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Abstract

This paper focuses on di¤erent types of ambiguity that a¤ect climate change regulation. In

particular, we analyze the e¤ect of the interactions among three types of agents, namely, the

decision maker (DM), the experts and the society, on the probabilistic properties of green-house

gas (GHG) emissions and the formation of environmental policy, under two types of ambiguity:

"deferential ambiguity" and "preferential ambiguity". Deferential ambiguity refers to the un-

certainty that DM faces concerning to which expert�s forecast (scenario) to defer. Preferential

ambiguity stems from the potential inability of DM to correctly discern the society�s prefer-

ences about the desired change of GHG emissions. This paper shows that the existence of

deferential and preferential ambiguities have signi�cant e¤ects on GHG emissions regulation.
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1 Introduction and Policy Motivation

It is often claimed that decision making on climate change is characterized by ambiguity (or deep

uncertainty). Building on the work by Von Neumann and Morgenstern (1943) and Savage (1954),

economic decision theory under uncertainty has been dominated, since the middle of the last

century, by the expected utility theory and the Bayesian paradigm. A fundamental assumption in

this tradition is that any source of uncertainty can be quanti�ed in probabilistic terms, but in real

life situations, probabilities of random events are often unknown. Thus, a distinction between risk

(characterizing situations in which the probabilities of an uncertain event are perfectly known), and

uncertainty or ambiguity (which exists when a random event cannot be described by a probability

assessment), has been increasingly used. For climate change issues it is now widely accepted that

most sources of uncertainty cannot be characterized as risk, and as a consequence the expected

utility theory need to be modi�ed to include ambiguity.

The Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000) generated 40

scenarios of 21st century anthropogenic greengouse gas (GHG) emissions for the IPCC�s Third

Assessment Report (Houghton et al., 2001) using six di¤erent computer models and a wide range

of assumptions about the values of key driving forces. Each of the 40 scenarios is based on a basic

qualitative storyline that describes a future state of the world and breaks down into a number of

sub-scenarios. For example, the A1 storyline (scenario family) describes a future world of very

rapid economic growth, global population that peaks in mid-century and declines thereafter and

the rapid introduction of new and more e¢ cient technologies. The A2 storyline describes a very

heterogeneous world with an underlying theme of self-reliance and preservation of local identities

where fertility patterns across regions converge very slowly, resulting in continuously increasing

global population. In e¤ect, we have various scenarios built under some general hypotheses for

alternative future states of the world. None of these scenarios, however, includes assumptions

about the behavior of the decision maker (DM) in response to the predictions to these scenarios

(e.g. whether DM is environmentally friendly or hostile or indi¤erent).

Let us have a closer look at the interaction between scenarios and DM. The experts present

DM with the description of the scenarios and their implications on the GHG emissions. Then,

DM decides whether she will adopt a policy that is consistent with one of the scenarios. What is

the probability of each possible future state of the world? Lempert et al. (2003, 2006) in their

editorial essay argue that in SRES "... it is not possible to assign a likelihood to any of the

emissions scenarios and that the associated uncertainties are best characterized by the full range of

scenarios." The experts�weakness to assign a probability to every possible future state of the world
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is a central concern in this literature. Moss and Schneider (2000) have published a guideline which

aims at helping experts decide the probability of each scenario: "In addition, all authors� whether

in Working Group I, II or III� should be as speci�c as possible throughout the report about the

kinds of uncertainties a¤ecting their conclusions and the nature of any probabilities given."

In the case of climate chnage, there are two di¤erent sources of uncertainty that emerge: i)

Uncertainty about which future state of the world will actually materialize, called "ambiguity"

and ii) Given that a state of the world (scenario) materializes, uncertainty regarding the model�s

predictions of GHG emissions, called "risk". The second type of uncertainty is called risk and

derives from uncertainty about "the distribution of values that a parameter, variable, or outcome

may take" (Moss and Schneider 2000) and not uncertainty about the distribution of GHG emissions

itself. In this paper, we focus on the �rst type of uncertainty (i.e. ambiguity) and argue that when

attempting to resolve it, one has to account for the reaction of DM. For example, a sub-scenario

in SRES (e.g. A1F1: very rapid economic growth, etc) assumes a "fossil intensive" development

path. Let us assume that the experts assign equal probabilities to all 40 scenarios, 1
40 ; and that

DM starts with some scenario and realizes that GHG emissions will be huge. This alarms the DM

and makes him adopt a fully renewable energy strategy, which corresponds to scenario A1T1 in

SRES. By adopting this environmental friendly policy the DM e¤ectively increases the probability

of the non-fossil energy scenario. Hence her own policy action cancels the original 1
40 probability

of the fossil intensive scenario and e¤ectively makes it smaller.

The preceding discussion highlights the fact that we cannot estimate the probability of a sce-

nario without taking into consideration DM�s reaction to that scenario. That is, we need to

endogeneize DM�s reaction to the arrival of new information, which in the case of climate change

takes the form of alternative scenarios provided by the experts. The main argument of this paper

is that the statement by SRES "it is not possible to assign a likelihood to any of the emissions

scenarios" may derive from the di¢ culty of endogeneizing DM�s reaction function. To the best

of our knowledge there is no literature that attempts to model this endogeneity issue. Heal and

Milner point to this issue: "Even if all scienti�c uncertainty were resolved, we would still face

major uncertainties stemming from the socioeconomic dimensions of climate change. Suppose that

all scientists agreed on both a climate model and the impacts of climate change on sea level rise,

fresh water availability, and so on. Even in this case they would not be able to forecast the future

climate because this requires knowing future emissions. We are far from being able to forecast fu-

ture emissions because they depend on whether technological change provides us with new ways of

reducing GHG emissions, and the policies chosen, which are themselves di¢ cult to forecast. Even

if future emissions were known, the future would still be unknown in many important ways. Take
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the case of sea level rise, for example. Let�s suppose we had an accurate forecast of sea levels for

the next century. How would societies react to rising seas? By protecting settlements or moving

them? Would movements occur in a peaceful and organized manner, or would there be strife and

dislocation? ... Clearly the answers to these types of questions will a¤ect the welfare costs and

distributional impacts of climate change. Thus even the full resolution of scienti�c uncertainties

would leave huge residual uncertainties about the costs of climate change. "

In our model, the climate change experts provide DM with di¤erent GHG emissions forecasts

(scenarios) while DM has to decide on which of these forecasts she will base her policy decision.

The DM does not possess the epistemic status to select among the di¤erent expets�forecasts, which

creates what we callDeferential Ambiguity, that is, the DM does not know to which expert�s forecast

(scenario) to defer. A second source of ambiguity (present even in the case of a single expert) stems

from the potential inability of DM to correctly discern the society�s preferences about the desired

change of GHG emissions at each point in time. Hereafter, this type of ambiguity will be referred

to as Preferential Ambiguity. An interesting question that emerges, is whether these two sources

of ambiguity a¤ect the future realization of GHG emissions. In this paper we argue that they do

and thus, it is crucial to incorporate them in a general framework that will provide insights with

strong policy impications. To summarize, our work focuses on: �rst, characterizing the di¤erent

types of ambiguity faced by the DM and the experts, second examining their interaction and third

analyzing the e¤ects of this interaction on the probabilistic properties of GHG emissions.

2 Introducing the Conceptual Framework

Let us �rst describe the involved agents, namely DM, the society and the expert(s). Consider

a DM who at time t is about to form her system of probabilistic beliefs, that is, her subjective

probability function, PDMt ; de�ned on a �eld of propositions/events �. DM is assumed to be

rational, which amounts to saying that (i) DM�s subjective probability function obeys the basic

probability rules for every t, (ii) DM updates her probabilistic beliefs in the light of new evidence

by Bayesian conditionalization1 (BC) and (iii) DM obeys the Principal Principle (see, Lewis 1980),

which states that if DM knows the objective probability (chance), Ch(A); of A 2 �; then she

sets her subjective probability of A equal to the corresponding objective probability. The DM is

interested in the climate variable Y (GHG emissions in our case), in the sense that her objective is

to take the necessary policy actions to drive Y towards a desired level, set by the society which can

be thought of as a group of agents, who have no scienti�c background and form ad-hoc estimations

1Conditionalization is a diachronic rule, requiring an agent�s degrees of belief to line up in particular ways across
times.
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about the desired level of the future value of GHG emissions.

An expert is de�ned to be the agent who knows the objective probabilities (chances), Ch(A);

A 2 � of the events of interest. The expert�s objective is to provide the DM with the necessary

guiding information (i.e. his forecast/scenarios concerning the future evolution of Y ) that will

allow DM to implement the senario that the society prefers. In the case of a unique expert, DM

is most likely to perceive this expert as the true bearer of the objective probabilities, which in

turn implies that DM will have a strong incentive (since DM is benevolent) to defer to him at

each point in time. As a result, DM�s subjective probability distribution always coincides with

the corresponding (unique) objective probability distribution. Hence, DM always knows the true

probabilities of the events of interest, which in turn implies that she always operates under an

environment of "risk" (known probabilities) rather than "ambiguity" (unknown probabilities).

What happens when there are more than one experts, say n, who disagree with each other about

the chances of the events in � (or equivalently, when there are n competing scenarios for the same

phenomenon)? Each of these experts has his own belief about the objective probability function

on � (his own model). Hence, DM is faced with n experts�subjective probability functions, P it ,

i = 1; :::; n; instead of one, which in turn complicates her attempts to form her subjective probability

function PDMt : How can one interpret and model these complications? A method for combining

or aggregating experts�probabilistic input is the so called axiomatic method, which is based on (i)

setting a number of desirable axioms that the combined distribution should satisfy and (ii) �nding

the functional form that satis�es most (if not all) of these axioms. One of the most widely used

functional form is the so called linear opinion pool, according to which PDMt =
nX
i=1

wiP
i
t ; where

the weights wi are non-negative and sum to one. As Clemen and Winkler (1999) remark, the

weights wi may be interpreted as representing the relative quality of the n experts. In the case

that all the experts are regarded as equivalent (by DM) linear opinion pooling reduces to a simple

arithmetic average.2 Under the linear opinion pooling, there is an implicit assumption concerning

the relationship among (i) the input about the phenomenon Y that DM receives from the experts

(ii) DMs� actions based on this input and (iii) the actual probabilistic properties of Y : DM�s

actions (informed by the views of the experts) do not a¤ect the actual probability distribution

of Y , or put di¤erently, DM�s actions are exogenous to Y: This assumption does not seem to be

realistic concerning issues of climate change.

Heel and Millner (2015) refer to the endogeneity of emissions as follows: "Emissions uncertainty

2The linear opinion pool satis�es the axioms of unanimity and marginalization (eg. Clemen and Winkler 1999).
However, it fails to satisfy the principle of External Bayesianity, which is one of the reasons why an alternative
combination scheme, the so-called logarithmic opinion pool, is occasionally employed. For tractability, the linear
opinion pool is used more oftenly.
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arises because anthropogenic greenhouse gas emissions drive climate change projections in all

models, and future emissions pathways are unknown, as they depend on our own future policy

choices." (pp. 5). This is a case in which forecasts result in an adaptive change which in turn

a¤ects the forecasted quantity. Consequently, an expert who tries to produce a forecast for the

change in Y between t and t+1, �Yt+1, should integrate in his forecast the DM�s forecast for Yt+1.

This feature, however, produces a two way causality between the probabilistic views of DM and

those of the experts: Experts�forecasts of �Yt+1 a¤ect DM�s forecasts of �Yt+1, but at the same

time, DM�s forecasts, being causal factors in experts�models for �Yt+1, a¤ect experts�forecasts.

As a result, a model that allows DM to a¤ect, via her actions, the determination of Y; must, at

the same time, allow for a two way causality between DM�s and the experts�views.

The main aim of the paper is to investigate the e¤ects from the interaction between DM�s and

experts� forecasts for �Yt+1 on the actual (objective) distribution, F�Y ; of the change in GHG

emissions. Various forms of such interactions are analyzed, with each one generating Deferential

Ambiguity (Def) and/or Preferential Ambiguity (Pref). Def is de�ned as follows: At each

point in time, each expert i; i = 1; :::; n faces the following possibilities: (a) DM defers to his own

forecasts (forecasts of expert i), (b) DM defers to the forecasts of expert j 6= i; (c) DM defers

to a combination (e.g. linear pooling) of the two experts� forecasts and (d) DM defers to none

of the two. These possibilities raise for each of the experts the following "speci�cation issue":

how should DM�s deferential attitude be introduced in each of the experts�models? Pref stems

from the potential inability of DM to correctly discern the society�s preferences about the desired

change in GHG emissions at each point in time. How should the aforementioned DM�s inability

be introduced in each of the experts�models? The way that each expert answers these questions

bears di¤erent implications for the actual generation mechanism of �Yt+1.

Concerning Pref; assume that the society�s preference for GHG emissions formed at t for the

value of Y at t + 1 is denoted by Y �t;t+1 which is the sum of the current value, Yt; of Y plus a

quantity Zt which represents the desired change in Y between t and t+1, that is, Y �t;t+1 = Yt+Zt:

This rule of dynamic determination of social preferences may be justi�ed by assuming that in

forming its desired level of Y for next period, the society takes into account the current level of

Y: That is, tomorrow�s level of desired Y is in the neighborhood of the current level of Y due to

physical and technological limitations. Let us further assume, that despite her best e¤orts, DM

fails to diagnose Zt; and instead she believes that society�s preferences are best captured by Wt:

Alternatively, she might be able to identify Zt; but she believes that society is currently wrong

in focusing on Zt and should focus on Wt: In Tunney and Ziegler�s (2015) taxonomy, such a DM

exhibits "benevolent attitude", in the sense that her actions are driven not by identifying "what
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the society would do" but rather by "what the society should do". This possibility is akin to the

so-called "centralism" thesis (Press 1994) according to which "ecological problems can be solved

only by strong centralized control of human behavior, thus making common resource decisions

by central authorities and replacing democratic rule by �ecological mandarins�with the �esoteric�

knowledge and public spirit required" (Coenen et. al 1998, pp5)).

Irrespective of the reasons that make DM to adopt Wt instead of Zt, the crucial question is

the following: Does the expert know that DM does not act upon Zt but upon Wt? To this end

there are three possibilities: (1) The expert (being a true expert) knows DM�s preferential error

right from the start. In such a case, the e¤ects of DM�s error on the actual generation process

of �Yt+1 are relatively simple to analyze: The probabilistic properties of �Yt+1 do not depend

on the probabilistic properties of the stochastic process fZtg, but rather on those of fWtg : (2)

The expert never realizes that the DM adopts Wt and erroneously believes that DM acts on Zt:

In this case, the actual distribution of �Yt+1 will be di¤erent than the one in the expert�s mind,

which in turn implies that the expert is never the bearer of the objective chance. (3) The expert

initially believes that DM acts on Zt; but he endorses a learning process, in the context of which he

repeatedly compares the realized values of�Yt+1 with those implied by his model. Interestingly, we

show that the resulting asymptotic distribution of �Yt+1 does not coincide to that in the expert�s

mind, since there is a non-zero bias that survives even asymptotically, which has important policy

implications.

The paper is organized as follows: Section 3, de�nes our basic model that examines the inter-

actions among the involved agents, in the benchmark case where there is neither def nor pref .

Section 4 introduces pref , which means that the expert will produce his forecasts on �Yt+1 by

means of a misspeci�ed model which integrates sociental preferences instead of DM�s actual pref-

erences. In this section we assume that the expert never learns about his speci�cation error (no

learning mechanism exists), which in turn implies that the expert ends up having a subjective

probability of �Yt+1 di¤erent than the objective one (the expert is not the bearer of objective

chance). Section 4.1 relaxes the no-learning assumption and derives the asymptotic distribution

of �Yt+1 under recursive Ordinary Least Squares (OLS) learning. An interesting feature of this

case is that the forecast error committed by the expert never goes to zero. However, even under

the aforementioned asymptotic bias, the stochastic process f�Yt+1g converges-in-law. Section 5

gives a brief description of how def can be introduced in the model, together with its potential

interactions with pref and their combined e¤ects on the probabilistic properties of f�Yt+1g : Sec-

tion 6 summarizes the main �ndings, concludes the paper and draws lines for future research. The

technical details are in the Appendix.
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3 The Basic Model

The basic model (benchmark case) is de�ned by the following assumptions: (i) DM is interested

in experts�point forecasts (conditional expectations) rather than their views about the complete

distribution of �Yt+1. (ii) DM is assumed to be "projectivist", who always (i.e. for each t) acts

in such a way as to bring the actual Yt+1 in line with the level Y �t;t+1 designated by society at t as

optimal for t+1. (iii) DM acts upon Zt, which means that DM�s perception about the optimal level

Yt+1 coincides with that of the society. In such a case, her projectivist attitude can be ful�lled.

(iv) There is only one expert who knows the structural form of the statistical model describing the

probabilistic properties of f�Yt+1g, as well as the true values of the model�s structural parameters.

As a byproduct assumptions (iii) and (iv), the expert knows that DM acts on the basis of Z.

Obviously, in our benchmark case, there is neither def nor pref . As such, this case is equivalent

to the basic case of Baillon, Cabantous and Wakker (2012) (referred to as the "source risk")

according to which "both agents are Bayesian and agree with each other (and everyone else). This

is the common case of generally accepted objective probabilities, with no ambiguity involved"

(pp.116). However, the aforementioned authors do not allow for any interactions between DM

and the expert: "We also assume that there is no interaction between the agents themselves, or

between the agents and the decision maker, so that no group process is involved." (pp. 116). On

the contrary, our model not only allows for such interactions, but makes them our central topic of

research.

Let us begin with introducing some basic concepts and notation. Assume that Et(Yt+1) denotes

the DM�s forecast today for the actual level of Y at t + 1, whereas Y �t (a simpli�ed notation for

Y �t;t+1) stands for the level of Y that the society at t thinks of as optimal (or desired) at t + 1.

As already mentioned, DM is supposed to act in line with society�s preferences. This implies that

whenever Et(Yt+1) > Y �t (Et(Yt+1) < Y �t ) DM acts in such a way as to produce a negative (positive)

actual change �Yt+1: As far as Y �t is concerned, we assume that it is the sum of the actual Yt

and another variable Zt, with the latter representing society�s preferences at t for the next period�s

value of Y , i.e.

Y �t = Yt + Zt (1)

If Zt > 0 (Zt < 0); the society prefers (at t) a higher (lower) value of Yt+1 than the one that

currently prevails (namely Yt): Let �Z = E(Zt) and �
2
Z = V (Zt): The more frequently the society�s

targets change over time, the larger the value of �2Z :What are the reasons that cause the society to

change the desired level of Y over time? One important such reason may be a change in the society�s

perception/understanding about the e¤ects of GHG emissions on social welfare. For example, if
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the society becomes more environmentally aware, translating in the belief that a marginal change

on GHG emissions will produce higher social welfare losses, then the society will prefer a lower

future level of Y . As McKitrick (2014) puts it: "In a low-sensitivity model, GHG (greenhouse

gases) emissions lead only to minor changes in temperature, so the socioeconomic costs associated

with the emissions are minimal. In a high-sensitivity model, large temperature changes would

occur, so marginal economic damages of CO2 emissions are larger." (pp. 1).

DM adopts society�s target Zt and since she is supposed to act in the best interests of the

society, (Et(Yt+1) � Y �t ) enters as a causal factor in the determination of �Yt+1 with a negative

coe¢ cient. We may refer to this factor as the "human" factor. In addition, there is a physical

variable (assumed to be exogenous in the standard sense) Xt+1; a¤ecting �Yt+1; which may be

referred to as the "physical" factor. Bringing these two factors together results in the following

equation,

�Yt+1 = Yt+1 � Yt = �(Et(Yt+1)� Y �t ) + �Xt+1; (2)

The structural parameters � and � are assumed to be time invariant. With respect to � (key

parameter in the ensuing analysis) we assume �1 < � < 0 in order to capture DM�s socially-

sensitive behavior. Concerning the exogenous variable, we assume for simplicity that Xt is a

Gaussian IID process with zero mean,

Xt � NIID(0; �2X): (3)

Under the assumptions made thus far, (2) becomes

�Yt+1 = �(Et(�Yt+1)� Zt) + �Xt+1 (4)

As far as the experts are concerned, we assume that there is only one expert who knows the

structural model given by equations, (1), (2) and (3) together with the value of the parameter

vector � = [�; �; �Z ; �
2
Z ; �

2
X ]. This means that the expert (at t) speci�es in his model the same

variable Zt that DM adopts (no pref). Furthermore, we assume that DM always defers to expert�s

point forecast, Et(�Yt+1); and the expert is aware of this fact (no def). Below we summarize

the policy implications under the benchmark case. Section 1 in Appendix provides the technical

details.

Implication i : If the society desires, on average, a positive (negative) change in next period�s

level of emissions, this desire will be translated (via DM�s actions) into an actual average positive

(negative) change in emissions.
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Implication ii : The human involvement in the generation process of Yt+1 always results in an

increase in the variability of �Yt+1 (compared to the case where the DM�s and society�s involvment

is absent). Put di¤erently, even if the society (almost) always desires a lower level of next period�s

emissions (that is Zt < 0); the DM�s actions to achieve this target will produce an increase in the

volatility of the actual changes in emissions, compared to the cases that (i) DM is inactive (� = 0)

or (ii) DM is active (� 6= 0) but the society does not change its preferences over time (Zt = 0).

Implication iii : Given that the society prefers a negative (�Z < 0) (positive �Z > 0) change in

GHG emissions, the more radical the DM (a decreases) is in terms of her policy actions towards

the satisfaction of social preferences (e.g. rather than regulating GHG emissions, DM decides to

adopt a fully renewable energy production model), the bigger the negative (positive) change in the

actual GHG emissions �Yt+1: As far as the variance of GHG emissions is concerned, there is no

ambiguity: the more radical the DM, the higher the increase in the variance of �Yt+1; irrespective

of the preferences of the society. The aforementioned discussion bears some interesting policy

implications regarding the degree of DM�s radicality on "tail risks" (that is, the probability of

realization of a very large change in Yt+1). Consider the case in which �Z < 0; that is the case

in which the society exhibits aversion to emissions. The probability of observing larger values,

given on the one hand, that the mean of the distribution of �Yt+1 is shifted to the left and on the

other, that the variance increases, could either increase or decrease, depending on the distribution of

�Yt+1. Under the normality assumption (3), however, the aforementioned ambiguity is eliminated:

the probability of observing positive changes in GHG emissions decreases as the DM becomes more

radical (a decreases). The graph below, depicts the probability of the event E = f�Yt+1 > 0g as

a function of � assuming, without loss of generality, that �Z = �0:5; �2Z = � = �2X = 1 :

Figure 1: P (E) as a function of �
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4 Introducing Preferential Ambiguity

In this Section we introduce pref and investigate its e¤ects on the interaction among the agents

involved and the resulting change in GHG emissions. In doing so, we retain the �rst two assump-

tions of the foregoing benchmark case and replace (iii) and (iv), with (iiia) and (iva), respectively:

(iiia) DM acts upon Wt rather than Zt: She may or may not know Zt; while her decision to act

on Wt is not necessarily a strategic act towards the full�lment of her own self-interest/agenta. As

Tunney and Ziegler (2015) remark, "surrogate decision makers may not have as their goal to match

the wishes of the recipient, but instead to make what they perceive to be an optimal or benevolent

decision." (2015, pp 884). (iva) The unique expert knows all the features of the structural form

of the model of f�Yt+1g, except fo the fact that DM employs Wt instead of Zt: This means that

the expert will produce his forecasts of �Yt+1 by means of a misspeci�ed model, which includes

the wrong variable Zt instead of the true one, Wt: We also assume that the expert never learns

about his speci�cation error, which in turn implies that the expert ends up having a subjective

probability of �Yt+1 di¤erent than the objective one (the expert is not the bearer of objective

chance). Below we summarize the policy implications under the case of pref , while Section 2 in

Appendix provides the technical details.

Implication i : There are cases in which DM�s focusing on W instead of Z; that is her "deviant

behavior", results in signi�cant shifts in the unconditional distribution of Yt+1, which in turn may

prove bene�cial for the society in the future. Under a certain technical condition (see Appendix

(10)), DM�s actions shift the unconditional distribution to the left, thus reducing the probability

of an extremely large value of �Yt+1 (tail event) in the future. This may be interpreted as the

result of DM�s benevolent behavior who acts on the basis of what the society should prefer at t

(normative stance) rather than what the society does prefer at t (descriptive stance).

Implication ii: A similar observation can be made with respect to the unconditional variance.

Under certain technical conditions (see Appendix (11)), the variance in the case with pref; is

smaller than that in the benchmark case. In other words, under (11), pref decreases the uncon-

ditional variance, in comparison to the case of no pref: The human involvement in the regulation

of Yt always results in an increase in the variability of �Yt+1, compared to the case of no such

involvement.

Implication iii : The case in which DM focuses on W instead of Z with a time-invariant policy

reaction (i.e. constant parameter �) is equivalent to the case of a DM focusing on Z with a time-

varying policy reaction (i.e. time-varying parameter t): This means that DM does not have to

exhibit "deviant behavior" in order to achieve her goals. The latter may be equivalently achieved if
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DM exhibits "politically correct" behavior combined with a speci�c time-varying degree of policy

reaction.

4.1 Introducing Learning

Let us now assume that the expert, utilizes the information that is being accumulated over time,

to update his model by repeatedly comparing the realized values of �Yt+1 to those implied by his

model. Below we mention the policy implication under the pref case with learning, while Section

3 in Appendix provides the technical details.3

Implication: For each t; the objective distribution of �Yt+1 does not coincide to the corre-

sponding subjective distribution of the expert. Speci�cally, for each t; the di¤erence between the

objective conditional mean and the subjective conditional mean of �Yt+1 is, in general, di¤erent

from 0. As a result, there exists a non-zero bias at each point t. The important question is whether

this error asymptotically vanishes. The answer to this question is, in general, negative. This means

that in spite of the learning process, the expert never achieves a full understanding of the situation,

thus committing a forecast error even asymptotically.

5 Introducing Deferential Ambiguity

Let us now introduce a second expert who (initially or permanently) disagrees with the �rst re-

garding the values of the structural parameters, �; of the true model. More speci�cally, we assume

that both experts know the true structural form of the model (including the DM�s preference

variable Z) but take di¤erent views on the values of its parameters, with none of these experts

knowing the true value of �: This case corresponds to the so-called "con�ict ambiguity" in Bail-

lon, Cabantous and Wakker (2012): "For the second source of uncertainty, each agent alone fully

satis�es Bayesianism, with a precise probability judgment. However, the two agents give di¤erent

judgments, generating ambiguity for the decision maker aggregating their beliefs. This source of

uncertainty, which is characterized by between-agent ambiguity (heterogeneous beliefs), is called

con�ict (C-)ambiguity in this paper." (pp. 117). As already mentioned, this type of ambiguity

does not a¤ect exclusively DM; instead because of the endogeneity of DM�s forecasts, con�ict am-

biguity produces a "boomerang e¤ect" by injecting this ambiguity back into the process of forecast

formation by the experts. Each expert does not know at each point in time whether DM will defer

to him or his competitor. Hence each expert should account for this ambiguity by introducing it

3 In Section 4 in Appendix we derive a formula for the unconditional variance that ecompases the benchmark,
the pref with no learning and the pref with learning cases.
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explicitly into his model for the generation of Yt+1: Below we summarize the policy implications

under the def case, while Section 5 in Appendix provides the technical details.

Implication i: If the society desires, on average, a positive (negative) change in next period�s

level of emissions, this desire will be translated (via DM�s actions) into an actual average positive

(negative) change in emissions, as in the benchmark case. This implication suggests that the

existence of def does not a¤ect the result that the society will end up with a change in GHG

emissions that it prefers.

Implication ii: If both experts assume that DM is more radical that she actually is (a more

negative a), the unconditional variance of the change in GHG emissions will always be smaller

than in the benchmark case. In particular, in such a case, the experts�forecasts will be suggesting

smaller changes in the GHG emissions and therefore, the DM will take less radical/fewer actions,

which reduces the unconditional variance of �Yt+1. If the two experts disagree on the DM�s degree

of radicalness and in particular the �rst (second) expert assumes that the DM�s actions will be

more (less) radical, while the other believes that she is less radical, the unconditional variance will

be larger when the probability of deference to the �rst expert is small enough (see Appendix (14)).

If both experts assume that DM will be less radical than she actually is, then the unconditional

variance of the change in GHG emissions in the def case of two experts, will always be larger than

in the benchmark case.

6 Conclusions

This is the �rst paper, to the best of our knowledge, that introduces ambiguity that derives from the

interaction among the di¤erent agents relevant in climate change regulation. The salient features

of our approach are the following: (i) Ambiguity is an epistemic state which characterizes not

only DM but the scienti�c experts as well. We distinguish between preferential ambiguity, which

is de�ned as the expert�s uncertainty about DM�s preference variables and deferential ambiguity,

which arises in the case of multiple experts. Deferential ambiguity may be born by both DM and

the experts and stems from the potential di¢ culty of DM to decide which of the experts should refer

to. (ii) DM�s ambiguity does not a¤ect the formation of her prior probability function (which is the

standard assumption in the ambiguity aversion literature). Instead, it a¤ects the formation of DM�s

posterior distribution, in the sense that DM is uncertain about the piece of information that she

should condition upon. As a result, DM�s ambiguity is compatible with probabilistic sophistication.

(iii) Both types of ambiguity have signi�cant e¤ects on the probabilistic properties of environmental

policy variables. With respect to the policy relevant question of whether these types of ambiguity

12



increase the probability of a "tail event" (i.e. extreme changes in GHG emissions), we show

that the answer to this question depends on the probabilsitic properties of DM�s adherence to

the social preferences, on the extent to which the expert(s) learns from experience, on how DM

combines experts�information and on the pattern of interaction between preferential and deferential

ambiguity.

13



7 Appendix

7.1 Section 3 - Technical Details

Taking expectations on both sides of (4), we get Et(�Yt+1) = � �
1��Zt and therefore �Yt+1 =

� �
1��Zt + �Xt+1: The conditional distribution of �Yt+1 is

�Yt+1 j Ft � N
�
� �

1� �Zt; �
2�2X

�
;

where Ft represents the information until t: The corresponding unconditional distribution is

�Yt+1 � N
 
� �

1� ��Z ;
�

�

1� �

�2
�2Z + �

2�2X

!
: (5)

Comments on the Implications

(i) Since the coe¢ cient � �
1�� is always positive, the unconditional mean of �Yt+1 is positive

(negative) whenever the mean, �Z ; of Z is positive (negative), i.e., on average, a positive (negative)

change in next period�s level of emissions, this desire will be translated (via DM�s actions) into an

actual average positive (negative) change in emissions.

(ii) The increase in the variability of �Yt+1 in the case where a 6= 0 and Zt 6= 0 (i.e. the case

with human involvement), is equal to
�

�
1��

�2
�2Z .

7.2 Section 4 - Technical Details

DM acts upon her own preference variableW rather than that of the society, i.e. DM�s and society�s

preferences are not aligned. Concerning W , let �W = E(Wt), �2W = V (Wt), corr(Wt; Zt) = �WZ

and corr(Wt; Xt+1) = 0: As a result, (2) becomes

�Yt+1 = �(Et(�Yt+1)�Wt) + �Xt+1 (6)

The expert fails to recognize the discrepancy between DM�s and society�s preferences. Hence,

he believes that the law of motion of Yt+1 is given by �Yt+1 = �(Et(�Yt+1) � Zt) + �Xt+1: He

also believes (correctly) that Et(Yt+1) = Et(Yt+1) i.e. there is no def . In this case, the expert�s

subjective conditional distribution (the one perceived by the expert as true) is given by

�Yt+1 j Ft � N
�
� �

1� �Zt; �
2�2X

�
(7)

Since DM always defers to the expert, it follows that �Yt+1 = � �2

1��Zt � �Wt + �Xt+1: The
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objective conditional distribution of �Yt+1 is

�Yt+1 j Ft�1 � N
�
�a
�

�

1� �Zt +Wt

�
; �2�2X

�
; (8)

whereas, the corresponding objective unconditional distribution is

�Yt+1 � N
 
��

�
�

1� ��Z + �W
�
;

�
�2

1� �

�2
�2Z + �

2�2W + �2�2X + 2
�3

1� ��WZ�W�Z

!
: (9)

Comments on the Implications

(i) If

�W < � �

1� ��Z ; (10)

then DM�s actions shift the unconditional distribution to the left, thus reducing the probability of

an extremely large value of �Yt+1 (tail event) in the future.

(ii) If

�Z > �W and �WZ >
(1 + �)�2Z � (1� �)�2W

2��W�Z
; (11)

the variance in (9) is smaller than that in (5).

(iii) The case in which DM focuses on W instead of Z with a time-invariant reaction parameter

� is equivalent to the case of a DM focusing on Z with a time-varying reaction parameter t:

Proof of Comment (iii): We want to �nd a process ftg such that � (Et(�Yt+1)�Wt) +

�Xt+1 = t (Et(�Yt+1)� Zt) + �Xt+1: Solving for t; we get

t =
� (Et(�Yt+1)�Wt)

Et(�Yt+1)� Zt

De�ne �t =
Wt

Zt
: Since Et(�Yt+1) = � �

1��Zt the above equation becomes

t =
�
�
� �
1��Zt � �tZt

�
� �
1��Zt � Zt

and as a result, t = a
2 + �t (1� �) :

7.3 Section 4.1 - Technical Details

Retaining the assumption that the expert fails to observe the discrepancy between DM�s and

society�s preferences, the only possible form of learning, is "parameter updating". Let the perceived
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(by the expert) law of motion (PLM) be

�Yt+1 = AZt + ut+1 (12)

where A is the parameter that the expert tries to estimate and ut+1 is a Gaussian IID process with

zero mean. PLM is the reduced form model that the expert has in his mind when communicating

his forecasts of �Yt+1; i.e. Et(�Yt+1); to the expert: To update the parameter A, he applies the

recursive least squares (RLS) to (12). This methodology produces an estimate Ât for each time t;

which minimizes the mean squared error, namely E (�Yt � Et�1(�Yt))2 :

Recursive Least Squares: The least squares estimate is

At =

 
tX

s=1

Z2s�1

!�1 tX
s=1

Zs�1�Ys

!

More conveniently, the least squares estimates may be written in a recursive manner as

At = At�1 + t
�1R�1t Zt�1(�Yt �At�1Zt�1)

Rt = Rt�1 + t
�1(Z2t�1 �Rt�1)

where Rt = t�1
�Pt

s=1 Z
2
s�1

�
: The objective is to �nd the asymptotic value of At, denoted by A�;

and the conditions that lead to At ! A�?

The expert�s forecast of �Yt at time t� 1, is given by Et�1(�Yt) = At�1Zt�1; which under (6)

yields

�Yt = � (At�1Zt�1 �Wt�1) + �Xt:

Hence, the RLS system can be written as

�t = �t�1 + t
�1R�1t Zt�1((�� 1)At�1Zt�1 � �Wt�1 + �Xt)

Rt = Rt�1 + t
�1(zt�1z

0
t�1 �Rt�1)

In order to apply the standard convergence results of stochastic recursive algorithms, we need to

set St�1 = Rt; in order for the term R�1t in the lhs of the �rst equation to be a lagged variable:

�t = �t�1 + t
�1S�1t�1Zt�1((�� 1)At�1Zt�1 � �Wt�1 + �Xt)

St = St�1 + t
�1
�

t

t+ 1

�
(Z2t � St�1):
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The associated ordinary di¤erential equation (ODE) that governs stability of the system above is

d�

d�
= h(�) = lim

t!1
E (Q (t;�; zt))

where � = (A;S)
0
; zt = (Zt�1;Wt�1; Xt) and E denotes the expectation of Q (t;�; zt) taken over

the invariant distribution of zt, for �xed �:Q (t;�; zt) is derived by the RLS system and is de�ned

as

Q (t;�; zt) =

�
S�1Zt�1((�� 1)AZt�1 � �Wt�1 + �Xt)�

t
t+1

�
(Z2t � S)

�

It follows that

h�(�) = lim
t!1

E
�
S�1Zt�1((�� 1)AZt�1 � �Wt�1 + �Xt)

�
hS(�) = lim

t!1

�
t

t+ 1

�
E(Z2t � S) =

�
�2Z + �

2
Z

�
� S

The second relationship gives S !
�
�2Z + �

2
Z

�
; and therefore,

h�(�) = lim
t!1

E
��
�2Z + �

2
Z

��1
Zt�1((�� 1)AZt�1 � �Wt�1 + �Xt)

�
=

= (�� 1)A� �
�
�2Z + �

2
Z

��1
(�WZ�W�Z + �Z�W ) (13)

The ODE (13) gives the system

_A = (�� 1)A� �
�
�2Z + �

2
Z

��1
(�WZ�W�Z + �Z�W )

whose solution is given by

A� = � �

1� �
�WZ�W�Z + �Z�W

�2Z + �
2
Z

The convergence to A� is convergence in probability, i.e. 8" > 0; limt!1 P (jAt �A�j � ") = 0.

The E-stability amounts to the condition � < 1; which holds by assumption. Therefore, with

probability 1, the system will converge to the equilibrium, irrespective of the initial estimations

A0. Hence, asymptotically, the expert�s view on A will settle down on A� (which is di¤erent than

� �
1�� ). The asymptotic objective conditional distribution of �Yt+1 is

�Yt+1 j Ft�1 � N
�
a (A�Zt �Wt) ; �

2�2X
�
;
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whereas, the corresponding objective unconditional distribution is

�Yt+1 � N
�
a (A��Z � �W ) ; (�A�)

2
�2Z + �

2�2W + �2�2X � 2�2A��WZ�W�Z

�
:

Comments on the Implications

(i) For each t; the di¤erence between the objective conditional mean and the subjective condi-

tional mean of �Yt+1 is given by (a� 1)AtZt � �Wt; which, in general, is di¤erent from 0. The

corresponding di¤erence in the asymptotic means is �
�
�WZ�W�Z+�Z�W

�2Z+�
2
Z

�Z � �W
�
; which is zero

i¤ �WZ =
�W�Z
�Z�W

. Therefore, the expert commits a forecast error even asymptotically.

(ii) The asymptotic parameter A� can be decomposed in two terms: � �
1�� and

�WZ�W�Z+�Z�W
�2Z+�

2
Z

:

The second term may be thought of as an "adjustment factor" that captures the e¤ects of learning.

Speci�cally, in the no-learning case the expert is always under the impression that the coe¢ cient of

Zt is � �
1�� (7) whereas under learning he ends up believing that this coe¢ cient is A

�: As expected,

when Wt � Zt; the second term is equal to 1 and, A� collapses to � �
1�� , that is the coe¢ cient of

the benchmark case.

7.4 Comparison of Variances in Sections 3 & 4

The unconditional variance for all the above cases can be written in a eneral form as

�2

"�
�

1� �R�Z + �W
�2
� 2 �

1� �R (1� �WZ)�Z�W

#
+ �2�2X

To arrive at the �rst case, we have that R = �WZ = 1; �W = �Z : For the second case, we need

R = 1 and the third R = �WZ�W�Z+�Z�W
�2Z+�

2
Z

: Note that the unconditional variance is increasing

(decreasing) in R if R > (<)� 1�a
�

�W
�Z
�WZ :

7.5 Section 5 - Technical Details

The assumptions that we make are the following: (i) DM adopts Zt (rather than Wt) at t (there

is no preferential ambiguity). (ii) There are two experts who believe that the structural model is

given by equations, (1), (2) and (3). The two experts agree on �Z ; �
2
Z ; �

2
X but disagree on � and �:

Hence, the agent i�s epistemic state is represented by �i = [�i; �i; �Z ; �
2
Z ; �

2
X ], i = 1; 2:Without loss

of generality, assume that �2 > �1: (iii) The objective probability that DM at t defers to expert�s

i point forecast, Eit(�Yt+1); is pi. (iv) DM combines experts forecasts by means of a linear pool

using p1 and p2 as weights. (v) Both experts know the objective deferential probabilities p1 and

p2 as well as DM�s aggregation rule.
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Under the foregoing assumptions, we get Eit(�Yt+1) = � �i
1��iZt: Now the actual law of motion

becomes �Yt+1 = ��(p �1
1��1 + (1� p)

�2
1��2 + 1)Zt + �Xt+1: The conditional distribution is

�Yt+1 j Ft�1 � N
�
��

�
p
�1

1� �1
+ (1� p) �2

1� �2
+ 1

�
Zt; �

2�2X

�
:

The unconditional distribution is

�Yt+1 � N
 
��

�
p
�1

1� �1
+ (1� p) �2

1� �2
+ 1

�
�Z ;

�
�

�
p
�1

1� �1
+ (1� p) �2

1� �2
+ 1

��2
�2Z + �

2�2X

!
:

Comments

(i) Since the coe¢ cient �� is always positive, the unconditional mean of �Yt+1 will always be

positive (negative) whenever the mean, �Z ; of Z is positive (negative).

(ii) If �1; �2 < �; the unconditional variance is always smaller than in the benchmark case,

since their opinions will be closer to the "no action" case. Speci�cally, the term Et�1(Yt)� Y �t�1 =

Et�1(�Yt) � Zt�1 is closer to 0, i.e. the "no action" case. As a result, the DM will take fewer

actions, which reduces the unconditional variance. If �1 < � < �2; i.e. the �rst (second) expert

assumes that the DM�s actions will be more (less) signi�cant, the unconditional variance will be

larger when

p <
(1� �1) (�2 � �)
(�2 � �1) (1� �)

: (14)

If � < �1 < �2, then the unconditional variance in the case of two experts will always be larger.
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