability-stsp-methodological-tools-machine- learning-7			

(2) LEARNING OUTCOMES

Learning outcomes

Students will be able to:

- Deeply understand the functions of fundamental methodological machine learning tools, both analytical and computational
- Apply those tools to study real problems
- Integrate them into developing new techniques

General Competences

Analysis and composition of data and information with the use of novel technologies Adaptation to new situations Decision making Personal exercise Group exercise Exercise in an interdisciplinary field

Production of novel research ideas

Development of free, creative, and inductive thinking

(3) SYLLABUS

The course focuses on methodological tools of machine learning, such as:

- Reproducing kernel Hilbert spaces and applications
- Manifold learning, data geometry and applications
- Universal approximation theorems and applications to deep learning
- Probability Theory in high dimensions
- Gaussian processes and applications to machine learning
- Familiarization with Python

No prerequisites are formally required, however basic knowledge of Linear Algebra, Calculus, Probability, Statistical Inference, and Stochastic processes will be useful

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	Eclass Email			
	Use of Computer			
TEACHING METHODS	Activity	Semester workload		
	Lectures	52 hours		
	Study & Analysis of the Bibliography	38 hours		
	Exercise/Project	10 hours		
	Course total	100 hours		
STUDENT PERFORMANCE EVALUATION	Project with presentation and/or final exam.			

(5) ATTACHED BIBLIOGRAPHY

- Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016.
- Calin, Ovidiu. Deep learning architectures. New York City: Springer International Publishing, 2020 Ch. 9
- Hofmann, Thomas, Bernhard Schölkopf, and Alexander J. Smola. "A tutorial review of rkhs methods in machine learning." Technical Report (2005).
- Higham, Catherine F., and Desmond J. Higham. "Deep learning: An introduction for applied mathematicians." Siam review 61.4 (2019): 860-891.

• Professors' notes