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Abstract

1 Introduction

Since 1961, year which Ellsberg introduced the concept of "ambiguity aversion"
(AA) in the form of his well-known thought experiments (see Ellsberg 1961),
economists, psychologists and decision theorists have been trying to provide
answers to the following two questions: (i) is AA empirically documented by
means of formal experimentation and (ii) does AA violate the standard Bayesian
conditions of rationality, or is it consistent with rationality when properly mod-
i�ed?
With respect to the �rst question, Machina and Siniscalchi (2014) o¤er an

extensive survey of the empirical literature (including studies from the insurance
and medical literature) that spans over a period of 50 years. The results of
these experiments lend support to AA, although some results that point towards
"ambiguity neutral" or even "ambiguity seeking" behavior do exist (see, for
example, Viscusi and Chesson 1999).
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As far as the second question is concerned, the main argument in favor of AA
being consistent with rational probabilistic beliefs is the following: AA implies
that probabilistic beliefs are not sophisticated, in the sense that they cannot
be represented by a unique prior probability measure. Is a probabilistically
non-sophisticated agent necessarily irrational? The advocates of the AA say no.
Instead, they argue that the agent might possess so little (if any) information
about the events she is interested in, that she is justi�ably (and thus rationally)
unable to form a unique prior distribution. As Gilboa and Schmeidler (1989)
put it "...the subject has too little information to form a prior. Hence (s)he
considers a set of priors as possible." (1989, pp. 142).
Schmeidler (1989) is one of the earliest and best-known attempts to provide

an axiomatization of AA. Schmeidler argues that at the heart of AA lies the
following asymmetry: Consider an event space F which contains the "events
of interest" for agent X. Assume that Fk � F contains those events whose
probabilities are known to X, whereas F 0k � F ; (Fk \ F 0k = ;, Fk [ F 0k = F)
contains the rest of events for which X has no information about. AA means
that X favors betting on events in Fk than F 0k: However, under the maintained
assumption that X�s subjective probability of any event D 2 F is measured by
X�s willingness to bet on D, AA implies that X�s degree of belief de�ned on F
violate the additivity axiom of probability theory, thus X is not probabilistically
sophisticated.
What is the main reason for the violation of the additivity property in X�s

degrees of belief, denoted by PX? The answer is that X has speci�c information
IS , which is relevant for some speci�c events in F and irrelevant for all the rest.
Is IS allowed to be used in the determination of the prior beliefs, or should these
beliefs be based exclusively on the so-called "background" information, IB?
How is IB de�ned? A universally accepted sharp de�nition of IB is hard

to �nd. IB is usually meant to include the "corpus of background knowledge"
(Easwaran 2008) that describes the general characteristics of the chance set
up in hand (e.g. there are n coins involved, each one is two-sided, successive
tosses are independent, etc). More importantly, IB should include the full set of
hypotheses H that describe the probabilistic properties of the phenomenon of
interest, the full set of evidential sentences E that are relevant for H together
with the entailment relationships between elements of H and elements of E. On
the other hand, IB should not include any actual outcomes of the experiment
or information about the objective chances (e.g. coin is fair). This information
is speci�c information or relevant evidence and should be thought of as part of
IS :
The question of whether to allow both IB and IS or only IB to a¤ect the

generation of the agent�s prior belief function is crucial for deciding whether AA
is (or can be made) consistent with rationality. Hence the crucial question is:
should P0 depend only on IB (Option I) or on both IB and IS (Option II)?
There are two approaches in the literature: one that claims that the distinction
between IB and IS is not only useful but compelling, and the other which sees
no point in distinguishing between the two. As Howson and Urbach (1991) put
it, Option II means that "the priors in any calculation can also be posterior
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probabilities calculated from the historical data" (1991, pp. 374). As such,
current probabilities (credences), Pt; are shaped by all the available information
that the agent possesses at t, including both IB and IS : In such a case, the
evidential signi�cance of IS is "built into" Pt: Notationally, we may emphasize
this, by replacing Pt with P

IB ;IS
t : Following Meacham (2007), we refer to this

view as "Classical Bayesianism" (CB). On the other hand, Option I, hereafter
referred to as "Modern Bayesianism" (MB), amounts to the prior, P0; being
determined at a time in which no speci�c evidence IS is available, meaning that
X is capable of counterfactual probabilistic reasoning. Put di¤erently, the prior
probability function should be determined, once and for all, at a unique point in
time, say t0; in which only IB is available. At t0; IS is contingent (hypothetical)
rather than actual. Notationally, P01 may be replaced by P

IB
0 :

The central question of this paper is whether AA is consistent with ratio-
nality and whether the distinction between CB and MB can provide insights
to this question. The answer to this question is emphatically a¢ rmative. The
main point of this paper is to show that an MB agent, operating in the context
of a "small world" (more on this below), cannot exhibit AA.
We also ask the question of whether MB is a normatively appealing hypoth-

esis. To this end, we put forward three arguments in favor of MB, analyzed in
detail in the section 3. In summary, we argue that an MB agent (as opposed
to a CB one) (i) protects herself from falling into logical contradictions akin to
the relation between her subjective probability and objective chance, (ii) fares
better in cases of "old evidence" and (iii) allows psychological detachment from
actual evidence.
What about MB�s descriptive status? Is MB reasonably realistic as a model

of actual behavior? Or is it the case that MB puts exceedingly high standards
on the agent�s probabilistic reasoning abilities? To answer this question, we
must �rst de�ne the context within which the agent operates. To this end, we
distinguish between "small" and "large" worlds, a distinction already made by
Savage (1954). For the purposes of the present paper, a "world" is de�ned to
be the domain (language) L of the agent�s probabilistic beliefs. This domain
includes all the hypotheses of interest Hi, all the relevant evidential statements
Ej , together with the corresponding (logical) entailment relations between Hi
and Ej . A world is small if (a) the number of hypotheses in L is small and (b) L
does not evolve over time. These two assumptions imply that the agent is able
to conceive in advance all possible hypotheses concerning the matter of interest.
In this paper we argue that MB is a reasonable hypothesis in small worlds.
On the contrary, MB is not likely to work in cases in which a) L is exceed-

ingly rich and b) L changes over time due to the formation of new concepts
(hypotheses) by the agent. With respect to the second case, imagine a situation
in which the agent�s current domain, Lt; is richer than her domain L0 at the
beginning of her investigations, t0 (that is before any speci�c information IS
is available). This may happen if between the time periods t0 and t, a new
hypothesis Hnew was conceived by the agent. In such a case, Hnew is part of

1We let P0 � Pt0 ; to avoid the latter, more burdensome, notation.
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Lt but not of L0. MB requires the agent to "go back in time" in order to
�nd herself in the epistemic state that corresponds to t0: Unfortunately, at this
state, the agent is unable to �nd any probabilistic assignments to Hnew simply
because Hnew was not included in L0: In such a case, MB requires the agent to
contemplate her probabilistic assignments not in the "old" domain L0 (which
did not include Hnew) but in the "new", expanded domain Lt. However, this
shift between domains means that the agent is forced to change all her prob-
abilistic assignments made in the context of L0. This is the point at which
MB loses its normative and descriptive edge. As Bammer and Smithson (2012,
pp 95) remark "...changing the language (domain) in which items of evidence
and hypotheses are expressed will typically change the con�rmation relations
between them."
Do MB�s losses translate to CB�s gains? The answer is negative. Both MB

and CB are equally vulnerable to the presence of large and evolving worlds be-
cause under those worlds, both MB and CB require frequent changes in prior
probabilities P IB0 and P IB ;ISt . Such changes invalidate many of the most in-
teresting Bayesian theorems, including the celebrated "washing out of priors2"
result.
It is worth emphasizing that standard Bayesianism, in either MB or CB

form, does not allow the formation of new hypotheses after the prior probability
function has been formed. Instead, it assumes that the agent is able to think
in advance of all the possibilities in the hypothesis space; in short, the agent
is assumed to be "logically omniscient". Logical omniscience is considered by
many critics as the Achilles heel of Bayesianism: it implies an all-knowing agent
who is able to track down all the logical implications in L. Obviously, the extent
to which such an assumption is unrealistic depends on the degree of richness
of the underlying domain L. For simple domains, it is reasonable to assume
that the agent can comprehend the few logical entailments that these domains
contain, which renders standard Bayesianism realistic in small worlds.
The main points of the paper are the following: (i) An MB agent operating

in small worlds does not exhibit AA. (ii) AA may be thought of as a (potential)
property of large worlds, because in such worlds MB is likely to be infeasible.
(iii) The motivation of AA in the form of examples such as Ellsberg�s classic
urn-based or Schmeidler�s coin-based ones is clearly poor, since these exam-
ples are textbook cases of small worlds (or elementary domains), in which the
normatively preferable MB strategy is attainable.
The paper is organized as follows: Section 2 describes Schmeidler�s two-coin

thought experiment that is supposed to produce AA. It also de�nes formally
two of the central concepts of this paper, namely MB and CB. Section 3 is an
analytic discussion of the arguments for preferring MB over CB. Section 4 pro-
vides the main objection to MB, namely logical omnicience. It also elaborates
on the connection between MB and small worlds and the e¢ ciency of counter-
factual probabilistic reasoning in such worlds. Section 5, demonstrates formally

2Di¤erence in priors doesn�t matter since in the long run, as more evidence is accumulated,
these priors "wash out" in the sense that posterior subjective probabilities merge to the
objective one.
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the absence of AA under MB reasoning within Schmeidler�s two-coin example.
Section 6 concludes the paper.

2 Schmeidler�s Two-Coin Example and Modern
versus Classical Bayesianism

Schmeidler (1989) uses the following coin example, which aims at conveying the
same message with Ellsberg�s two-urn paradox (1961). Assume that the agent
X considers two coins A and B. X knows with certainty that the probability
of "heads" for A (HA) is 0.5. On the other hand, she has no such information
about B. The two coins are about to be tossed and X has the option to bet
either on A-related events or B-related events. Speci�cally, she may choose bet
A in which she earns 1$ if the event

DA
H = fcoin A comes up headsg = fHAHB ; HATBg

occurs and loses 1$ if the event

DA
T = fcoin A comes up tailsg = fTAHB ; TATBg.

Alternatively, she is o¤ered the option to enter bet B which gives her 1$ if the
event

DB
H = fcoin B comes up headsg = fHAHB ; TAHBg

materializes and produces a loss of 1$ if the event

DB
T = fcoin B comes up tailsg = fHATB ; TATBg

takes place. Obviously,
DA
H ; D

A
T 2 Fk

whereas
DB
H ; D

B
T 2 F 0k:

Indeed, the agent knows that

P (DA
H) = P (D

A
T ) = 0:5

although she is not informed about the probabilities P (DB
H) and P (D

B
T ). How-

ever, although she does not know the exact values of P (DB
H) and P (D

B
T ) she

feels more willing to bet on DA
H than DB

H and on DA
T than D

B
T , i.e.

P (DB
H) < P (D

A
H)

and
P (DB

T ) < P (D
A
T ):

It is easy to show that such a P is non-additive. Indeed,

DB
H \DB

T = ;
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and
DB
H [DB

T = 


where 
 is the relevant sample space, namely


 = fHAHB ; HATB ; TAHB ; TATBg:

Assuming that P is additive,

1 = P
�
DB
H [DB

T

�
= P (DB

H) + P (D
B
T ) < 1

which is a contradiction.
What causes the violation of the additivity property in P? It is not merely the

presence of asymmetric information, but rather the fact that the agent allowed
IS to a¤ect directly her probabilistic beliefs, instead of utilizing (as she should)
IS indirectly by conditionalization. But in order to be able to conditionalize
on IS ; a pre-existing vehicle is required, namely a probability function, prior
to the acquisition of IS : Put di¤erently, the agent should form her probabilistic
beliefs by employing the MB counterfactual strategy brie�y outlined in the
introduction.
Let us now de�ne the concepts of MB and CB more formally. To this end,

assume an agent, who started her investigations at time t, having both IB and
IS at her disposal. The agent is interested in updating her beliefs about the
proposition/event A in the light of new evidence E obtained at t + 1. A CB
agent carries out this task as follows:
Classical Bayesianism (CB):

Pt+1;IB ;IS ;E(A) = P
IB ;IS
t (A j E): (1)

On the other hand, the MB strategy advises the agent to pursue the fol-
lowing two-step procedure: First, "travel back" to your epistemic history and
identify point, t0; at which IS was not yet available (although it was conceiv-
able). Second, once this point was found, evaluate the prior that you would
have formed at this point (counterfactual or hypothetical prior) and use it from
this point onwards as your actual prior.
Modern Bayesianism (MB):

Pt+1;IB ;IS ;E(A) = P
IB
0 (A j IS ; E): (2)

Easwaran (2008) refers to P IB0 "as expressing counterfactual possibilities of what
she (the agent) imagines she would believe if she didn�t have some of the infor-
mation (in our case, IS) she does now." (2008, pp.147). In a similar fashion,
Meacham (2008) explains the epistemic role that P IB0 is supposed to play: "A
rational subject�s credences are �xed by her hypothetical priors and her total
evidence. A subject�s credences are represented by a dynamic probability func-
tion, a function that changes with her evidence. A subject�s hypothetical priors
are represented by a static probability function, a function that encodes her dis-
position to respond to evidence. (Hypothetical priors are called �priors�because
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they can be thought of as a rational subject�s original credences in possibilities,
prior to the receipt of any evidence, and �hypothetical�because it is unlikely that
one ever was in such a state.)" (2008, emphasis added). It is worth emphasizing
that despite the term "modern", MB is not a form of Bayesianism that was put
forward only recently. Indeed, several authors from the 1970s entertained the
idea of "hypothetical priors", that is, "priors without evidence"3 .
What should the basic probability concept be in the development of rational

decision theory? Prior or Current Probability? To answer this question we must
think of what personal probabilities should re�ect if they were to be rational: the
person�s permanent dispositions for forming beliefs (on the basis of the available
evidence) or merely her momentary inclinations at some given point in time?
Rudolph Carnap argues strongly in favor of the �rst option. Indeed, his

monumental work on inductive logic (Carnap 1950) is based on the concept of
hypothetical or counterfactual initial credence function that can be ascribed to
the agent X, before the collection of any evidence. More speci�cally, Carnap
(1962) considers a sequence of data E1; E2; :::; En obtained by the agent X up
to the present time Tn (in Carnap�s notation). He also de�nes Kn to be the
"total observational knowledge" of X at Tn, that is

Kn = \ni=1Ei: (3)

Then Carnap contemplates X�s epistemic state at time T0 in which X posseses
no observational knowledge at all: "Now consider the sequence of X�s credence
functions. In the case of a human being we would hesitate to ascribe to him
a credence function at a very early time point, before his abilities of reason
and deliberate action are su¢ ciently developed. But again we disregard this
di¢ culty by thinking either of an idealized human baby or of a robot. We
ascribe to him a credence function Cr1 for the time point T1; Cr1 represents
X 0s personal probabilities based upon the datum E1 as his only experience.
Going even one step further, let us ascribe to him an initial credence function
Cr0 for the time point T0 before he obtains his �rst datum E1. Any later function

3For example, Hesse (1975) suggests that the agent�s prior probability should include only
"previous background evidence which does not enter the current calculations" (Hesse, 1975
volume pp 53 - emphasis added). She then goes on to explain the nature of the prior prob-
ability: "It is very important to stress that all this (the prior probability) refers only to
possibilities, none of which are yet realized at t0. It refers to what the decision-maker should
be prepared to choose in hypothetical circumstances before more evidence is collected. It
describes the static situation at t0 in terms of a certain probability distribution satisfying the
probability axioms." (1975, pp. 64, emphasis added).
Teller (1975 same book) argues that in order to be able to conditionalize on IS (the relevant

evidence) an initial probability function, which does not depend on IS , is required in order
for the process of updating beliefs to get started: "However, for a Bayesian theory fully to
characterize the degrees of belief which arise by conditionalization, the theory must specify
the belief function from which to start. This initial function is called the prior probability
function" (1975, pp. 168-169). Earman (1992) also emphasizes the need of a starting point in
order for the conditionalization process to be operational: "...an agent begins as a tabula rasa,
chooses her priors, and forever after changes her probabilities only by conditionalization."
(1992, pp. 139-140 original emphasis).
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Crn for a time point Tn is uniquely determined by Cr0 and Kn : For any H;

Crn(H) = Cr
0
0(H j Kn); (4)

where Cr00 is the conditional function based on Cr0" (1962, pp. 310, emphasis
added). Is Cr0 actual or counterfactual? Carnap explicitly allows the initial
credence function to be hypothetical: He �rst raises the question: "How can we
understand the function Cr0?" The answer to this question depends on whether
the agent X is a robot or a human being. In the �rst case, Cr0 is robot�s
actual credence function at T0:With respect to the second (more relevant case)
Carnap�s answer is as follows: "In the case of a human being X, suppose that
we �nd at the time Tn his credence function Crn. Then we can, under suitable
conditions, reconstruct a sequence E1; E2; :::; En, the proposition Kn; and a
function Cr0 such that (a) E1; E2; :::; En are possible observation data, (b)
Kn is de�ned by (3), (c) Cr0 satis�es all requirements of rationality for initial
credence functions, (d) the application of (4) to the assumed function Cr0 and
Kn would lead to the ascertained function Crn:We do not assert that X actually
experienced the data E1; E2; :::; En, and that he actually had the initial credence
function Cr0, but merely that under idealized conditions, his function Crn could
have evolved from Cr0 by the e¤ect of the data E1; E2; :::; En:" (1962, pp. 310,
emphasis added)
Why does Carnap identify the initial credence function Cr0, instead of the

current credence function Crn, as the basic concept upon which (any) rational
decision theory must be built? The answer to this question is based on the
distinction between the two competing concepts that drive a person�s (say X)
degrees of belief mentioned above, namely: (i) X�s momentary inclination at
time T and (ii) X�s permanent disposition to believe. Carnap argues that what
we are interested in, in developing rational decision theory is the second concept,
that is a "trait" of X�s "underlying permanent intellectual character". This
disposition is best re�ected on X�s initial credence function, that is X�s degrees
of belief prior to the acquisition of any evidence. Any change in X�s beliefs, due
to the emergence of new evidence, E, should be based on Cr0(� j E): Such a
conditionalization ensures that X�s current credences will also be driven by X�s
permanent disposition for forming beliefs on the basis of the received evidence.
To this end, Carnap argues as follows: "When we wish to judge the morality of a
person, we do not simply look at some of his acts, we study rather his character,
the system of his moral values, which is part of his utility function. Single acts
without knowledge of motives give little basis for a judgement. Similarly, if we
wish to judge the rationality of a person�s beliefs, we should not simply look at
his present beliefs. Beliefs without knowledge of the evidence out of which they
arose tell us little. We must rather study the way in which the person forms his
beliefs on the basis of evidence. In other words, we should study his credibility
function, not simply his present credence function." (1962, pp. 312, emphasis
added).
The distinction between actual versus hypothetical priors in the context of

Schmeidler�s two-coin example may be described as follows: Assume that at time
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t, in which the desire for a speci�c investigation or bet emerged (for example
the time at which the agent decided to bet on DA

H), speci�c information IS
already existed (for example, the coin A has already been �ipped �ve times,
with the results being HA;HA; TA;HA; TA). What is the agent advised to do in
this case? Should she form her priors by taking IS into account? Or should she
"travel back in time" and ask herself "what would have my priors been at time
t0 when IS was not available?" MB responds negatively to the �rst question
and positively to the second.
Based on the above MB recommendation, the following pressing question

presents itself: Why should the agent take the burdensome and imagination-
stretching counterfactual route (2) in forming her current beliefs, while the al-
ternative actual (and intuitively appealing) course (1) is readily available? Put
di¤erently, why should we require the agent to ponder her subjective probabil-
ities under an epistemic state which is not her actual state of knowledge but
rather a counterfactual one? There are at least three reasons that compel an
agent to follow the counterfactual path: These reasons are analyzed in detail in
the next Section.

3 Arguments for Modern Bayesianism (MB)

3.1 Modern Bayesianism and the Chance-Credence Rela-
tionship: Avoiding Inconsistencies

Principal Principle (PP), one of the pillars of rationality, originally suggested by
David Lewis (1970), aims at capturing the following intuitive idea: If the agent
X comes to know (with certainty) that the objective probability of the event
(proposition) A, Ch(A); is p and does not possess any inadmissible evidence
for A, then X�s subjective probability of A must be set equal to p. One of
the arguments of this section, is that MB is consistent with PP, whereas is not
consistent with CB.
How to describe formally the PP? One option is to use the current credence

function P IB ;ISt ; which gives:

P IB ;ISt (A j< Ch(A) = p >;E) = p; (5)

where E is admissible evidence obtained at t+ 1:
It must be noted that Lewis never gave a precise de�nition of "admissibility".

The standard interpretation of this concept is "that evidence is admissible if it is
not relevant to the outcome of the chance event in question. As a rule of thumb,
he (Lewis) takes information about the past to be admissible, and information
about the future to not be admissible." (Meacham 2007, pp. 18).
The �rst version of PP, given by (5), may be interpreted in the light of

CB, as follows: The agent X, being at time t, has at her disposal IB and IS :
Being a CB, the agent uses both these items of information to generate her
"unconditional" probability P IB ;ISt (A) at t. If she acquires a further item of
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information E then her new updated probability of A would be

Pt+1;IB ;IS ;E(A) = P
IB ;IS
t (A j E):

However, if in addition to E the agent learned that the chance of A is p, then
the latter piece of information would dominate the formation of her beliefs, in
the sense that < Ch(A) = p > screens-o¤ any admissible evidence, E, for A,
thus yielding (5). Hence, her new (updated) probability of A is given by,

Pt+1;IB ;IS ;E;<Ch(A)=p>(A) = P
IB ;IS
t (A j< Ch(A) = p >;E) = p: (6)

A second option for the agent is to operate as an MB, thus treating IS not
as actual but rather as counterfactual. As a result, she employs the initial prior
probability function P IB0 , instead of the current one, thus yielding the following
version of PP:

P IB0 (A j< Ch(A) = p >;E; Is) = p if E (and Is) is admissible. (7)

What is the restriction that (7) imposes on X�s current credences? Put di¤er-
ently, assume X is currently at time t + 1, in which she has come to know IS ;
< Ch(A) = p > and E: MB�s condition (2) implies the following relation:

Pt+1;IB ;IS ;E;<Ch(A)=p>(A) = P
IB
0 (A j< Ch(A) = p >;E; Is) = p: (8)

Comparing (6) with (8), we form the impression that it makes no di¤erence
to the agent�s updated probability of A, whether she acts as a CB or MB.
However, Meacham (2007) argues that this is not the case. He argues that (5),
as opposed to (7), leads to contradictions. To understand why, we must �rst
emphasize the di¤erence that the role that IS plays in (5) versus (7): On one
hand, under the MB formulation (7) of PP, IS is conditioning information and
therefore, we must examine if it is admissible or not. Now, let us consider the
special case in which A is included in IS at time t: In such a case, IS becomes
automatically inadmissible and therefore, PP becomes non-applicable and the
agent�s probability should be set equal to one.
On the other hand, IS is not conditioning information; it is rather a direct

determinant of the agent�s current probability function P IB ;ISt : As such, ad-
missibility is not relevant. Therefore, the agent cannot condition on A since it
has already determined her probability function. Hence, (5) dictates that the
agent�s subjective probability of A should be equal to p < 1. But on the other
hand, this probability should be equal to one, since A is known to the agent.
Hence, we have run into the following contradiction:

1 = P IB ;ISt (A j< Ch(A) = p >;E) = p 6= 1

Obviously the extent to which the prior probability is preferable to the cur-
rent probability for both formal and conceptual reasons, determines the extent
to which MB is preferable to CB.
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3.2 Modern Bayesianism and the Problem of Old Evi-
dence

The "problem of old evidence" concerns the role of evidence, E, that was already
known (hence, old) at the time of the formation of a scienti�c theory (T ) for
the con�rmation (or not) of T . The problem was �rst presented by Glymour
(1980) who described it as follows: "Scientists commonly argue for their theories
from evidence known long before the theories were introduced. Copernicus
argued for his theory using observations made over the course of millennia....
Newton argued for universal gravitation using Kepler�s second and third laws,
established before the Principia was published. The argument that Einstein
gave in 1915 for his gravitational �eld equations was that they explained the
anomalous advance of the perihelion of Mercury, established more than half a
century earlier.... Old evidence can in fact con�rm new theory, but according
to Bayesian kinematics it cannot. For let us suppose that evidence e (E in our
notation) is known before theory T is introduced at time t. Because e is known
at t, Pt(e) = 1. Further, because Pt(e) = 1, the likelihood of e given T , Pt(ejT ),
is also 1. We then have:

Pt(T je) =
Pt(T )Pt(ejT )

Pt(e)
= Pt(T )

The conditional probability of T on e is therefore the same as the prior probabil-
ity of T : e cannot constitute evidence for T .... None of the Bayesian mechanisms
apply, and if we are strictly limited to them, we have the absurdity that old evi-
dence cannot con�rm a new theory." (1980, pp. 85-86). The previous quotation
highlights a con�ict between Bayesian theory of con�rmation and the standard
scienti�c practice when it comes to the use of E. Speci�cally, E, under the
standard scienti�c practice, can in fact con�rm new theory, but according to
Bayesian theory it cannot.
Bayesian philosophers have responded to the problem of old evidence in

(mainly) two di¤erent (and incompatible) ways. The �rst response, put forward
by Garber (1983), Niiniluoto (1983) and Je¤rey (1983) goes as follows: What
makes the scientist to increase her con�dence in T , is not E per se, since this
information was already known to her at the time she invented her theory.
Rather it was the realization of the logical entailment relationship

T ` E (9)

that made the scientist to increase her con�dence in T: For example, "Einstein
discovered only after writing down the equations of General Relativity that
they entailed the anomalous perihelion advance of Mercury." (Howson, 1991,
pp. 553). Hence, the increase in the agent�s degree of belief in T comes from
conditionalization on the entailment relationship (9) itself rather than condition-
alization on just E. The proposition (9) at t0 was uncertain, in the sense that
the agent had not established/proved the validity of the postulated entailment
relationship, i.e.

P0(T ` E) < 1;
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in which case the realization of (9) at t results in an increase in probability of
T:
Note that this line of defense is based on the assumption that the agent

conditionalizes on the entailment (9), which in turn implies that at t0, the agent
had already assigned a prior probability to this proposition, i.e P0(T ` E) = p,
with p < 1: This means that at t0 the agent was not aware of the truth of
(9) (which truth she discovered only later) which in turn implies that at t0 the
agent had assign a probability less than one to a logical truth. This, however,
means that P0 is not coherent. Hence, this line of defense against the problem
of old evidence leads to another problem (potentially more serious) which is
incoherence of the agent�s probability function.
The second argument for solving the problem of old evidence is more in the

spirit of MB since it is based on the following counterfactual "what-if" strategy.
Garber (1983) portrays this strategy as follows: "One obvious response might
begin with the observation that if one had not known the evidence in question,
then its discovery would have increased one�s degrees of belief in the hypothesis
in question (H). That is, in the circumstances in which E really does con�rm
H, if it had been the case that P (E) < 1, then it would also have been the case
that P (HjE) > P (H)." (1983, pp. 103, emphasis added). The solution outlined
by Garber, suggests that the agent should not evaluate her probabilities relative
to I = IB [ IS but only relative to IB : This is exactly the proposal o¤ered by
Howson (1991) in his attempt to solve the problem of old evidence. Indeed, he
explicitly states that the probabilities "should always be relativized to K�fEg"
(1991, pp. 548, with K and E in Howson�s notation corresponding to IB and
IS ; respectively). But, as analyzed in Introduction, this is exactly the point at
which MB and CB di¤er. Hence, choosing MB over CB might be motivated
by the fact that the �rst strategy fares better than the second in cases of "old
evidence".

3.3 Modern Bayesianism and Psychological Detachment
from Actual Evidence

Let us now turn our attention to the third reason for preferring the counterfac-
tual MB strategy over the actual CB one. This reason is akin to the possibility
that the agent evaluates the entailment relationships between theoretical and
evidential statements in a more unbiased way when the evidence IS is hypo-
thetical than when it is actual. For example, the probability that I assign to
the hypothesis HA: "I shall live for at least another �ve years" conditional on
the actual event B: "I am diagnosed with aggressive lung cancer" is likely to be
bigger than the probability that I would have assigned to HA if the event B were
not actual but just a member of a set of many hypothetical events including the
event non-B. In this example, the actual knowledge of the unfortunate event B
at time t (now) is likely to create psychological pressure to distort the partial
entailment relationship between HA and B that I was willing to accept at t0;
thus yielding

PB;t(HA) > P0(HA j B):
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This argument suggests that the subjective evaluation of probabilities should
be made, as Longino (1979, pp. 35) puts it, "in rational, cool, moments". As
already mentioned, such a "cool" and "impartial" agent is an MB agent.

4 Objections to Modern Bayesianism: Logical

Omniscience

The arguments presented above suggest that MB is the optimal strategy that
must be followed by an agent who is in the process of forming her subjective
probability function at t (now). For reasons of clarity, this strategy is sum-
marized below. The agent is currently at time t, knowing both IB and IS :
The agent is advised to "pretend" that she does not know IS and perform the
following thought experiment: Go back in time at period t0 in which only IB
was available. At t0; the background information IB contains the full set of
hypotheses H that the agent actually entertained at t0; the full set of evidential
sentences E that the agent conceived as possible at t0, (every conceivable pos-
sible course events after t0) as well as all the entailment relationships between
elements of H and elements of E (e.g. Hi ` Ej). More speci�cally, each mem-
ber of E describes the observations that have not been actually made at t0 but
are considered by the agent at t0 as possible to make at the future period t.
At t0 the agent�s subjective probability function P0 was de�ned over the �eld
of propositions L (which includes H and E). Assume that at t, the particular
element E 2 E is realized, which implies that the agent at t has this speci�c
information, i.e. IS � E: According to the MB counterfactual strategy, the
agent�s new probability function, Pt; at t should be her old probability function
P0 conditional on E. As a result, her unconditional new probability for the un-
certain event A (that will occur at t+1) should be set equal to the conditional
probability P0(A j E) rather than being determined "from scratch" as Pt;E(A):
Is the above counterfactual strategy without any problems? The answer is

negative. The main objections raised against this strategy revolve around the
concept of logical omniscience (or its lack thereof). Speci�cally, observe that
in the description of the counterfactual strategy presented above, we de�ned H
and E as the sets of theoretical and evidential statements, respectively conceived
by the agent at t0: However, Bayesianism assumes something signi�cantly more
than that. It assumes that the agent knows all the possible hypotheses, H�; all
the possible evidential statements E� and all the possible entailment relation-
ships between H� and E�; in other words the agent is assumed to be logically
omniscient and her prior probability function, P �0 , is de�ned over the �eld L�
of all propositions, which is (in�nitely) richer than L. Why does Bayesianism
require such an extreme condition? The answer is to ensure coherence of P �0 .
Speci�cally, if we wish (as Bayesianist do) to ensure that P �0 is a proper prob-
ability measure then we must establish that to each logical consequence p ` q
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the agent assigns probability equal to one, that is

8(p ` q); P �0 (p ` q) = 1:

This is because if p logically entails q; it does so in every possible state of the
world. Hence, it appears that coherence requires that the agent is capable of
tracking all logical consequences at t0. In other words, the agent is not allowed
to be unaware even of a single logical truth that exists within the underlying
domain L: As will be shown below only under this extreme form of logical
omniscience the aforementioned MB counterfactual strategy is expected to work
under all epistemic states that the agent may entertain at t.

4.1 Local vs. Global Bayesianism

Logical omniscience of the form described above is a condition that is usually
met within the variant of Bayesianism, known as Global Bayesianism (GB).
Garber (1983) de�ned GB as follows: "One popular conception of the Bayesian
enterprise is what I shall call global Bayesianism. On this conception, what the
Bayesian is trying to do is build a global learning machine, a scienti�c robot that
will digest all of the information we feed it and churn out appropriate degrees
of belief. On this model, the choice of a language (domain) over which to de�ne
one�s probability function is as important as the constraints that one imposes
on that function and its evolution. On this model, the appropriate language to
building into the scienti�c robot is the ideal language of science, a maximally
�ne grained language L, capable of expressing all possible hypotheses, all possible
evidence, capable of doing logic, mathematics, etc. In short, L must be capable,
in principle, of saying anything we might ever �nd a need to say in science."
(1983, pp. 110 emphasis added).
In what respect, does the MB strategy su¤er in the case of an agent whose

prior probability function is P0 rather than P �0 ? This question is equivalent to
the following one: "Why is GB not realistic?". The problem is the following:
Assume that at t the agent comes across a piece of evidence E� that she had not
conceived of as possible at t0: Assume that this piece of evidence is the agent�s
speci�c information (Is) obtained at t. According to MB, the agent should go
back to t0 and conditionalize on E� in order to generate her new probability
function at t: However, an unpleasant surprise awaits the agent: At t0 there is
no probabilistic assignment on E� simply because E� was not in the domain of
P0 at t0: To make things even worse, assume that E� was obtained at t because
a new hypothesis, H�; was put forward at t which motivated the observations
(or experiments) that led to E�: Obviously, H� was not in the domain of P0
either. For example, consider as E� and H� the "de�ection of light by the sun"
and "Einstein�s general relativity theory", respectively. If a physicist of the late
nineteenth century was asked to assign his personal probability to the event that
the light is de�ected by the sun, he would have been caught by surprise. His
domain, L at t0 was simply not rich enough to accommodate either E� orH� (let
alone the entailmentH� ` E�). In such a case, counterfactual conditionalization
seems impossible and the whole MB strategy runs into trouble.
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The preceding analysis suggests that the MB counterfactual strategy is un-
realistic to the same extent as GB, (as a description of the epistemic state of
real people) is. If the MB strategy is unrealistic within the GB framework, then
is it possible that there is another framework, say it Local Bayesianism (LB),
within which the MB strategy is likely to work? Before we answer this ques-
tion, let us �rst describe, following Garber (1983) how LB might be de�ned:
"Typically when scientists or decision makers apply Bayesian methods to the
clari�cation of inferential problems, they do so in a much more restricted scope
than global Bayesianism suggests, dealing only with the sentences and degrees
of belief that they are actually concerned with, those that pertain to the problem
at hand. This suggests a di¤erent way of thinking about the Bayesian learning
model, what one might call local Bayesianism. On this model, the Bayesian
does not see himself as trying to build a global learning machine, or a scienti�c
robot. Rather, the goal is to build a hand-held calculator, as it were, a tool
to help the scientist or decision maker with particular inferential problems. On
this view, the Bayesian framework provides a general formal structure in which
one can set up a wide variety of di¤erent inferential problems. In order to apply
it in some particular situation, we enter in only what we need to deal with in
the context of the problem at hand, i.e., the particular sentences with which we
are concerned, and the beliefs (prior probabilities) we have with respect to those
sentences." (1983, pp. 111, emphasis added).
Formally, assume that the investigator is interested in the set of speci�c

hypotheses (theoretical propositions) Hi; i = 1; 2; :::; n that cover the full set
of possibilities for the problem at hand (e.g. the coin is fair, the coin is biased
towards H, the coin is biased towards T, etc). Related to the aforementioned
theoretical propositions are the set of evidential propositions Ej ; j = 1; 2; :::;m
which are relevant for Hi (e.g the outcome of the next toss is H, the outcomes
of the next two tosses are H,T etc). No other proposition enters the agent�s
"problem over relative domain" L that is relevant for the speci�c problem at
hand. More speci�cally, Garber (1983, pp. 111) de�nes L to be "just the truth-
functional closure" of the Hi, Ej and propositions of the logical entailment
between Hi and Ej ; that is propositions of the form "Hi ` Ej". As a result,
the agent�s prior probability function is de�ned over the "local" more modest
domain L rather than the "global" ideal domain L�. This in turn implies that
it is much easier for the agent to track all logical consequences "Hi ` Ej" (for
some i and j) within L than within L�, thus making local Bayseniasm more
realistic than global Bayesianism (Bayesianism with a human face, as Je¤rey
(1983) puts it).

4.2 Small vs. Large Worlds

The description presented above makes clear that LB refers to well-de�ned,
small-scale cases (characterized by a small number of hypotheses, evidential
propositions and logical relationships) which are usually referred to as "small
worlds". In such a world, it is quite plausible to assume that the agent can
consider all the possibilities (hypotheses, evidential propositions and their en-

15



tailment relations) that are relevant for the problem at hand at t0. In such a
case, no surprises await the agent at t, in the sense that his epistemic state at
t is identical to that at t0: Binmore (2009) de�nes a small world as one "within
which all potential surprises have been predicted and evaluated in advance of
their occurrence." (2009, pp 8).
What are the implications of small worlds for the e¤ectiveness of the MB

counterfactual strategy? Binmore (2009) comments on this question as follows:
"Only in a small world, in which you can always look before you leap, it is
possible to consider everything that might be relevant to the decisions you take."
(2009, pp. 139 emphasis added). Indeed the "look before you leap" proverb is
attributed to Savage who used it as antithetical to "cross that bridge when you
come to it" that referred to the so called "large worlds". It is worth mentioning
that Savage himself made quite clear that his own conception of subjective
probability together with its axiomatization is relevant only for small worlds.
This is because Savage�s framework is essentially static in the sense that it does
not allow for the so-called "concept formation", that is the formation of a new
hypothesis or a new idea sometime in the future. Commenting on Savage�s
approach, Suppes (1966) observes: "The important thing I wish to emphasize
is that the theory provides no place for the decision-maker to acquire a new
concept on the basis of new information received. The theory is static in the
sense that it is assumed that the decision-maker has a �xed conceptual apparatus
available to him throughout time." (1966, pp. 21). Savage himself acknowledged
the fact that the static nature of his theory makes it inapplicable in the case
of large evolving worlds by referring to such an extension as "ridiculous" and
"preposterous".

5 Small Worlds, Counterfactual Strategy and
Ambiguity Aversion

The aforementioned discussion may be summarized as follows: MB and CB refer
to the agent�s strategy or course of action in forming her probability function at
t. GB and LB refer to the agent�s epistemic status at t0 as re�ected in the con-
tents of her background information IB or her domain, (L or L�):Whether MB
or CB is appropriate depends on which epistemic status, GB or LB characterizes
the agent. Obviously there are four combinations for the agent to consider in
her attempts to solve the problem of forming her subjective probability at t0:
(i) MB-GB: Ideal but Unrealistic (Infeasible) Solution.
(ii) MB-LB: The Appropriate Solution in Small Worlds.
(iii) CB-GB: A Feasible Solution in Large Worlds but with the kind of prob-

lems analyzed in section 3.
(iv) CB-LB: Inappropriate or Ine¢ cient Solution.
How does the above classi�cation bear upon AA? The preceding discussion

has made clear that the fact that the agent allowed IS to a¤ect directly her
probabilistic beliefs, is only a necessary condition for AA. A further condition is

16



that the problem at hand falls into the category of large worlds. Let us clarify
this argument, which forms our basic thesis in this paper. Assume that the agent
at time t has information, IS ; about the objective probabilities of the events in
Fk; but she lacks similar information about the events in F 0k. If the world is
small, the agent can go back in time at t0; ignore IS and assign probabilities in
Fk [ F 0k in an information-symmetrical way. Once her prior probability is thus
determined (counterfactually at t0), the agent is allowed to bring IS back to the
picture by conditionalizing on it. In such a case, the only way for the agent to
produce AA is to deviate at t from her probabilistic commitments at t0, that is
by exhibiting dynamic inconsistency. Interestingly, all the cases motivating AA
that have appeared in the literature (including the original Ellsber�s paradox
as well as Schmeidler�s two coin example) are "textbook cases" of small worlds.
Hence, although we do not claim that AA cannot arise in large worlds, (because
in such a context the counterfactual MB strategy is unrealistic) we do argue
that AA has been poorly motivated!

6 Schmeidler�s two-coin example Revisited

Let us now revisit Schmeidler�s two-coin example discussed in the introduction
in light of the analysis presented in section 4. First describe the agent�s epistemic
background at t0: For simplicity, we assume that concerning coin A, the agent
knows with certainty that only one of the following three hypotheses is true:

HA
1 = fCoin A is fairg

HA
2 = fCoin A favors Hg

HA
3 = fCoin A favors Tg:

To make things even simpler assume that in the case of HA
2 the objective prob-

ability of H is equal to 0.6, whereas in the case of HA
3 the objective probability

of T is 0.6. Similar assumptions are made for coin B, namely the agent knows
that one of the following three hypotheses is true:

HB
1 = fCoin B is fairg

HB
2 = fCoin B favors Hg

HB
3 = fCoin B favors Tg

Let HA = fHA
1 ;HA

2 ;HA
3 g and HB = fHB

1 ;HB
2 ;HB

3 g:
The agent has to decide about her prior probabilities of the above hypotheses.

Since there is no direct information supporting one hypothesis over the rest, the
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agent is likely to subscribe to the principle of indi¤erence (or the maximum
entropy principle) according to which:

P0(HA
1 ) = P0(HA

2 ) = P0(HA
3 ) =

1

3

and
P0(HB

1 ) = P0(HB
2 ) = P0(HB

3 ) =
1

3
:

Alternatively, the agent might consult her past experience on similar cases (part
of her background information) which suggests that it is more often for someone
to encounter cases of fair coins than not. In any case, the important thing to
notice is that there is no speci�c information at t0; hence there is no informa-
tional asymmetry between the set of hypotheses concerning coin A and that of
coin B.
Let us now calculate the probabilities that the agent assigns to the events/

propositions DA
H ; D

A
T and D

B
H ; D

B
T de�ned as:

DA
H = fcoin A comes up headsg = fHAHB ; HATBg

DA
T = fcoin A comes up tailsg = fTAHB ; TATBg

DB
H = fcoin B comes up headsg = fHAHB ; TAHBg

and
DB
T = fcoin B comes up tailsg = fHATB ; TATBg

Using the law of total probability, the agent gets:

P0(D
A
H) =

3X
i=1

P0(D
A
H j HA

i )P0(HA
i ) = 0:5�

1

3
+ 0:6� 1

3
+ 0:4� 1

3
= 0:5:

In a similar fashion, we obtain,

P0(D
A
T ) = P0(D

B
H) = P0(D

B
T ) = 0:5:

Let us assume that at time t > t0 the agent acquires an important piece of
speci�c information for the problem at hand. In particular she is given a set of
data, EA1; consisting of the results of a very long series of tosses of coin A for
which (almost) half of them are H. The following two questions are of interest:
(i) how does the agent update her probabilities of DA

H ; D
A
T , D

B
H and DB

T in
light of the new information, EA1 about A and (ii) does she end up with a new
system of beliefs that violate coherence?
Bayesian conditionalization implies:

Pt(D
A
H) = P0(D

A
H j EA1) =

3X
i=1

P0(D
A
H j HA

i ; E
A
1)P0(HA

i j EA1)
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The Principal Principle implies that (knowledge of the objective chance screens
o¤ any admissible evidence):

P0(D
A
H j HA

i ; E
A
1) = P0(D

A
H j HA

i ); for i = 1; 2; 3: (10)

Furthermore, given that the evidence EA1 is assumed to be arbitrarily large:

P0(HA
1 j EA1) ' 1

P0(HA
2 j EA1) ' 0

P0(HA
3 j EA1) ' 0

The above relationships together with (10) imply that

Pt(D
A
H)
�= P0(DA

H j HA
1 )P0(HA

1 j EA1) = 0:5

Similarly,
Pt(D

A
T ) = 0:5:

Let us now turn our attention to the events, DB
H and DB

T (related to coin B)
and examine how the acquisition of EA1 a¤ects their probabilities.

Pt(D
B
H) = P0(D

B
H j EA1) =

3X
i=1

P0(D
B
H j HB

i ; E
A
1)P0(HB

i j EA1)

As before, PP implies

P0(D
B
H j HB

i ; E
A
1) = P0(D

B
H j HB

i ); for i = 1; 2; 3:

Now the crucial question is the following: Does the evidence on coin A a¤ect the
prior probabilities attached to coin-B related events? Assuming independence
between the sets HA and HB the answer is negative. Hence,

P0(HB
1 j EA1) = P0(HB

1 ) =
1

3

P0(HB
2 j EA1) = P0(HB

2 ) =
1

3

P0(HB
3 j EA1) = P0(HB

3 ) =
1

3

Finally, the above relationships imply

Pt(D
B
H) = Pt(D

B
T ) = 0:5:

The important thing to notice is that the agent�s new set of beliefs, Pt; obtained
at t (after the speci�c information EA1 has arrived) is coherent, that is, it is a
proper probability function, i.e. it does not violate the additivity property.
Why did the preceding analysis not produce AA? Put di¤erently, why the

acquisition of EA1 did not produce a system of beliefs having the property

Pt(D
B
H) < Pt(D

A
H)
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and
Pt(D

B
T ) < Pt(D

A
T )

which would imply an ambiguity averse, probabilistically non-sophisticated agent?
The answer is that the analysis presented above implies that the agent follows
the MB counterfactual strategy in forming her probability function Pt at t. In-
deed, the key point is to focus on how the agent formed her new probability
function Pt once she became aware of EA1: Speci�cally, the agent did not use
EA1 as a direct determinant (on a par with background information) of Pt: In-
stead, she "traveled back in time" at point t0; identi�ed P0 and stuck to those
commitments at t4 . In this setting, AA would emerge only if the agent aban-
doned her commitments made at t0 and assigned di¤erent probabilities at t,
thus exhibiting dynamic inconsistency.
The preceding analysis implies that the only way for AA to emerge (without

causing dynamic inconsistency) is to eliminate P0. Eliminating P0 means that
at t the agent realizes that she faces a new reality that had not (and could not
have) anticipated at t, which obliges her to re-evaluate her full set of probabilis-
tic beliefs (to form a new prior). Such a setting can arrise within a large woeld
framework. Teller (1973) gives an example of when such a strategy is required:
"Examples are the wildcatter�s problem of where to drill an oil well and the
manufacturer�s problem of how much to produce. The personalists advise the
wildcatter and the manufacturer to estimate their initial degrees of belief sub-
jectively for any one such problem, but if a similar problem arises years later
under considerably di¤erent circumstances they are advised to make new evalu-
ations rather than to try to conditionalize their old estimates on the vast body
of intervening observations of uncertain relevance to the problem." (1975, pp.
170, emphasis added). However, Schmeidler�s and Ellsberg�s examples analyzed
above are quite di¤erent from the wildcatter�s problem. Consider the following
question with respect to Schmeidler�s two coin example: Is there any reason
for the agent to re�ne her probabilistic judgements at t, because at t she came
across a piece of surprising information, that is information that she could not
have conceived back at t0? The answer is negative, because Schmeidler�s two
coin example takes place in a small world, where the concept of "surprising
information" is not relevant. As a result, the MB strategy is perfectly feasible;
in fact it follows quite naturally!

7 Concluding Remarks

We conclude by summarizing our main arguments. There are two ways to use
speci�c information, IS ; in constructing the agent�s subjective distribution at
t, Pt. The �rst is to use it as conditioning information, consistent with MB
while the second is to use it on a par with any other background information
IB ; consistent with CB. There are good reasons, analyzed in detail in Section

4Note that the agent having formed P0 at t0; was at an epistemic state of not knowing
with certainty that E1A has occurred
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3, for prefering the �rst interpretation (MB) over the second (CB). Does the
choice of MB over CB have implications for the main issue under scrutiny in the
present paper, namely the emergence of AA? The answer is yes. If we choose
MB there is no room for AA, since being ambiguity averse in such a framework
is equivalent to being dynamically inconsistent. On the other hand, AA can
arise under CB because when IS determines the agent�s subjective distribution,
leads to informational asymmetries.
Can we always choose MB over CB? The answer is negative. MB is applicable

only in small worlds. In large worlds, MB may not be operational, especially
when the agent�s epistemic state at the time that IS arrives is richer than the
one at the time prior to the arrival of IS ; which is the case in large worlds.
Hence, AA may be thought of as a (potential) property of large worlds. To this
end, the motivation of AA in the form of examples such as Ellsberg�s classic
urn-based or Schmeidler�s coin-based, is clearly poor since these examples are
textbook cases of small worlds.
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