COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF INFORMATION SCIENCES & TECHNOLOGY			
ACADEMIC UNIT	DEPARTMENT OF STATISTICS			
LEVEL OF STUDIES	1st Cycle (UNDERGRADUATE)			
COURSE CODE	6115	SEMESTER 6 th		
COURSE TITLE	Numerical Methods in Statistics			
INDEPENDENT TEACHII	NG ACTIVITIES		WEEKLY TEACHING HOURS	CREDITS
Lectures		2	7	
Workshops				
Labs		2		
COURSE TYPE	Elective – Sc	ientific Field		
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	https://www.dept.aueb.gr/en/stat/content/numerical- methods-statistics-7-ects			

(2) LEARNING OUTCOMES

Learning outcomes

At the end of the course the student will be able to understand the methodology, usage and limitations and will also be able to implement from first principles advanced numerical methods required for statistical science and machine learning.

Among others, the student will be able to identify and fully understand and implement the appropriate statistical method for the concrete problem at hand, program it from first principles in a high level programming environment (e.g. Python or R), and use it for understanding the particular concrete problem or model.

General Competences

Computing and scientific computing (Python or R) Independent study of the scientific literature Writing of scientific reports Presentation and oral/written communication skills Collaboration skills

(3) SYLLABUS

Methodology and implementation of scientific computing methods for statistics and machine learning.

The course is structured along three fundamental pillars

- (a) Numerical linear algebra
- (b) Numerical optimization
- (c) Approximation theory

All methods will be implemented computationally from first principles and tested on suitably selected problems from statistics and machine learning.

Knowledge of topics related to statistical inference, are very useful.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	YES		
TEACHING METHODS	Activity	Semester workload	
	Lectures	26	
	Lab Exercise	26	
	Studying and Analyzing	10	
	Bibliography		
	Project	60	
	Assignment 30		
	Self Study	23	
	Course Total	175	
STUDENT PERFORMANCE EVALUATION			
•	Home Assignment	30	
	Project	50	
	Public Presentation	20	
	Exempt Assignment	100	
	Information is available at eclass		

(5) ATTACHED BIBLIOGRAPHY

- Burden, R., Faires, J., (2010). Numerical Analysis. Cencage Learning.
- Chapra, S., Canale, R. (2016). Αριθμητικές Μέθοδοι για Μηχανικούς. Εκδόσεις Τζιόλα.
- Gentle, J. (2009). Στοιχεία Υπολογιστικής Στατιστικής. Εκδόσεις Παν. Μακεδονίας.
- Lange, K. (2010). Numerical Analysis for Statisticians. Springer.
- Monahan, J. F. (2011). Numerical methods of statistics. Cambridge University Press.

Lecture notes by the Professor

Research papers from the current literature for the more specialized topics on which the assignments will be based upon (provided by the Professor to the interested students)