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Abstract

We study information aggregation in a dynamic trading model with par-
tially informed traders. Ostrovsky [2012] showed that ‘separable’ securities
aggregate information in all equilibria, however, separability is not robust to
small changes in the traders’ private information. To remedy this problem,
we allow traders to acquire signals with cost κ, in every period. We show
that ‘κ separable securities’ characterize information aggregation and, as the
cost decreases, nearly all securities become κ separable, irrespective of the
traders’ initial private information. Moreover, the switch to κ separability
happens not gradually but discontinuously, hence even a small decrease in
costs can result in a security aggregating information. We provide a com-
plete classification of securities in terms of how well they aggregate infor-
mation, which surprisingly depends only on their payoff structure. Finally,
even with myopic traders, cheaper information may accelerate or decelerate
information aggregation for all but Arrow-Debreu securities.
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1 Introduction

The question of whether financial markets reveal and aggregate the private infor-
mation of traders has been studied at least since Hayek [1945]. Ostrovsky [2012]
provides a strong result, that information gets aggregated in all Nash equilibria
if the traded securities are separable and trading takes place for infinitely many
periods. However, separability is not robust to small changes in the composition of
the market or to the traders’ information structure. As a result, a market designer
who does not know who participates or what is their information structure, cannot
be sure that the equilibrium price is a good predictor of the security’s value.

In this paper, we examine whether the ability to acquire costly signals during
trading can make markets more efficient at aggregating information. This question
becomes more relevant as the continuous improvements in information technology
have created an abundance of available information, which is now cheaper than
ever to acquire, analyze, and act upon.1

We use the dynamic trading model of Ostrovsky [2012] with infinitely many
periods and payoffs given by the Market Scoring Rule (MSR) [Hanson, 2003, 2007].
Each trader’s private information is represented by a partition of the state space,
and the conjunction of everyone’s private information reveals the true value of the
security. We first characterize the class of securities which are always separable,
irrespective of who trades and what is their information structure. This class
is very small and uninformative, as it only contains the Arrow-Debreu (A-D)
security, which pays a at some state and b in all other states, and the security
that specifies three payoffs: the largest is paid in one state of the world, the lowest
in another, and the middle in all other states.2 For any other security, there is a
market (information structure and common prior) at which there is no information
aggregation so that the security’s price does not converge to its true value. This
means that information may not aggregate in ‘most’ markets.

Does the availability of cheap information alleviate this problem? To study
this question, we enhance the model by enabling traders to buy a costly signal
structure in each period, before trading. We allow for a large class of information
cost functions κ, including the Shannon entropy.

1For example, recent advances in generative AI tools such as ChatGPT could add considerable
value for investors with information processing constraints [Kim et al., 2023] and assist in picking
stocks [Pelster and Val, 2023].

2These securities are not very informative because the A-D can only predict whether one
state has occurred or not, whereas the other security can only predict whether two states have
occurred or not. Note that combining more than one A-D security to construct a composite
and more informative security will not solve this issue, because it will be non-separable for some
information structures.
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We introduce the class of κ separable securities and show (Theorem 2) that
they are necessary and sufficient for information aggregation, when the cost of
information is κ, thus generalising Ostrovsky [2012]. As information acquisition
costs κ decrease, the securities that eventually become κ separable, and therefore
aggregate information, in all equilibria and for all information structures, have
a very simple structure: they specify a different payoff at each state. This class
of securities with unique values is generic. Hence, the main message of the pa-
per is that the availability of cheap information makes ‘most’ markets aggregate
information.3

Surprisingly, there is also a small class of securities, which Theorem 1 charac-
terises, that never become κ separable for all information structures, and there-
fore may fail information aggregation, even when the cost converges (but is not
equal) to zero.4 Such a security specifies the same payoff d in two states and, in
two other states, it pays either higher or lower than d. We therefore provide a
complete classification of securities which depends only on their payoff structure:
always separable, κ separable for some κ, and κ non-separable for all κ.

If we can decrease the cost of information as much as we want, do we even
need markets to aggregate information through prices? Each trader could buy
the necessary signals and then bid very close to the true value. We argue that
this intuition is incorrect, because markets become even more important in an
environment with information acquisition. As cost κ decreases, a security switches
discontinuously from non-separable to κ separable, hence even a slight reduction
can enable a market to aggregate information. This is in contrast to the average
of the traders’ opinions after receiving the information, or a poll, because its
predictive accuracy improves smoothly as costs decrease. Hence, the availability
of cheap information leverages the value of the markets, enabling them to aggregate
information long before the cost goes to zero. Moreover, we show that a security
is κ separable if and only if the market is more accurate than a poll, for all priors.

Finally, we examine whether information acquisition can make markets more
efficient by aggregating information faster. We show that this is not true. Even in
non-strategic environments, as long as the separable security is not A-D, informa-
tion aggregation can happen both faster and slower, depending on the parameters.
This implies that, as information becomes more affordable, markets could become

3This result is also supported by empirical evidence. Farboodi et al. [2022] show, using a
structural model, that as the value of a firm’s data grows, which is equivalent in our model to a
decrease in the cost of information acquisition, the information content of the price of the firm’s
stock increases as well.

4If the cost of information acquisition is zero, then information aggregates trivially.
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less efficient if the underlying security is not A-D.

1.1 Literature

Our paper contributes to three strands of the literature. The first studies the
inefficiency of information acquisition and its effect on information aggregation
in markets.5 Pavan et al. [2022] show that traders acquire and use information
inefficiently. Moreover, as the cost of information declines, traders over-invest in
information acquisition and trade too much on their private information. Several
experimental studies support these results and find that traders tend to over-
acquire information. In addition, while information acquisition is positively corre-
lated with market efficiency, market prices do not aggregate all private information
[Kraemer et al., 2006, Page and Siemroth, 2017, 2021, Corgnet et al., 2022]. Mele
and Sangiorgi [2015] analyze costly information acquisition in asset markets with
ambiguity-averse traders and show that when uncertainty is high enough, infor-
mation acquisition decisions become strategic complements and lead to multiple
equilibria. Our paper complements and differs from this literature. We find that,
as the cost of information acquisition decreases, the number of securities (and
therefore markets) that aggregate information increases. However, some securities
are never able to aggregate information, even if the cost is almost zero. Finally,
information aggregation can be delayed when information acquisition is cheap,
thus introducing another element of inefficiency.

The second strand looks at the information aggregation properties of financial
and, in particular, prediction markets.6 DeMarzo and Skiadas [1998, 1999] first
introduced the notion of separable securities. Ostrovsky [2012] and Chen et al.
[2012] show that in a market with dynamically consistent traders, separable se-
curities are both necessary and sufficient for information aggregation. Dimitrov
and Sami [2008] and Chen et al. [2010] examine information aggregation by vary-
ing the assumptions regarding the traders’ information structure. Galanis et al.
[2024] study information aggregation with ambiguity-averse traders, whereas Gala-
nis and Kotronis [2021] allow for boundedly rational traders who are unaware of
some contingencies.7 We contribute to this literature by allowing traders to ac-
quire costly signals at every period and we characterize the κ separable securities

5See Lim and Brooks [2011] for a survey of the empirical literature on market efficiency.
6See Wolfers and Zitzewitz [2004] for an early overview of the literature.
7Unawareness and ambiguity aversion generate dynamic inconsistency and negative value of

information, which are partly responsible for no information aggregation. See Galanis [2011,
2013] for a model of unawareness and Galanis [2021] for a connection between dynamic incon-
sistency and the negative value of information.
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which aggregate information.
Finally, the paper contributes to the growing literature on the implications of

rational inattention, originated by Sims [2003]. We build on the results of [Denti,
2022, Caplin et al., 2019, Matějka and McKay, 2015, Caplin and Dean, 2015] to
characterize the traders’ optimal behavior in a game with infinitely many peri-
ods, where traders have posterior-separable cost functions and can buy signals in
every period. We show that, in any Nash equilibrium, almost any security aggre-
gates information for a sufficiently small marginal cost of information.8 See also
Maćkowiak et al. [2023] for a recent survey of the literature on rational inattention.

We conclude by motivating our choice of the MSR model. First, in the MSR
model, there are no noise traders and no strategic market makers, hence the issue
of information aggregation is not intertwined with that of information revelation,
as in Kyle [1985].9 Unlike the MSR, in Kyle [1985] it is not always the case
that the price will converge to the true value of the security, even if there is only
one trader and therefore information aggregation is achieved by default. Second,
a prediction market with the MSR can be reinterpreted as an inventory-based
market with a market maker who continuously adjusts the price of the securities
depending on the orders she receives.10 The advantage of the MSR over more
well-known market mechanisms, such as the continuous double auction, is that an
agent can make her prediction/trade without waiting for another agent to take
the opposite side, or submit a limit order and wait for it to be filled. This feature
makes it an attractive mechanism for markets with relatively few participants
who do not trade daily, or in markets with automated market makers.11 MSR-
based prediction markets have been used widely, for example, by firms such as
Ford, Google, General Electric, and Chevron (see Ostrovsky [2012], Cowgill and
Zitzewitz [2015]) as well as governments, for example, in the UK and the Czech
Republic (The Economist [2021]).

The paper adheres to the following plan. Section 2 describes the model. Sec-
tion 3 shows that the class of always separable securities is very small and un-
informative, thus prompting Section 4, where we include our main results in an
environment with information acquisition. Section 6 concludes.

8Atakan and Ekmekci [2023] show that common value auctions with uninformed bidders who
can acquire costly signals aggregate information as long as the minimum cost-accuracy ratio is
equal to zero.

9Note that Ostrovsky [2012] uses both the MSR and the Kyle [1985] model.
10See Ostrovsky [2012] and Galanis et al. [2024] for examples.
11Automated market makers are widely used in Decentralized Finance, see Schlegel et al.

[2022] for an axiomatization of the logarithmic MSR. Frongillo et al. [2023] show the equivalence
of prediction markets and constant function market makers that are used overwhelmingly when
trading on the blockchain.
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2 The Model

2.1 Preliminaries

Uncertainty is described by a finite state space Ω = {ω1, ..., ωl} and the set of
traders is denoted I = {1, . . . , n}. Trader i’s initial private information is repre-
sented by partition Πi of Ω. Let Πi(ω) be a partition element of Πi that contains
ω, so that ω ∈ Πi(ω) ∈ Πi. When the true state is ω ∈ Ω, Trader i considers
all states in Πi(ω) ⊆ Ω to be possible. We assume that the join (the coarsest
common refinement) of partitions Π = {Π1, . . .Πn} consists of singleton sets so
that

⋂
i∈I

Πi(ω) = ω for all ω ∈ Ω, which means that the traders’ pooled information

always reveals the true state.12 This implies that, for any two states ω1 ̸= ω2,
there exists Trader i such that Πi(ω1) ̸= Πi(ω2). Let P be the collection of all
information structures Π where Ω has at least three states and

⋂
i∈I

Πi(ω) = {ω}

for all ω ∈ Ω. Traders have a full-support common prior µ0 over Ω and they are
risk-neutral.

2.2 Trading environment

Trading is organized as follows. At time t0 = 0, nature selects a state ω∗ ∈ Ω and
the uninformed market maker makes a prediction y0 about the value of securityX :

Ω → R. At time t1 > t0, Trader 1 makes a revised prediction y1, at t2 > t1 trader
2 makes his prediction, and so on. At time tn+1 > tn, Trader 1 makes another
prediction yn+1, and the whole process repeats until time t∞ ≡ limk→∞ tk = 1. All
predictions are observed by all traders. Each prediction yk is required to be within
the set [min

ω∈Ω
X(ω),max

ω∈Ω
X(ω)]. At some time t∗ > 1 the true value x∗ = X(ω∗) of

the security is revealed.
The traders’ payoffs are computed using a scoring rule, s(y, x∗), where x∗ is

the true value of the security and y is a prediction. A scoring rule is proper if,
for any probability measure p and any random variable X, the expectation of s is
maximized at y = Ep[X]. It is strictly proper if y is unique. We focus on continuous
strictly proper scoring rules. Examples are the quadratic, where s(y, x) = −(x−
y)2, and the logarithmic, where s(y, x) = (x− a)ln(y − a) + (b− x)ln(b− y) with
a < min

ω∈Ω
X(ω), b > max

ω∈Ω
X(ω).

Under the market scoring rule (MSR) (McKelvey and Page [1990], Hanson
12This assumption is also made by Ostrovsky [2012] and it is without loss of generality because

if the conjunction of the traders’ private information does not reveal the state, we cannot expect
that trading the security will reveal it.
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[2003, 2007]), a trader is paid for each revision he makes. In particular, his payoff,
from announcing yn at tn, is s(yn, x∗) − s(yn−1, x

∗), where yn−1 is the previous
announcement and x∗ is the true value of the security. For all proper scoring
rules, as Eq[X] converges to X(ω), s(Eq[X], X(ω)) converges to 0. Moreover, if
yn−1 is further away from X(ω) than Eq(X) is from X(ω), then s(Eq[X], X(ω))−
s(yn−1, X(ω)) is strictly positive. We then say that the trader “buys out” the
previous trader’s prediction. If he repeats the previous announcement, his period
payoff is zero. We say that prior µ is non-degenerate given security X if it does
not assign probability 1 to a unique value of X.

2.3 Two trading settings

We examine trading in two settings. In the myopic, or non-strategic, setting, each
trader does not care about future payoffs when acquiring information and making
an announcement. We denote this setting by ΓM(Ω, I,Π, X, y0, µ, y, y, s), where I
is the set of n players, s is a strictly proper scoring rule, y0 is the market maker’s
initial announcement at time t0, µ is the common prior, [y, y] is the set of possible
announcements.

The strategic setting is studied in Section 4.5. Following Dimitrov and Sami
[2008], we focus on the discounted MSR, which specifies that the payment at tk is
βk(s(ytk , x

∗)− s(ytk−1
, x∗)), where 0 < β ≤ 1 is the common discount factor. The

total payoff of each trader is the sum of all payments for revisions. We denote this
setting by ΓS(Ω, I,Π, X, y0, µ, y, y, s, β). In Section 4, we will add function h in
the specification of the game, which denotes the cost of statistical experiments.

2.4 Information aggregation

We say that information is aggregated if the traders’ predictions converge to the
intrinsic value X(ω) of security X, for all ω ∈ Ω. For every ω ∈ Ω, let yk(ω) be the
announcement of the trader who moves in period tk. The announcement yk(ω)
depends on ω because traders have different private information across states.
Because {yk}∞k=1 is a sequence of random variables, we need a probabilistic version
of convergence.

Definition 1. Under a profile of strategies in ΓM or ΓS, information aggregates
if sequence {yk}∞k=1 converges in probability to random variable X.
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2.5 Example

The following Example illustrates how we incorporate costly information acquisi-
tion in the model of Ostrovsky [2012].

Example 1. The state space is Ω = {ω1, ω2, ω3, ω4}, the security is X = (0, 10
7
, 0, 1),

and there are two myopic traders with common prior µ = (1
4
, 1
6
, 1
4
, 1
3
). Trader 1’s

partition is {{ω1, ω2}, {ω3, ω4}} and Trader 2’s is {{ω1, ω4}, {ω2, ω3}}.

As traders are myopic, under the MSR they take turns in announcing their
expected value of X. Suppose that the true state is ω1 and traders cannot acquire
costly signals. In period 1, Trader 1 with conditional beliefs (3

5
, 2
5
, 0, 0) will an-

nounce 4
7
. The same announcement would be made by Trader 1 in all states and,

thus, no information is transmitted to Trader 2. In period 2, Trader 2 also makes
the same announcement at ω1 and, furthermore, the same announcement would
be made in all states. Hence, no information is transmitted to Trader 1. Because
the two traders agree on the announcement, there is no information updating and
the process ends. We say that there is no information aggregation at ω1 because
the final announcement 4

7
is not equal to the intrinsic value of X at ω1, which is

0.13

Suppose now that traders are able to acquire a noisy signal about the value
of the security before making their announcement. For instance, Trader 1 can
acquire a statistical experiment R that generates a signal z, given each state, with
probabilities Rω1(z) = 1 and Rω2(z) = Rω3(z) = Rω4(z) = 0.5.

At state ω1, Trader 1’s prior belief is (3
5
, 2
5
, 0, 0) and, after receiving signal z, his

posterior belief is (3
4
, 1
4
, 0, 0). He then announces the expected value of X, which is

5
14

. Trader 2 considers states ω1 and ω4 to be possible. The public announcement
of 5

14
reveals to Trader 2 that the true state is ω1. The reason is that, irrespective

of whether Trader 1 received signal z or not, his posteriors at ω4 are (0, 0, 3
7
, 4
7
)

and he would have announced 4
7
. As a result, Trader 2 announces 0 in the second

round and the game ends. Note that the final price is equal to the intrinsic value
of X at ω1, hence information aggregation does occur. In summary, the ability
to acquire extra signals transforms X from non-separable to separable, enabling
information aggregation.

We make two observations. First, we have abstracted from the cost of acquiring
an experiment. Each trader will acquire the signal structure only if the expected

13Information aggregation fails in the first round in this example and no-one updates from
µ. In general, traders could start from a different common prior µ′, and after several rounds
of updating they could update to some other posterior µ′′, at which there is no information
aggregation.
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benefit from making a better prediction outweighs the cost. See Section 4 for the
formal treatment. Second, Trader 2 free-rides on Trader 1 buying the signal. By
moving the price from 5

14
to 0, he books a profit, without paying the cost of a

signal. This example illustrates that the ability to acquire information can turn a
non-separable security into a κ separable.

Security X is κ separable if whenever there is agreement about the expected
value of X, given a prior that does not put probability 1 to only one value of X,
then at least one (myopic) trader finds it profitable to acquire information. It is
therefore a generalization of separability, which requires that such a prior does not
exist. In Section 4.3, we formally define the notion of κ separability and Theorem
2 shows that this class of securities characterizes information aggregation when
the cost is κ. A natural question is whether all securities eventually become κ
separable, for sufficiently low cost of information. Surprisingly, Theorem 1 shows
that there is a small class of securities that never become κ separable, even if the
cost is negligible but strictly positive. We therefore have a discontinuity as costs
converge to zero.

3 No Information Acquisition

In an environment without information acquisition, Ostrovsky [2012] shows that
separable securities are necessary and sufficient for aggregating information. In
this section, we first define the class of separable securities. We then characterize
the class of always separable securities, which are separable for all information
structures, and show that it is small and uninformative.

3.1 Separable Securities

Consider the following example, which appears in similar form in Geanakoplos
and Polemarchakis [1982] and in Example 1 of Ostrovsky [2012].

Example 2. The state space is Ω = {ω1, ω2, ω3, ω4}, the security is X = (0, 1, 0, 1),
and there are two traders with common prior µ = (1/4, 1/4, 1/4, 1/4). Trader 1’s
partition is {{ω1, ω2}, {ω3, ω4}} and Trader 2’s is {{ω1, ω4}, {ω2, ω3}}.

At all states, it is common knowledge that both traders agree that the expected
value of X is 0.5, hence there can be no more learning from further announce-
ments.14 However, it is also common knowledge that the intrinsic value of X is

14Note that agreement about the value of the security will eventually be reached at some
period, as shown by Geanakoplos and Polemarchakis [1982].
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not 0.5; it is either 0 or 1, which implies that there is no information aggregation.
When both these conditions are satisfied for some prior and some partitions, the
security is non-separable. If there is not such prior, the security is separable.

Definition 2. A security X is called non-separable under information structure
Π if there exists probability µ and value v ∈ R such that:

(i) X(ω) ̸= v for some ω ∈ Supp(µ),

(ii) Eµ[X|Πi(ω)] = v for all i = 1, ..., n and ω ∈ Supp(µ).

We then say that security X is non-separable at µ. Otherwise, it is called separable.

A security X is non-separable if, for some prior µ and at all states in its
support, all traders’ expected value of X is v, yet there is uncertainty about the
value of X. If for any prior at least one condition is violated, then the security
is separable. Note that separability (and non-separability) is a property that
depends on the information structure Π. For a different Π, a security may switch
from separable to non-separable and vice-versa. The following theorem shows
that separability characterizes information aggregation, in an environment without
information acquisition.

Theorem (Ostrovsky [2012]). Fix information structure Π. Then:

• If security X is separable under Π, then in any Nash equilibrium of game
ΓS(Ω, I,Π, X, y0, µ, y, y, s, β), information gets aggregated.

• If security X is non-separable under Π, then there exists prior µ such that
for all s, y0, y, y, and β, there exists a Perfect Bayesian equilibrium of the
corresponding game ΓS in which information does not get aggregated.

This is a powerful result because it applies to all equilibria and irrespective
of the market power of traders. Separable securities can be very useful for a
market designer because they always aggregate information, hence the price can
predict whether an event has occurred or not. However, separability depends on
the information structure Π. If the market maker does not know Π, he cannot be
certain that the equilibrium price is a good predictor of the intrinsic value of the
security.

3.2 Always Separable Securities

The dependence of separability on Π is not a problem if the security is separable
for all information structures. In this section, we characterize the securities that
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have this property, so that information aggregation does not depend on who trades
or what is their private information.

Unfortunately, the following Proposition shows that this class is very small
and uninformative. It consists of just three types of securities. The first is the
constant, which pays the same at all states. The second is the Arrow-Debreu
(A-D), which pays a at some state ω and b at all other states. The third pays a
at some state ω, d at ω′, and b at all other states, where a < b < d.

Proposition 1. The only non-constant securities that are separable for all infor-
mation structures in P are the A-D and the security that is of the following form.
There are values a < b < d such that X(ωa) = a and X(ωd) = d for two states
ωa, ωd, and X(ω) = b for all ω ̸= ωa, ωd.

See proof on page 31.
All three types of securities are ‘uninformative’. Even when there is information

aggregation and the price of X always converges to the true value X(ω) at state
ω, this only reveals that either ω, ω′, or neither, have occurred. In other words,
the price of X does not reveal information about most events in Ω. In contrast,
the most informative security X pays differently across all states. If there is
information aggregation, then X reveals whether any event in Ω has occurred
or not. However, because X is not always separable, we know that for some
information structure Π, information does not aggregate.

4 Information Acquisition

In this section, we show how the problem of non-separability and no information
aggregation can be alleviated if we allow traders to acquire information in every
period where they make an announcement. Note that the join of the partitions
of all traders reveals the true value of security X, hence buying costly signals is
‘wasteful’, in the sense that a trader learns something that other traders already
know. However, there is value in allowing information acquisition, because it
eliminates the bad equilibria where there is no information aggregation, as shown
in Theorem 2.

We define a new class of securities, called κ separable, where κ is the cost of
acquiring information. Our first main result, Theorem 1, characterizes the secu-
rities that are κ non-separable for some information structure Π but for all κ.
Our second main result, Theorem 2, shows that κ separable securities charac-
terize information aggregation, in both strategic and non-strategic settings, thus
generalizing Ostrovsky [2012] in an environment with information acquisition.
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4.1 Cost of Information

We first formalise the cost of acquiring information. For ease of exposition, many
of the technical details are relegated to Section A.1 in the Appendix.

Let T be a Polish space of possible signals with Borel σ-algebra T . Let ∆(T )

be the set of Borel probabilities on T . Following Blackwell [1951], we model the
acquisition of information using statistical experiments. A statistical experiment is
a function from states into probabilities on signals, R : Ω → ∆(T ). An experiment
is bounded if it does not definitely rule out any state. Let E be the collection of all
experiments and Eb be the collection of all bounded experiments. An experiment
is bounded if no signal can reveal, with probability one, that a state in Ω has not
occurred.

Given a prior belief µ ∈ ∆(Ω), a statistical experiment R induces via Bayesian
updating a probability distribution over posteriors, or random posterior, B(µ,R) =

Q ∈ ∆(∆(Ω)). Let Q(γ) be the probability of posterior γ ∈ ∆(Ω), Q(µ) =

{B(µ,R) : R ∈ E} be the set of all random posteriors that can be generated by
some experiment R ∈ E , and Q =

⋃
µ∈∆(Ω)

Q(µ). Note that Q ∈ Q(µ) if and only if∫
∆(Ω)

γQ(dγ) = µ.

A cost on experiments is a map h : ∆(Ω) × E → [0,∞], where h(µ, ·) is
Borel measurable for each prior µ ∈ ∆(Ω). The cost h generates a cost structure
κ = (K, c) on random posteriors, where c > 0 is the unit cost of information and
K : F → [0,∞] maps elements of F = {(µ,Q) : µ ∈ ∆(Ω), Q ∈ Q(µ)}, the set
of all priors µ and all posterior distributions Q that can be generated by some
experiment R ∈ E , to the extended real line.

For Theorem 1 and Proposition 5, we assume that it is prohibitively costly to
acquire an unbounded experiment.

Assumption 1. If R /∈ Eb, then h(µ,R) = ∞.

If all unbounded experiments have infinite cost, then generating a random
posterior with support on a posterior δω, which assigns probability 0 to a state
ω ∈ Supp(µ), is infinitely costly.

A widely used class of functions is the posterior-separable cost functions (Caplin
et al. [2022]).

Definition 3. A cost of information function K is posterior-separable if, given
µ ∈ ∆(Ω) and any Bayes-consistent posteriors Q ∈ Q(µ),

K(µ,Q) =
∑

γ∈Supp(Q)

Q(γ)Wµ(γ)
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for some function Wµ : ∆(Supp(µ)) → R which is strictly convex and continuous
in γ, Wµ(γ) <∞ on int∆(Supp(µ)) and Wµ(γ) ≥ 0.

An example of a posterior-separable cost function that satisfies Assumption 1
is the Shannon cost function,

KS(µ,Q) =
∑

γ∈Supp(Q)

Q(γ)
∑

ω∈Supp(γ)

γ(ω) ln γ(ω)−
∑

ω∈Supp(µ)

µ(ω) lnµ(ω).15

We have described two ways of representing the cost of information acquisi-
tion. The first is in terms of costly statistical experiments, whereas the second
is in terms of costly random posteriors. There is a growing literature that exam-
ines the connection between the two approaches. Bloedel and Zhong [2020] and
Hébert and Woodford [2021, 2023] show how costly statistical experiments, with
a function h that depends both on the agent’s prior and the experiment, can gen-
erate uniformly posterior-separable cost functions for random posteriors. Denti
et al. [2022], however, restrict h to depend only on the experiment and show that
uniformly posterior-separable cost functions cannot be generated.

We do not take a stance on which representation is the most suitable. Our
results do not require any specific functional forms, such as posterior separability,
however, we adopt this framework for most of the paper because it is the most well-
known. When we define the game in Section 4.5, we use the standard framework
of costly statistical experiments with function h.

4.2 The myopic problem

Suppose that at time t it is Trader i’s turn to make an announcement. Having
observed all previous announcements and using the public information that is
revealed, an outside observer updates the common prior µ0 to a belief µ over
Ω. If the true state is ω, then Trader i’s private information is Πi(ω) and his
posterior belief is the Bayesian update of µ, denoted µΠi(ω). In other words, he
updates using both his private information and the public information revealed
by previous announcements.

His myopic problem consists of buying a random posterior Q ∈ Q(µΠi(ω))

at cost cK(µΠi(ω), Q), so that when his posterior beliefs are γ ∈ Supp(Q), he
15Another example is expected Tsallis entropy (Tsallis [1988]). Both are examples of weakly

uniformly posterior-separable cost functions, where K depends on µ only through the support of
µ (Caplin et al. [2022]). Denti [2022] characterizes posterior-separable and uniformly posterior-
separable cost functions. Caplin and Martin [2015] and Caplin and Dean [2015] provide necessary
and sufficient conditions for a data set to be represented by optimal choice subject to an infor-
mation cost.
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optimally announces Eγ[X] because the scoring rule is proper. The optimal Q
solves the problem

sup
Q∈Q(µΠi(ω))

( ∑
γ∈Supp(Q)

Q(γ)
∑
ω′∈Ω

γ(ω′)
[
s(Eγ[X], X(ω′))−s(z,X(ω′))

]
−cK(µΠi(ω), Q)

)
,

(1)
where c > 0 is the unit cost of information and z is the previous announcement.

In the standard model of Ostrovsky [2012], without information acquisition,
the previous announcement z does not influence the myopic best announcement
because the scoring rule is proper. The same is true here, where we allow for
information acquisition.16 To see this, note that we can rewrite the expression in
the parenthesis as∑
γ∈Supp(Q)

Q(γ)
∑
ω′∈Ω

γ(ω′)
[
s(Eγ[X], X(ω′)))

]
−

∑
ω′∈Supp(µ)

µ(ω′)s(z,X(ω′))−cK(µΠi(ω), Q),

hence the previous announcement z does not influence the choice of Q or the
announcement.

Note that the trader can always receive a payoff of 0 by just repeating the
previous announcement z and not acquiring any new information. If his payoff at
(1) is smaller or equal to 0 for all Q ∈ Q(µΠi(ω)), we say that he does not prefer
to acquire information at ω. If, given a common prior µ, no Trader i prefers to
acquire information at any state ω ∈ Supp(µ), we say that there is no information
acquisition for security X.

Definition 4. There is no information acquisition for security X, given prior µ
and previous announcement z, cost structure κ = (K, c) and information structure
Π ∈ P, if for all states ω ∈ Supp(µ), all traders i, and all Q ∈ Q(µΠi(ω)),∑

γ∈Supp(Q)

Q(γ)
∑
ω′∈Ω

γ(ω′)
[
s(Eγ[X], X(ω′))− s(z,X(ω′))

]
− cK(µΠi(ω), Q) ≤ 0.

Otherwise, there is information acquisition.

4.3 κ Separable Securities

The result of Proposition 1, that very few securities are always separable, indicates
that ‘most’ markets may not aggregate information. A natural question is whether

16Interestingly, with ambiguity averse preferences, the myopic best depends on the previous
announcement, as shown in Galanis et al. [2024].
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the possibility of acquiring information fixes this problem. Intuitively, a non-
separable security may still aggregate information if, whenever everyone makes
the same announcement, at least one trader finds it profitable to acquire more
information, thus changing his posterior and his announcement.

In this section, we define the class of κ separable securities, where κ = (K, c)

is the cost of information acquisition. In the next section, we show that they are
necessary and sufficient for information aggregation, thus generalising the main
result of Ostrovsky [2012].

We say that security X is κ non-separable given an information structure Π

and a cost structure κ if there is a prior µ such that no one is acquiring any
information, yet the security is non-separable at µ.

Definition 5. Security X is κ non-separable given an information structure Π ∈ P
and cost structure κ ∈ K, if there exists prior µ such that

• Security X is non-separable at µ,

• There is no information acquisition for X given µ.

Otherwise, security X is κ separable.

Recall that a non-separable security is non-separable for at least one µ, whereas
a separable security is separable for all µ. If security X is κ separable, then for
each µ there are two cases. Either X is separable at µ, or X is non-separable at
µ but there is information acquisition.

We make the following remarks. First, separability implies κ separability, for
all κ, because there does not exist a prior at which the security is non-separable.
Second, non-separability implies κ non-separability for some κ, because for a high
enough marginal cost c, no trader will acquire any information.

Remark 1. If security X is separable given an information structure Π ∈ P, then
it is also κ separable for any cost structure κ ∈ K.

Remark 2. If security X is non-separable given an information structure Π ∈ P,
then for any cost function K it is κ = (K, c) non-separable for some marginal cost
of information c.

Note that if X is κ = (K, c) non-separable, then there is a µ for which there
is no information acquisition and X is non-separable at µ. If we increase the
marginal cost to c′ > c, then there is still no information acquisition for µ, hence
X is κ′ = (K, c′) non-separable. Conversely, if X is κ = (K, c) separable, it is
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separable for all µ for which there is no information acquisition. If we decrease
the marginal cost to c′ < c, then the set of priors for which there is no information
acquisition will shrink and therefore X will be κ′ = (K, c′) separable for all c′ < c.
We, therefore, have the following remark.

Remark 3. If X is κ = (K, c) non-separable (separable), then it is κ′ = (K, c′)

non-separable (separable) for all c′ > c (c′ < c).

It would be natural to expect that, for a sufficiently low marginal cost c, any se-
curity eventually becomes κ separable. But this is not true. Recall Example 2 with
state space Ω = {ω1, ω2, ω3, ω4}, security X = (0, 1, 0, 1), and two traders with
the following information structure. Trader 1’s partition is {{ω1, ω2}, {ω3, ω4}}
and Trader 2’s is {{ω1, ω4}, {ω2, ω3}}. With a uniform prior, all traders would
agree that the expected value of X is 0.5, at all states, hence the security is
non-separable.

Consider now prior µ = (1−2m
2
,m, 1−2m

2
,m), where 0 < m < 0.5. Given any

m, each trader’s expected value of X at all states is 2m. As c converges to 0, we
can always specify m that is sufficiently close to 0.5, so that no trader is willing
to buy a signal, because this will move their expected value of X from 1 − 2ϵ to
1− ϵ, for small enough ϵ > 0, hence the expected benefit is lower than c. Because
there is no information acquisition and all traders agree on the expected value,
security X is κ = (K, c) non-separable for all c > 0.

Note that this result requires Assumption 1, which specifies that it is impossible
to buy an unbounded experiment that reveals the true state with certainty.17

Moreover, all traders agree, at some state ω, that at least two values are possible,
0 and 1. Proposition 5 in the Appendix shows that this condition is necessary
for a security to be κ non-separable for all κ and a specific information structure.
Additionally, it specifies a second, independent condition, which is an extension
of Theorem 7 in Ostrovsky [2012], a dual characterisation of separability.

However, what if we do not know the information structure of traders? The
following Theorem shows that security X is κ non-separable given some Π and for
all κ, if and only if there are four states at which X pays (a, d, b, d), where either
a, b < d or a, b > d.

17It is interesting to note that the incompatibility of the (0, 1, 0, 1) vector with information
aggregation is met in other settings as well. In the model of DeGroot [1974], agents update their
beliefs naively, by looking at their immediate neighbours, according to a fixed network. If the

network is represented by a periodic matrix, such as A =

(
0 1
1 0

)
, then beliefs do not converge

(Golub and Jackson [2010]).
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Theorem 1. Suppose that Ω has at least four states. Under Assumption 1, the
following are equivalent:

• X is κ non-separable given some Π and for all κ,

• X pays (a, b, d, d) in four states, where either a, b < d or a, b > d.

See proof on page 33.
A Corollary is that if security X pays differently across all states, then it is

κ separable for some κ, given any information structure Π. In other words, if
information is sufficiently cheap to acquire, there are easily describable securities
where information aggregation is achieved and this is robust to changes in who
participates in the market and what is their private information.

Corollary 1. If X(ω) ̸= X(ω′) for all ω, ω′ ∈ Ω, then, given any Π, X is κ
separable for some κ.

This Corollary echoes the following result within the context of perfectly com-
petitive markets, as pointed out in Laffont and Maskin [1990]. As long as there
are “enough prices”, so that trade can be made contingent on sufficiently many
events, then the competitive equilibrium is generically separating and the func-
tion relating information to prices is invertible (Grossman [1976], Radner [1979],
Allen [1981]). We could interpret Corollary 1 as a generalisation of this result,
because our setting applies to all Nash equilibria, not just competitive equilibria.

4.4 Classification of securities

We provide a complete classification of securities in terms of how well they aggre-
gate information, which surprisingly depends only on their payoff structure. There
are three types of securities: always separable, κ non separable for all κ and some
information structure, and κ separable for some κ and all information structures.
This classification does not depend on who is trading or what is their information
structure. Moreover, it is very simple to classify each security, which is not true
when determining whether a security is separable or not, given an information
structure.

Let X be a security defined on Ω that has at least four states. If there is m
such that X(ω′) = X(ω′′) = m for at least two states ω′, ω′′ ∈ Ω, let M be the set
of states ω with X(ω) = m. Otherwise, set M = ∅.

Case 0. M = Ω. Security X is constant and therefore (trivially) always
separable, for all information structures Π.
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Case 1. There is either a unique ω /∈M , so that the security is A-D, or there
are exactly two states ω, ω′ /∈M , such that X(ω) > m > X(ω′). From Proposition
1, X is always separable, for all information structures Π.

Case 2. There exist ω, ω′ /∈M with eitherX(ω), X(ω′) < m, orX(ω), X(ω′) >

m. From Theorem 1, X is κ non-separable for all κ, for some information structure
Π.

Case 3. M = ∅, hence X(ω) ̸= X(ω′), for all ω, ω′ ∈ Ω. From Corollary 1, X
is κ separable for some κ, for all information structures Π.

It is interesting to note that, within our framework that has continuous values
and finitely many states, all cases except Case 3 are of measure zero. Hence, if
we were to randomly pick a security, generically we would pick one with unique
values which aggregates information in all equilibria and given any information
structure, as long as the cost of information is sufficiently low.

4.5 Strategic traders

We now show that κ separable securities characterize information aggregation in
strategic settings where there cost of information acquisition is κ. Consider game
ΓS(Ω, I,Π, X, h, y0, µ, y, y, s, β), where I is the set of n players, s is a strictly proper
scoring rule, y0 is the market maker’s initial announcement at time t0, µ is the
common prior, h is the cost of statistical experiments, [y, y] is the set of possible
announcements, and β is the common discount rate. Let (y1, . . . , yk) ∈ [y, y]k be a
history of announcements and (τ1, . . . , τk) ∈ T k be a history of signals up to time
tk. Denote by T k

i the collection of all histories about i’s signals up to time tk.
At time tk, Trader i with belief µ can choose to acquire information in the

form of a statistical experiment R ∈ E , with cost h(µ,R). Each experiment R
and belief µ uniquely induce a Bayesian plausible belief Q over posteriors, which
costs cK(µ,Q) = h(µ,R). We can therefore analyse the game in terms of an
information cost structure κ = (K, c), which is generated by h.

After receiving a signal τ of experiment R and updating to a posterior γ in
the support of Q, Trader i makes an announcement yk. Let [y, y]T be the set of
all functions from signals to announcements in [y, y]. His mixed strategy at time
tk is a measurable function

σi,k : Πi × T k−1
i × [y, y]k−1 × [0, 1] −→ E × [y, y]T .

It specifies a statistical experiment and an announcement for each signal that
is drawn from that experiment, given the element of his partition, the history of
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his past signals and everyone’s announcements up to time tk, and the realization
of random variable ιk ∈ [0, 1], which is drawn from the uniform distribution. One
such draw takes place at each time tk and the draws are independent of each other
and of the true state ω.18

The full state is ϕ = (ω, ι1, ι2, . . .) and describes the initial uncertainty and
the randomizations of the players. Let X(ϕ) ≡ X(ω) be the true value of X at
ϕ = (ω, ι1, ι2, . . .) and Φ = Ω × [0, 1]N be the full state space. Denote by σi the
collection σi,k of i’s strategies, at all times tk where it is his turn to make an
announcement. Let σ = (σ1, . . . , σn) be a profile of strategies. Given a strategy σ
and state ϕ, let yi+nk(σ, ϕ) be the announcement of Trader i, µi+nk(σ, ϕ) his belief,
and cK(µi+nk(σ, ϕ), Qi+nk(σ, ϕ)) his cost of information acquisition in period ti+nk

which is generated by the experiment he has chosen and his current beliefs.

Definition 6. A strategy profile σ is a Nash equilibrium if, for every Trader i and
every alternative strategy σ′ = (σ−i, σ

′
i), we have

Eµ

[
∞∑
k=0

βi+nk

(
s
(
yi+nk(σ, ϕ), X(ϕ)

)
−s
(
yi+nk−1(σ, ϕ), X(ϕ)

)
−cK

(
µi+nk(σ, ϕ), Qi+nk(σ, ϕ)

))]
≥

Eµ

[
∞∑
k=0

βi+nk

(
s
(
yi+nk(σ

′, ϕ), X(ϕ)
)
−s
(
yi+nk−1(σ

′, ϕ), X(ϕ)
)
−cK

(
µi+nk(σ

′, ϕ), Qi+nk(σ
′, ϕ)

))]
,

where the expectation is taken with respect to the common prior µ.

We now show that κ separable securities characterize information aggregation
when the cost structure is κ = (K, c). Note that Assumption 1 is not needed for
this result.

Theorem 2. Fix information structure Π and cost of experiments h, which gen-
erates cost structure κ. Then:

• If security X is κ separable under Π, then in any Nash equilibrium of game
ΓS(Ω, I,Π, X, h, y0, µ, y, y, s, β), information gets aggregated.

• If security X is κ non-separable under Π, then there exists prior µ such that
for all s, y0, y, y, and β, there exists a Perfect Bayesian equilibrium of the
corresponding game ΓS in which information does not get aggregated.

See proof on page 35.
18This formulation, with [0, 1] denoting the trader’s randomisation, is taken from Ostrovsky

[2012].
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Although Theorem 2 ensures that information aggregates in all Nash equilibria,
it does not guarantee that an equilibrium exists. This is true also in Ostrovsky
[2012], and the main reason is that the action spaces are infinite. If we descretize
the action spaces, so that traders can pick from a finite set of announcements and
signals, then a Perfect Bayesian Equilibrium exists whenever the time horizon is
finite. Because β < 1, game ΓS is continuous at infinity. This means that we can
adapt the proofs of Fudenberg and Levine [1983, 1986] to approximate the infinite
horizon game with a sequence of finite horizon games and show that the sequence
of Perfect Bayesian equilibria in the finite games converges to a Perfect Bayesian
equilibrium in the infinite game.19

4.6 The value of the market

If the cost of information drops significantly, do we even need markets to aggregate
information through prices? Each trader could buy the necessary signals and then
trade. In this section, we argue that this intuition is not correct, because markets
become even more important in an environment with information acquisition. The
reason is that markets can aggregate information before it becomes economically
viable for each trader to acquire the required information on their own.

To make this point, we compare the prediction accuracy of the market with
that of a poll, where traders simultaneously make only one announcement and we
compute the average.20 Recall from Section 4.5 that the full state ϕ = (ω, ι1, ι2, . . .)

describes the initial uncertainty ω ∈ Ω and the randomizations of the players, as
well as the signal realisations.

Definition 7. For each ϕ ∈ Φ and common prior µ, the prediction of the poll is
the average of the myopic predictions, yi, where each Trader i optimally obtains a

19Ostrovsky [2012] describes such an approach but does not provide any details. The full
construction is provided in the Supplementary Appendix of Galanis et al. [2024], for the identical
game without information acquisition but with ambiguity aversion.

20Note that there are many ways of improving the accuracy of a poll by aggregating announce-
ments differently [Baron et al., 2014]. In our framework, markets will always be more accurate
than polls because more information is disseminated through multiple rounds of announcements,
and the value of information is positive. Several papers have examined the two settings in ex-
periments and real-life settings, and the results are mixed. Snowberg et al. [2013] argue that
prediction markets are better. Berg et al. [2008] show that the Iowa Electronic Markets were
more accurate than 964 polls in predicting the outcomes of five presidential elections between
1988 and 2004. Cowgill and Zitzewitz [2015] show that internal prediction markets in Google
and Ford were more accurate than the predictions of professional forecasters. On the other
hand, Atanasov et al. [2017], Dana et al. [2019] argue that while prediction markets are more
accurate than the simple mean of forecasts from polls, the latter outperform prediction markets
when forecasts are aggregated with transformation algorithms or made in teams. Camerer et al.
[2016] show that markets are equally accurate with a survey in predicting the replicability of
economic experiments.
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random posterior Q and then they all announce simultaneously in the first period
of the corresponding game ΓM :

pp(ϕ, µ) =

n∑
i=1

yi

n
.

The prediction pm(ϕ, µ) of the market is the last price of ΓS.

We define the accuracy of the market given ϕ and µ as Am(ϕ, µ) = 1 −
|pm(ϕ, µ) − X(ϕ)|, and similarly for the poll, Ap(ϕ, µ) = 1 − |pp(ϕ, µ) − X(ϕ)|.
The highest possible accuracy is 1, when pm(ϕ, µ) = X(ϕ). The expected accu-
racy of the market given µ is defined as Am(µ) = EµA

m(ϕ, µ), whereas for the poll
it is Ap(µ) = EµA

p(ϕ, µ).
Recall that a non-degenerate prior µ given X does not assign probability 1 to

a unique value of security X. If the security is κ separable for some κ, then the
information gets aggregated for some positive marginal cost of information, which
is not true for polls. We, therefore, have the following remark.

Remark 4. Under Assumption 1, fix an information structure Π ∈ P and a cost
of information acquisition κ = (K, c). If security X is κ separable, then for any
non-degenerate µ given X and for all 0 < c′ ≤ c, information gets aggregated by a
market with cost κ′ = (K, c′), so that Am(ϕ, µ) = 1 for all ϕ ∈ Supp(µ), but it is
not aggregated by the poll, so that Ap(ϕ, µ) < 1.

Proof. Remark 3 shows that X is κ′ separable, hence the first part follows directly
from Theorem 2, which shows that information gets aggregated. Assumption 1
implies that individual traders would never acquire full information in the first
round. Because µ is non-degenerate given X, we have that pp ̸= X(ϕ).

We now show that κ separability is equivalent to the market being strictly
more accurate than the poll, for all non-degenerate priors given X.

Proposition 2. Suppose Assumption 1 and cost of information κ. Security X

is κ separable given Π ∈ P if and only if Am(µ) > Ap(µ) for all non-degenerate
priors µ given X.

See proof on page 37.
To interpret this result, suppose we define the value of the market (with security

X) to be V (X) = min
µ∈∆0

Am(µ) − Ap(µ), the minimum improvement in accuracy

given all non-degenerate priors given X. Then, Proposition 2 implies that X is κ
separable if and only if V (X) > 0.
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We conclude with the following example, which shows how the market com-
pares in prediction accuracy with the poll, if we fix a prior µ for which the security
is non-separable and we vary the marginal cost of information c.

Example 3. The state space is Ω = {ω1, ω2, ω3, ω4}, the security is X = (0, 1, 2, 3)

and the common prior is µ = (1
8
, 3
8
, 3
8
, 1
8
). Trader 1’s partition is {{ω1, ω3}, {ω2, ω4}}

and Trader 2’s is {{ω1, ω4}, {ω2, ω3}}.

Security X is non-separable µ because the expected value of X for both traders
is v = 3

2
at all states, yet there is uncertainty about the value of the security.

Traders can acquire information, where K is the Shannon cost of information. We
assume that traders are myopic and proper scoring rules are used in both settings,
hence each announcement is the expected value of the security given the acquired
information.

Figure 4.6 shows the expected accuracy of markets and polls for prior µ. When
the marginal cost of information is high (c>4.5), no trader acquires any informa-
tion and the accuracy of the market is equal to that of the poll. As the marginal
cost decreases below 4.5, Trader 2 starts acquiring information if the state is ei-
ther 1 or 4. This implies that his announcement differs across partitions, revealing
whether event {ω1, ω4} or {ω2, ω3} is true. Trader 1 combines this with his private
information and learns which state is true, thus announcing v = X(ω). Therefore,
a small change in the marginal cost of information allows the market to aggre-
gate information, with a prediction accuracy of 1. In contrast, the poll’s accuracy
improves gradually as information gets cheaper. This means that, as the cost of
information decreases, the prediction accuracy of the market suddenly jumps to
1, whereas the accuracy of the poll gradually increases. Equivalently, the value
V (X) of the market is 0 for c > 4.5, at c = 4.5 it becomes positive and it decreases
as c < 4.5 decreases, converging to 0 as c→ 0.

We conclude by observing that, in a strategic setting, markets can incentivize
traders to acquire and utilize information more efficiently when the cost is close
to the threshold of 4.5, because a small information acquisition could enable the
aggregation of all available information, whereas in polls it can only marginally
improve individual predictions.

5 The speed of information aggregation

Another interesting question about information acquisition is whether it makes
the process of information aggregation conclude faster. If this were the case, the
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Figure 1: Prediction accuracy (A(µ) = EµA(ω, µ)) for markets and polls.

market would benefit from learning the intrinsic value of X, and the corresponding
event, faster.

Unfortunately, there are no good news. Even when traders are myopic, we
show that information acquisition can make the process of information aggrega-
tion both faster and slower, depending on the parameters. This is true for all
securities except for the Arrow-Debreu (A-D), where information aggregates at
the same period, irrespective of whether there is information acquisition or not.
If information aggregation does not occur faster with information acquisition, the
competition of traders could be wasteful, because they pay a cost to learn some-
thing that other traders already know. However, it can also be the case that, even
though ‘complete’ information aggregation occurs in the same period, the price
approaches the true value of the security faster and this can be beneficial for the
market.

We begin with an example, which shows that information acquisition can make
information aggregation both faster and slower.

Example 4. The state space is Ω = {ω1, ω2, ω3, ω4}, the security is X = (0, 2, 1, 1),
and there are two myopic traders with common prior µ = (1

4
, 1
4
, 1
4
, 1
4
). Trader 1’s

partition is {{ω1, ω2}, {ω3, ω4}} and Trader 2’s is {{ω1, ω4}, {ω2, ω3}}.

Suppose that the true state is ω1 and traders cannot acquire any information.
In the first period, Trader 1 announces 1. This reveals no information to Trader
2 because his private information is {ω1, ω4}, and the same announcement would
be made by Trader 1 in both states. In period 2, Trader 2 announces 0.5. This
reveals to Trader 1 that the true state is ω1, hence, in period 3 he announces 0
and the game ends.
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Suppose that traders are able to acquire a statistical experiment R that gen-
erates a signal z, given each state, with probabilities Rω1(z) = 1 and Rω2(z) =

Rω3(z) = Rω4(z) = 0.5. When the true state is ω1 and Trader 1 acquires signal z,
he updates his beliefs to (2

3
, 1
3
, 0, 0) and announces 2

3
. The announcement reveals to

Trader 2 that the state is ω1, because at ω4 Trader 1 would have announced 1. As
a result, Trader 2 announces 0 in period 2 and the game ends, hence information
aggregation happens faster with information acquisition.

We now show that the converse is also true, so that information acquisition
may delay information aggregation. Suppose that the common prior is µ =

( 3
16
, 6
16
, 7
32
, 7
32
). At ω1, if there is no information acquisition, Trader 1 announces

4
3
. The announcement reveals to Trader 2 that the state is ω1, hence Trader 2

announces 0 and the game ends in the second round. If there is information ac-
quisition and Trader 1 acquires signal z, he updates his beliefs to (1

2
, 1
2
, 0, 0) and

announces 1. Trader 2 gains no new information and announces 0.5. This reveals
to Trader 1 that the true state is ω1, hence in the third round he announces 0 and
the game ends.

Interestingly, if the security is the Arrow-Debreu (A-D), then information ac-
quisition has no impact on the speed of information aggregation. To understand
why, consider an A-D security that pays 1 at ω and 0 otherwise. At any period,
there are two cases. First, the trader who announces knows that either ω is true,
or that it is not true, accordingly announcing 1 or 0. All other traders learn the
true value of X and the game ends. Second, he is unsure about whether ω is true
or not. Irrespective of whether he buys a signal structure, he will announce some
value 0 < v < 1. Crucially, other traders already know that his partition cell
includes ω, hence his announcement does not reveal any public information and
the speed of information aggregation is unaffected.

We now provide the formal results. Proposition 3 shows that for any security
that is not A-D, we can find information structures for which X is separable, and
depending on the prior the process can be faster or slower. Proposition 4 shows
that for an A-D security, allowing for information acquisition neither speeds up
nor delays the information aggregation process.

Recall from Section 4.5 that the full state ϕ = (ω, ι1, ι2, . . .) describes the initial
uncertainty ω and the randomizations of the players. In this section, traders are
myopic, so they have a pure strategy of an announcement and the choice of the
random posterior, hence ιn denotes the realisation of the posterior in period tn.

Let t∗I(ϕ) be the period where information aggregation is achieved, given a
separable security and state ϕ, in an environment where traders can get infor-

23



mation before they make an announcement. Similarly, let t∗NI(ϕ) be the period
where information aggregation is achieved, in an environment where there is no
information acquisition.

For Proposition 3, we make the following mild assumption.

Assumption 2. Given a state space Ω with two states and for any proper scoring
rule s and non-constant security X, there is a posterior separable cost function K
such that, for all c, the solution to (1) is unique.

The assumption is true for a quadratic scoring rule and entropy cost function,
as shown in Appendix 11 in Ilinov et al. [2024]. More generally, consider cost K
and the payoff that is generated by making the myopic best announcement, both
as functions of the posterior γ ∈ [µ, 1], where µ is the prior on one of the two
states. Both these functions are strictly convex and a sufficient condition for a
unique solution is that they do not have the same first-order condition for more
than one γ. As we have complete freedom in choosing K, it can be that we achieve
this for any s.21

Proposition 3. Suppose Assumption 2 and that non-constant security X is not
A-D. Then, there is information structure Π ∈ P for which X is separable, such
that for some information cost κ = (K, c) and ϕ ∈ Φ,

(i) t∗NI(ϕ) < t∗I(ϕ) for some common prior µ,

(ii) t∗NI(ϕ) > t∗I(ϕ) for some common prior µ′.

See proof on page 38.
Finally, we show that the speed of aggregation is unchanged if the security is

A-D.

Proposition 4. Suppose Assumption 1. If X is A-D, then t∗NI(ω) = t∗I(ω) for
any state ω ∈ Ω, cost κ, information structure Π ∈ P, and common prior µ.

See proof on page 39.
The property that speed is unaffected is related to the fact that the A-D

security is not very informative. A trader will buy a posterior only in the partition
cell where 1 is possible, as in all others he knows that the value is 0. This action
does not have the positive externality of revealing to other traders what is his
partition cell and therefore it does not provide any public information about what
the true state is. Note, however, that some positive externality persists. The other

21See Tsakas [2020] for an analysis of this decision problem.
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traders can solve the announcer’s problem and therefore know the optimal signal
structure he has purchased. By hearing the announcement, they also update their
posteriors and they can benefit as long as it is their turn to announce and there is
still some surplus to be obtained. For example, if Trader 1 buys a signal structure
and moves the price from 0.5 to 0.99 (when the correct price is 1), then all other
traders can only benefit by moving it from 0.99 to 1, hence the remaining surplus is
very small. Finally, even though the number of periods for full aggregation remains
the same, the price will converge to the true value faster, hence the market will still
benefit by attaching faster a higher probability to the true value of the security.

6 Concluding Remarks

The paper provides a thorough examination of the interplay between information
aggregation and information acquisition. We show that κ separability character-
izes information aggregation when the cost of information acquisition is κ and we
classify securities into three classes. First, the ‘always separable’ securities aggre-
gate information irrespective of who trades or what is their information structure.
This class is very small and uninformative. Second, the securities which are κ
separable for some κ and all information structures, aggregate information if the
cost is sufficiently low. This is the most generic and informative class of securities.
Finally, there is a small class of securities such that for any κ, each is κ non-
separable for some information structure. This means that even if the cost is very
close to zero, information may not aggregate. Surprisingly, these three classes are
easily distinguishable just by looking at the payoff structure of each security.

An interesting question is whether information aggregates if the security is
non-separable but the prior is generic. By perturbing the common prior slightly,
a non-separable security could become separable, and therefore information could
aggregate. Ostrovsky [2012] shows that information gets aggregates in all pure-
strategy equilibria with a generic prior, even for non-separable securities. However,
in his setting, it is an open question what happens with mixed-strategy equilibria.
Intuitively, even if we perturb the initial prior, and given that agents have infinite
action spaces, it is not clear whether they will converge to some belief at which
the security is separable.

The current paper provides a novel perspective on this issue of genericity, by
endogenizing the perturbation of beliefs. If information is not aggregated at time
t and all traders agree on the price, a trader could buy an additional signal, if
the cost is not too high, and profit from changing his belief. By examining what
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happens when the cost is very low, we effectively allow for arbitrarily small per-
turbations of beliefs to be feasible for traders. A “generic” security pays differently
across states and Corollary 1 shows that if the cost is sufficiently low, such a se-
curity is κ separable, for all information structures. Therefore, using Theorem 2
we can say that generically (for almost all securities) information gets aggregated,
in all mixed-strategy equilibria, thus providing an answer to the open question of
Ostrovsky [2012].
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A Appendix

A.1 Cost of Information

Let T be a Polish space of possible signals with Borel σ-algebra T . Let ∆(T ) be
the set of Borel probabilities on T , with generic element ξ. We endow ∆(T ) with
the weak* topology: a sequence of probabilities {ξn} converges to a probability ξ if
for every bounded continuous function f : T → R, we have

∫
fdξn →

∫
fdξ. Fol-

lowing Blackwell [1951], we model the acquisition of information using statistical
experiments. A statistical experiment is a function from states into probabilities
on signals, R : Ω → ∆(T ).

Following Bloedel and Zhong [2020], we say that an experiment R is bounded
if (i) the conditional signal distributions {Rω}ω∈Ω are mutually absolutely con-
tinuous, and (ii) there exists a constant B > 0 such that the Radon-Nikodym
derivatives dRω

dRω′
∈ [1/B,B] for all ω, ω′ ∈ Ω. In other words, a bounded ex-

periment does not definitively rule out any state and, moreover, has uniformly
bounded likelihood ratios. Let E be the set of all experiments and Eb ⊆ E be the
collection of all bounded experiments. Note that E contains experiments that are
not bounded. We say that R′ : Ω → ∆(T ′) is a garbling of R : Ω → ∆(T ) given
E ⊆ Ω if there exists ψ : T → ∆(T ′) such that R′

ω′(t′) =
∫
t∈T ψ(t

′|t)Rω(t)dt.
Given a prior belief µ ∈ ∆(Ω), a statistical experiment R induces via Bayesian

updating a probability distribution over posteriors, or random posterior, B(µ,R) =

Q ∈ ∆(∆(Ω)). Let Q(γ) be the probability of posterior γ ∈ ∆(Ω), Q(µ) =

{B(µ,R) : R ∈ E} be the set of all random posteriors that can be generated
by some experiment R ∈ E , and Q =

⋃
µ∈∆(Ω)

Q(µ). Note that Q ∈ Q(µ) if and

only if
∫

∆(Ω)

γQ(dγ) = µ. We endow Q with the weak* topology, so that it is a

compact and separable topological space. The subsets of Q are endowed with the
appropriate relative topologies.

Given a full support prior µ, experiment R is bounded if and only if the induced
random posterior Q = B(µ,R) satisfies Supp(Q) ⊆ ∆ϵ = {q ∈ ∆(Ω) : q(ω) >

ϵ for all ω ∈ Ω} for some ϵ > 0. Let Dϵ = {Q ∈ Q : Supp(Q) ⊆ ∆ϵ}. Then,
Db =

⋃
ϵ>0

Dϵ denotes the set of random posteriors that are induced by some full

support prior and bounded experiment. Denote by δµ the degenerate random
posterior that puts probability 1 on µ.

Definition 8. A cost on experiments is a map h : ∆(Ω)×E → [0,∞], where h(µ, ·)
is Borel measurable for each prior µ ∈ ∆(Ω) and has the following properties.

(i) If B(µ,R) = B(µ,R′) and R,R′ ∈ Eb, then h(µ,R) = h(µ,R′),

27



(ii) If B(µ,R) = δµ and R ∈ Eb, then h(µ,R) = 0,

(iii) Let {µj,Rj}j∈N be a sequence of experiment-prior pairs inducing random
posteriors Qj = B(µj,Rj). If Qj → Q∗ and there exists some δ > 0 such
that {Qj}j∈N ⊆ Dδ, then h(µj,Rj) → h(µ∗,R∗), where Q∗ = B(µ∗,R∗),

(iv) If R′ is a garbling of R then h(µ,R) ≥ h(µ,R′).

Point (i) specifies that if two bounded experiments generate the same random
posterior given µ, then they have the same cost. Point (ii) says that a bounded
experiment that is completely uninformative has a cost of zero. Point (iii) is a
continuity condition that is weaker than weak* continuity, in order to allow for
important classes of unbounded cost functions.22 Finally, point (iv) specifies that
more informative experiments are more costly.

The cost on experiments h generates a cost structure κ = (K, c) on random
posteriors, where c > 0 is the unit cost of information and K : F → [0,∞] maps
elements of F = {(µ,Q) : µ ∈ ∆(Ω), Q ∈ Q(µ)}, the set of all priors µ and all
posterior distributions Q that can be generated by some experiment R ∈ E , to
the extended real line.

We assume that the cost cK(µ,Q) of acquiring random posterior Q, given
belief µ, is determined by optimally acquiring the relevant experiment R, so that

cK(µ,Q) ≡ min{h(µ,R) : B(µ,R) = Q}.

Note that Point (i) in Definition 8 ensures that all bounded experiments R which
induce Q given µ have the same cost, hence in that case cK(µ,Q) = h(µ,R).
If only unbounded experiments generate Q given µ, we have cK(µ,Q) = ∞.
Moreover, the cost of learning nothing is zero, so that K(µ,Q) = 0 whenever
Supp(Q) = {µ}. A cost structure κ = (K, c) consists of a cost function K and a
unit cost of information c > 0. Let K be the collection of cost structures κ = (K, c)

that are generated from the experiments.
If all unbounded experiments have infinite cost, then generating a random

posterior with support on a posterior δω, which assigns probability 0 to a state
ω ∈ Supp(µ), is infinitely costly.

Corollary 2. Suppose Assumption 1. Given any ω ∈ Supp(µ) and sequences
{Rj}j∈N with Qj = B(µ,Rj) and {γj}j∈N with Qj(γj) > ϵ for all j and some
ϵ > 0, if γj → δω then h(µ,Rj) → ∞.

22See Bloedel and Zhong [2020] for the motivation behind this continuity condition.
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The Corollary implies that for any induced sequences {Qj}j∈N and {γj}j∈N
with Qj(γj) > ϵ for all j and some ϵ > 0, if γj → δω then K(µ,Qj) → ∞.

B Proofs

Proposition 5 provides two independent conditions which are necessary for a se-
curity to be κ non-separable for all κ. The first condition specifies that, at some
state ω, all traders agree that some value m ̸= X(ω) is possible. The second is an
extension of Theorem 7 in Ostrovsky [2012] (see Proposition 6), which provides a
characterization of separable securities. It says that for every v′ value of X and
within all intervals around v′, there exists value v for which we cannot pick mul-
tipliers λi(π), for all elements π of partitions Πi and for all traders, such that the
sign of X(ω)− v is the same as the sign of

∑
i∈I
λi(Πi(ω)), for all ω with X(ω) ̸= v.

Proposition 5. Suppose X is κ non-separable given an information structure Π

and for all κ ∈ K. Then, the following independent conditions are true.

• There exists ω with X(ω) ̸= m and m ∈
⋂
i∈I
X(Πi(ω)).

• For some v′ ∈ X(Ω), for all ϵ > 0, there exists v ∈ (v′ − ϵ, v′ + ϵ) for which
there are no functions λi : Πi → R such that for all states ω with X(ω) ̸= v,

(X(ω)− v)(
∑
i∈I

λi(Πi(ω)) > 0, (2)

Proof. For the first condition, we prove the contrapositive. Suppose that for all
m ∈ X(Ω), for all ω with X(ω) ̸= m we have m /∈

⋂
i∈I
X(Πi(ω)). We will show

that X is κ separable for some κ = (K, c).
For any K and sufficiently low marginal cost c, Assumption 1 implies that the

only priors µ for which there is no information acquisition are the ones where the
resulting posterior assigns probability close to 1 to some state ω′ ∈ Πi(ω), for all
i ∈ I and ω ∈ Supp(µ). Suppose that there exists such µ, with Eµ[X|Πi(ω)] = v

for all i = 1, ..., n and ω ∈ Supp(µ), where v is arbitrarily close to some m with
X(ω) = m.

For the security to be κ non-separable, there is also should be uncertainty about
its value. This means that for some ω′ ∈ Supp(µ), X(ω′) ̸= v. From our initial
hypothesis, there exists trader i such that m /∈ X(Πi(ω

′)), so that he considers
m to be impossible. Because he assigns probability close to 1 to some state, from
continuity it must be that Eµ[X|Πi(ω

′)] ̸= v. Therefore, X is separable at µ. As
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this is true for all µ that assign probability close to 1 to some state ω′ ∈ Πi(ω),
we have that the the security X is κ separable for some κ.

For the second condition, suppose X is κ non-separable for all κ. Take κ

with very small marginal cost c, so that for any prior µ for which there is no
information acquisition, at each state ω ∈ Supp(µ), and for each i ∈ I, µΠi(ω)

assigns probability which is arbitrarily close to 1 to some state ω′ ∈ Πi(ω). This
means that EµΠi(ω)

[X] ∈ (v′ − ϵ, v′ + ϵ), for small enough ϵ ∈ R and X(ω′) = v′.
Because X is κ non-separable, there exists a prior µ with no information ac-

quisition and value v ∈ (v′ − ϵ, v′ + ϵ) for which X is non-separable. This implies
that, for any λi : Πi → R,

Eµ

[
(X(ω)− v)

∑
i∈I

λi(Πi(ω))

]
=

∑
i∈I

Eµ [(X(ω)− v)λi(Πi(ω))] =

∑
i∈I

∑
ω∈Supp(µ)

µ(Π(ω))λi(Πi(ω))EµΠi(ω)
[(X(ω)− v)] = 0,

where the last equality derives from the definition of non-separability. But then
we cannot have (X(ω) − v)

∑
i∈I
λi(Πi(ω)) > 0 for all ω, hence there are no such λi

functions.
To show that the first two conditions are independent, consider first security

(1, 0, 0,−1, 2). Let the partition of Trader 1 be {{ω1, ω2}, {ω3, ω4}, {ω5}} and for
Trader 2 be {{ω1, ω3}, {ω2, ω5}, {ω4}}, which satisfies the first condition. We show
that it fails the second condition. First, if v ≤ −1, then condition (4) is satisfied
by setting λi(Πi(ω)) = 1 for all i ∈ I and ω ∈ Ω. Similarly, if v ≥ 2, we set
λi(Πi(ω)) = −1 for all i ∈ I and ω ∈ Ω. Then, suppose there exist functions
such that λ1({ω1, ω2}) = a, λ1({ω3, ω4}) = b, λ1({ω5}) = c, λ2({ω1, ω3}) = d,
λ2({ω2, ω5}) = e and λ2({ω4}) = f . Consider 0 ≥ v ≥ −1. We then have that
X(ω) − v < 0 for ω4, and X(ω) − v > 0 for ω1, ω2, ω3, ω5. Set f = −2 and
a = b = c = d = e = 1 and (2) is satisfied. Consider 2 ≥ v ≥ 1. We then have
that X(ω) − v > 0 for ω5, and X(ω) − v < 0 for ω1, ω2, ω3, ω4. Set c = 2 and
a = b = c = d = e = −1 and (2) is satisfied. Finally, consider 1 ≥ v ≥ 0. We
then have that X(ω) − v < 0 for ω2, ω3, ω4, and X(ω) − v > 0 for ω1, ω5. Set
c = 3, f = b = e = −2 and a = d = 1 and (2) is satisfied. Therefore, the second
condition is not satisfied.

Consider now security (−2,−1, 0, 1, 2). Suppose there are three traders. The
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partition of Trader 1 is {{ω2, ω4}, {ω1, ω3, ω5}}, for Trader 2 it is {{ω1, ω5}, {ω2, ω3, ω4}}
and for Trader 3 it is {{ω1, ω4}, {ω2, ω3, ω5}}. Therefore, such security violates the
first condition. We will show that it satisfies the second. Let v′ = 0 and suppose
that v ∈ (0, ϵ), for any ϵ > 0. We then have that X(ω)− v < 0 for ω1, ω2, ω3, and
X(ω)− v > 0 for ω4, ω5.

Suppose there exist functions such that λ1({ω2, ω4}) = a, λ1({ω1, ω3, ω5}) = b,
λ2({ω2, ω3, ω4}) = c, λ2({ω1, ω5}) = d, λ3({ω2, ω3, ω5}) = e and λ3({ω1, ω4}) = f .
For (2) to be satisfied, we have the following inequalities.

b+ d+ f < 0

a+ c+ e < 0

b+ c+ e < 0

a+ c+ f > 0

b+ d+ e > 0

(3)

If we add the first with the fifth, we have e > f . If we add the second with the
fourth, we have f > e. This is a contradiction and such equations do not exist,
which means that the second condition is satisfied.

Proof of Proposition 1. We start by restating a useful characterization of separable
securities by Ostrovsky [2012]. It specifies that X is separable if and only if, for
any possible announcement v, we can find numbers λi(Πi(ω)), for each i and ω,
such that the sum over all traders has the same sign as the difference of X(ω)− v.
Intuitively, for any v and at each ω, all traders “vote” and the sign of the sum
of the votes has to agree with the sign of the difference between the value of the
security and v.

Proposition 6 (Ostrovsky [2012]). Security X is separable under partition struc-
ture Π if and only if, for every v ∈ R, there exist functions λi : Πi → R for
i = 1, . . . , n such that, for every state ω with X(ω) ̸= v,

(X(ω)− v)
∑
i∈I

λi(Πi(ω)) > 0.

If Ω has up to three states, then all securities are of the two types that we have
described or the uninteresting case of a constant security. Hence, without loss of
generality, we fix a state space Ω with at least four states and a security X. If X
is constant, it is trivially separable. Ostrovsky [2012] shows that an A-D security
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is always separable.
We now show that X is always separable if it is of the following form. Suppose

there are a < b < c such that X(ωa) = a and X(ωc) = c for two states ωa, ωc,
whereas X(ω) = b for all ω ̸= ωa, ωc.23 Using Proposition 6, we need to show that
for every v ∈ R, there exist functions λi : Πi → R for i = 1, . . . , n such that, for
every state ω with X(ω) ̸= v,

(X(ω)− v)
∑
i∈I

λi(Πi(ω)) > 0. (4)

If v ≤ a, then condition (4) is satisfied by setting λi(Πi(ω)) = 1 for all i ∈ I

and ω ∈ Ω. Similarly, if v ≥ c, we set λi(Πi(ω)) = −1 for all i ∈ I and ω ∈ Ω.
Suppose that a < v ≤ b < c. For all i ∈ I, set λi(Πi(ωa)) = −1 and (4) is
satisfied for ωa. For all ω with Πi(ω) ̸= Πi(ωa), set λi(Πi(ω)) = k, where k = |I|
is the number of agents. Because of our assumption that the join of all partitions
consists of singleton sets, we have that for each ω ̸= ωa, there exists i such that
Πi(ω) ̸= Πi(ωa). This implies that if X(ω) − v > 0, we also have

∑
i∈I
λi(Πi(ω)) ≥

k − (k − 1) > 0 and (4) is satisfied for ω. Using a symmetric argument, we
can show that (4) is satisfied for a < b ≤ v < c, by setting λi(Πi(ωc)) = 1 and
λi(Πi(ω)) = −k for ω with Πi(ω) ̸= Πi(ωc), for all i ∈ I. By applying Proposition
6, security X is always separable.

Suppose that X is not of the three aforementioned types. Then, we can find
four distinct states where X assigns values a ≤ b < c ≤ d. For simplicity, we refer
to the state with value a as state a and similarly for b, c, and d.

We will show that X is non-separable for an information structure in P with
two agents. The partition of Trader 1 is {{a, d}, {b, c}} for these four states,
whereas for any other state, we have Π1(ω) = {ω}. For Trader 2 it is {{a, c}, {b, d}}
and for any other state we have Π2(ω) = {ω}. Hence, the information structure
is in P .

To show that X is non-separable, it is enough to find a prior p with support
on {a, b, c, d} such that, for some v,

(i) X(ω) ̸= v for some ω ∈ Supp(p),

(ii) Ep[X|Πi(ω)] = v for all i = 1, 2 and ω ∈ Supp(p).

Let p1 be 1’s probability of state a conditional on {a, d}, whereas q1 is 1’s
23Our proof for this type of security also applies to an A-D security. Ostrovsky [2012] used

Corollary 1 to show that an A-D security is always separable, however, we cannot use it for this
type of security.
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probability of state b conditional on {b, c}. Let p2 be 2’s probability of state a
conditional on {a, c}, whereas q2 is 2’s probability of state b conditional on {b, d}.
Condition (ii) then translates to the following equations

ap1 + d(1− p1) = bq1 + c(1− q1)

ap1 + d(1− p1) = ap2 + c(1− p2)

ap1 + d(1− p1) = bq2 + d(1− q2)

bq1 + c(1− q1) = ap2 + c(1− p2)

ap1 + d(1− p1) = bq2 + d(1− q2)

ap2 + c(1− p2) = bq2 + d(1− q2)

(5)

The posteriors of the two agents can be derived by a common prior p if the
following conditions hold:

xp1 = yp2

(1− x)q1 = (1− y)q2

(1− x)(1− q1) = y(1− p2)

x(1− p1) = (1− y)(1− q2)

(6)

where x is the prior probability of (a, d) and y is the prior probability of (a, c).
When a ≤ b < c ≤ d, the system (5 - 6) has the following solution:

q1 =
a− c

a+ b− c− d
,

p1 =
b− d

a+ b− c− d
,

p2 =
b− c

a+ b− c− d
,

q2 =
a− d

a+ b− c− d
,

x = p2,

y = p1.

These posteriors uniquely define the respective prior probabilities.

Proof of Theorem 1. Suppose Ω has at least four states and let E = {ω1, ω2, ω3, ω4},
where X pays (a, d, b, d), with either a, b < d or a, b > d. What X pays outside E
is irrelevant, because we will only consider priors that have full support on E, in
order to show that X is κ non-separable for all κ. Consider two traders with the
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following information structure on E. Trader 1’s partition is {{ω1, ω2}, {ω3, ω4}}
and Trader 2’s is {{ω1, ω4}, {ω2, ω3}}. We need to show that for any κ = (K, c),
X is κ non-separable. It is enough to show that, as the marginal cost c converges
to 0, there is always a common prior µ on E such that no trader acquires any
information and X is non-separable at µ.

Consider prior µ = (p,m, 1 − p − 2m,m), where 0 < m < 0.5. We specify p

such that, given any m, each trader’s expected value of X is the same at all states.
In the following equation, the left hand-side computes Trader 1’s expected value
of X at {ω1, ω2} and Trader 2’s at {ω1, ω4}, whereas the right hand-side computes
Trader 1’s expected value at {ω3, ω4} Trader 2’s at {ω2, ω3}:

a
p

p+m
+ d

m

p+m
= b

1− 2m− p

1− p−m
+ d

m

1− p−m
.

There is always a solution to this equation. For example, if a + b ̸= 0, we can
normalise to p+m = 1/2 and we have that

p =
b(1− 2m)

a+ b
.24

Given this normalisation, the expected value of X at all states and for all
traders is u = 2pa+ 2dm. Fix any marginal cost c, which may be very close to 0.
We can then choose m very close to 0.5 (and corresponding µ) such that u is very
close to d, say d− ϵ, assuming, without loss of generality, that a, b < d, otherwise
we have d + ϵ and the rest of the proof proceeds accordingly. By repeating the
consensus announcement of u = d− ϵ and not acquiring any signals, both traders
get 0 utility. Suppose that one trader wants to buy a signal structure Q, which,
in the case of X(ω) = d, will move his posterior expected value of X from d − ϵ

to d − ϵ + ν, for some 0 < ν < ϵ. The upper bound of his utility, net of the
cost of the signal, is realised at X(ω) = d and it is s(d − ϵ + ν, d) − s(d − ϵ, d).
This is positive because d− ϵ+ ν is closer to d than the previous announcement,
1− ϵ. However, by decreasing ϵ appropriately it can be made as small as needed,
and therefore smaller than cK(µ,Q) for all Q. This is a direct consequence of
Assumption 1, which specifies that the cost gets arbitrarily high for posteriors
which assign probability that is arbitrarily close to one for some state. For this
result, we only need that the cost is non-decreasing. Hence, no trader will buy
any signal structure and X is κ non-separable.

For the converse, suppose X is κ non-separable given some Π and for all κ.
24If a+ b = 0, we can choose normalisation p+m = 1/3 and the proof is identical.
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The second condition of Proposition 5 and the assumption in Section 2.1 that⋂
i∈I

Πi(ω) = {ω}, for all ω ∈ Ω, imply that there exist two states ωa ̸= ωb such that

X(ωa) = X(ωb) = m. Let M be the set of states ω with X(ω) = m. Given that
Ω has at least four states, we have the following cases.

Case 0. M = Ω. Security X is constant and therefore (trivially) always
separable, for all information structures Π. This is a contradiction because we
have assumed X is κ non-separable given some Π and for all κ.

Case 1. There is either a unique ω /∈ M , or there are exactly two states
ω, ω′ /∈ M , such that X(ω) > m > X(ω′). From Proposition 1, X is always
separable, for all information structures Π. As with Case 0, this is a contradiction.

The only other remaining case is that There exist ω, ω′ /∈ M with either
X(ω), X(ω′) < m, or X(ω), X(ω′) > m, which concludes the proof.

Proof of Theorem 2. We follow the proof of Theorem 1 in Ostrovsky [2012], which
proceeds in four steps. In the first step, we show that there is a uniform lower
bound on the expected profits that at least one trader can make by improving the
forecast.

Let r be a distribution over Ω and z be the previous announcement. Following
Ostrovsky [2012], we define the instant opportunity of Trader i as the highest
expected payoff that he can achieve by changing the forecast from z, if the state
is drawn according to r. The difference from Ostrovsky [2012] is that we allow
the trader to acquire information before making an announcement. Let Qω be
the optimal experiment that Trader i acquires at Πi(ω), given his beliefs rΠi(ω).
Trader i’s instant opportunity is

∑
ω∈Ω

r(ω)

 ∑
γ∈Supp(Qω)

Qω(γ)
∑
ω′∈Ω

γ(ω′)
[
s(Eγ[X], X(ω′))− s(z,X(ω′))

]
− cK(rΠi(ω), Qω)

 .

Let ∆ be the set of probability distributions r ∈ ∆(Ω) for which there is
uncertainty about security X, so that there are states a, b with r(a) > 0, r(b) > 0

and X(a) ̸= X(b).

Lemma 1. If security X is κ separable, then for every r ∈ ∆, there exist χ > 0

and Trader i such that, for every z ∈ R, the instant opportunity of Trader i given
r and z is greater than χ.

Proof. Fix r ∈ ∆. There are two cases. First, X is separable with respect to r.
Then, the proof of Lemma 1 in Ostrovsky [2012] applies and we have the result.
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Second, X is non-separable at r and value v, where v = Er[X|Πi(ω)] for all ω ∈
Supp(r) and i ∈ I. BecauseX is κ separable, there is information acquisition. This
implies that for some ω ∈ Supp(r), Trader i receives a strictly positive payoff by
acquiring information and changing the previous announcement v = Er[X|Πi(ω)].
Note that the new announcement is not deterministic but depends on the optimal
Q, so he announces Eγ[X] with probability Q(γ). From continuity, there is a small
enough ϵ > 0, so that for all previous announcements z ∈ [v − ϵ, v + ϵ], Trader
i receives a strictly positive payoff of at least χ1 > 0 by acquiring information
and changing the announcement. If z /∈ [v − ϵ, v + ϵ], then Trader i receives a
strictly positive payoff of at least χ2 > 0, by not acquiring any information and
announcing the myopically best Er[X|Πi(ω)] = v.25 By setting χ3 = min{χ1, χ2},
we have that at Πi(ω), Trader i receives a strictly positive payoff of at least χ3, for
all previous announcements z. For any ω′ ∈ Supp(r) \Πi(ω), Trader i can repeat
v and receive 0. Hence, the instant opportunity of i given r, which is the ex-ante
expectation over all ω ∈ Supp(r), is at least χ = r(Πi(ω))χ3 > 0 for all previous
announcements.

Steps 2-3 are identical to the proof of Ostrovsky [2012] and establish that there
is Trader i and lower bound ν∗ > 0 such that, for infinitely many periods tnk+i,
the expected instant opportunity of Trader i is greater than ν∗. The reason they
are identical is that, once we fix an equilibrium strategy, the only difference from
Ostrovsky [2012] is that traders buy an extra, payoff-irrelevant, signal in each
period where they make an announcement.

In Step 4, we show that the presence of a ”non-vanishing arbitrage opportunity”
is impossible in equilibrium. The proof is very similar to that of Ostrovsky [2012],
but we write it here for completeness.

Let sk be the expected score of prediction yk, where the expectation is over
all ϕ and the moves of players according to the mixed equilibrium. The expected
payoff to the trader who moves in period tk is βk(sk − sk−1 − ck), where ck ≥ 0 is
the expected cost of information acquisition. It is zero if and only if there is no
information acquisition.

Take any period tk. Let Ψk be the sum of all players’ expected continuation
25This is true because a proper scoring rule is ‘order-sensitive’ so that the further away the

previous announcement is from the true expected value Er[X|Πi(ω)] = v, the higher the payoff
is for Trader i. The lowest payoff from the myopically best announcement is 0 and it is achieved
when it is equal to the previous announcement (see p. 2618 in Ostrovsky [2012]).
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payoffs at tk, divided by βk:

Ψk = (sk − sk−1 − ck) + β(sk+1 − sk − ck+1) + β2(sk+2 − sk+1 − ck+2) + . . .

Note that Ψk is weakly positive, because each trader can guarantee a zero pay-
off by repeating the previous announcement and buying any costly information.
Additionally, it is strictly positive if i’s expected instant opportunity is strictly
positive and it is i’s turn to make an announcement. That is, with some proba-
bility, some history Hk−1 occurs and i’s instant opportunity is strictly positive.

Consider now lim
K→∞

K∑
k=1

Ψk. On the one hand, this limit must be infinite, because

each Ψk is non-negative and an infinite number of them are greater than ν∗, from
Step 3. On the other hand, for any K, we have

K∑
k=1

Ψk = (s1 − s0 − c1) + β(s2 − s1 − c2) + β2(s3 − s2 − c3) + . . .

+ (s2 − s1 − c2) + β(s3 − s2 − c3) + β2(s4 − s3 − c4) + . . .

+
...

+ (sK − sK−1 − cK) + β(sK+1 − sK − cK+1) + β2(sK+2 − sK+1 − cK+2) + . . .

= (sK − s0 −
K∑
k=1

ck) + β(sK+1 − s1 −
K+1∑
k=2

ck) + β2(sK+2 − s2 −
K+2∑
k=3

ck) + . . .

≤ (sK − s0) + β(sK+1 − s1) + β2(sK+2 − s2) + . . .

≤ 2M/(1− β),

where costs drop out as they are negative and M = max
y∈[y,y],ω∈Ω

|s(y,X(ω))|. But

this is impossible, hence yk must converge in probability to the true value of X.
The proof of the second part of the Theorem is similar to that of Ostrovsky

[2012]. Suppose that X is κ non-separable. Then, there exist µ and v at which
there is no information acquisition and X is non-separable at µ. In the correspond-
ing game ΓS where the initial announcement is v, no trader will find it profitable
to acquire any information and their best response is to repeat v, in every period
and after every history, hence it is a Perfect Bayesian equilibrium.

Proof of Proposition 2. If X is κ separable, then from Theorem 2 we have that
information aggregates at all states and therefore Am(µ) = 1. Assumption 1
implies that no trader would acquire full information, hence pp(ϕ, µ) ̸= X(ϕ) and
Ap(µ) < 1.
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If X is κ non-separable, then we can find non-degenerate µ given X for which
there is no information acquisition and X is non-separable at µ. This means that
everyone agrees on the announcement at all states in the support of µ and the
game ends in the first round. The announcement is the same for everyone, so the
poll gives the same prediction as the market and Am(µ) = Ap(µ).

Proof of Proposition 3. Consider non-constant securityX which is not A-D. Then,
X maps to at least three values, a < b < d, and we denote the respective payoff-
relevant states as a, b, and d. Note that each payoff-relevant state a, b, d ∈ Ω is
associated with several full states ϕ ∈ Φ, which resolve any uncertainty about
which posteriors a trader receives at each period. To ease the notation, we omit
mentioning ϕ when it is straightforward how statements about Ω are translated
to statements about Φ.

Let the partition of Trader 1 be Π1 = {{a, d}, {b}} for these three states,
whereas for any other state, we have Π1(ω) = {ω}. For Trader 2 it is Π2 =

{{a, b}, {d}} and for any other state we have Π2(ω) = {ω}. Hence, the information
structure is in P . For Trader 1, let p1 be the probability of state a conditional on
{a, d}. For Trader 2, let p2 be the probability of state a conditional on {a, d}.

We first show that X is separable with respect to Π, so that t∗I , t∗NI are well-
defined for all priors. If Ω has more than three states, then for all ω′ ∈ Ω \
{a, b, d} and i ∈ I we have Πi(ω

′) = {ω′} and Eµ[X|Πi(ω
′)] = X(ω′). Therefore,

separability only depends on the three states, a, b, and d. From Proposition 1,
security X is separable with respect to the restriction of Π on {a, b, d}. But then,
X is separable with respect to Π.

Second, we show that (i) is true at state a, given Π and some κ = (K, c). Take
a full support prior µ such that Eµ[X|Π1(a)] = v ̸= b. This is possible because
X(a) < X(b) < X(d). At state a, Trader 1 announces v, so Trader 2 learns that
b is not true and announces a. We therefore have t∗NI(a) = 2.

Because X(a) < X(b) < X(d), there exists prior µ∗ with full support on states
{a, b, d} and posterior probability p∗1 on a, such that Eµ∗ [X|Π1(ω)] = v = b for all
ω ∈ Supp(µ∗). We argue that for some cost structure K, the optimal posterior
bought by Trader 1 will be p∗1, resulting in an announcement of v.

Let K be a posterior separable cost function which satisfies Assumption 2, so
that the optimal random posterior is unique. Let g(c) map each cost c to the set
of optimal random posteriors. Applying the Maximum Theorem, g is an upper
semicontinuous correspondence. From Assumption 2, g is a function and therefore
continuous. Let g1(c) be the restriction of g(c) on one of the two posteriors that
comprise the optimal random posterior, and in particular the one that takes values
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in [µ, 1].26 For sufficiently high c, g1(c) will choose a posterior very close to the
prior µ, whereas for sufficiently low c, g(c) will choose a posterior very close to
1. From the Intermediate Value Theorem, there exists c such that the optimal
solution is p∗1.

This implies that Trader 1 optimally acquires information given c and updates
his beliefs from p1 to p∗1 at some ϕ, announcing b. Trader 2 does not gain any new
information from the announcement, because the same announcement would be
made at state b. The game proceeds to the next period, so t∗I(ϕ) > 2. However,
without information acquisition, p1 is such that Ep[X|Πi(ω)] ̸= b for all i = 1, 2

and ω ∈ Supp(p). Therefore, without information acquisition, after Trader 1
announces his prediction, Trader 2 will know the state and t∗NI(ϕ) ≤ 2.

Finally, we show that (ii) is true at state a given the same Π and some K.
Following the same argument as before, because X(a) < X(b) < X(d), there
exists µ′ with full support on the first three states and resulting unique p1 such that
Eµ′ [X|Π1(ω)] = v = b for all ω ∈ Supp(p). Therefore, after Trader 1 announces his
prediction, Trader 2 does not know the state and t∗NI(ϕ) > 2. With information
acquisition, we can find sufficiently low c such that Trader 1 acquires information,
updates his beliefs to p∗1 ̸= p1, and announces E∗

p∗ [X|Πi(ω)] ̸= v at state ϕ which
projects to a. Therefore, Trader 2 realises that the state is not b and t∗I(ϕ) = 2.

Proof of Proposition 4. Without loss of generality we assume that X(ω∗) = 1 and
X(ω) = 0 for all ω ̸= ω∗. Suppose that the true state is ω. In every period t, there
are two cases. First, the trader announces 0 and the process ends. In this case,
the trader does not acquire any information, because he knows that the value of
X is 0. Second, the trader considers ω∗ with X(ω∗) = 1 to be possible, acquires
a random posterior and after the signal realization forms a new posterior. From
Assumption 1, the posterior cannot exclude any state with certainty, hence his
private information Πi(ω) ∩ E, where E is the public event revealed by previous
announcements, stays the same, irrespective of whether he acquired any informa-
tion, but his posterior might change. Hence, no information is revealed to other
traders, because he does not make a different announcement based on which par-
tition cell he is in. Since no information is revealed to other traders conditional
on the game continuing, the common knowledge event that is created by each
announcement is the same with and without information acquisition, hence, the
process ends in the same number of periods. Note, however, that announcements
may differ across the two environments. The same argument applies if the true
state is ω∗.

26From Bayesian plausibility, the other posterior will take values in [0, µ].
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