

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ SCHOOL OF BUSINESS

An adaptive memory matheuristic for the SOP

Dontas Michael, mdontas@aueb.gr Sideris Georgios, geosideris@aueb.gr Manousakis Eleftherios, Imanousakis@aueb.gr Zachariadis Emmanouil, ezach@aueb.gr

Department of Management Science and Technology, Athens University of Economics and Business

EURO 2022, Espoo Finland, 3 - 6 July

Presentation Outline

01 **The Set Orienteering Problem**

02 **AMMH Algorithm**

03

Computational Results

O1 The Set Orienteering Problem

Problem Description

Objective: Maximize the profit of visited clusters

- **Single** vehicle routing.
- Each customer is associated with a **profit** value and is part of a set of customers (cluster).
- Route length cannot exceed a specified time limit (Tmax).
- It takes only one customer visit to collect the total profit associated with the cluster.
- Route must start from depot and return back to it.

Problem Visualization

Visualization - Random Dataset

Feasible Solution

Practical Application

02 The AMMH Algorithm

Overall Scheme

Algorithm 1 Overall Scheme

1: $S \leftarrow ConstructInitialSol(), S^* \leftarrow \emptyset \longrightarrow$ Initial Solution Construction 2: for $r \leftarrow 1$ to RESTARTS do 3: $S \leftarrow LocalSearch(S)$ \longrightarrow Neighborhood Exploration 4: if $Z(S) > Z(S^*)$ then 5: $S^* \leftarrow S$ 6: end if $S \leftarrow SR-2()$ 7: 8: end for 9: return S^*

Solution Reconstruction

Solution Construction Algorithm

Solution Construction

Algorithm 2 ConstructInitialSol

```
1: S_{unvisited} \leftarrow P, S \leftarrow [depot, depot]
 2: do
        feasible\_insertions \leftarrow []
 3:
        for set in S_{unvisited} do
 4:
            for node in set do
 5:
                for pos \leftarrow 1 to |S| - 1 do
 6:
                   c \leftarrow CalculateCost(node, S, pos)
 7:
                   if C(S) + c \le t_{-max} then
 8:
                       feasible_insertions.Insert([node, set, pos, c])
 9:
                   end if
10:
                end for
11:
            end for
12:
        end for
13:
        if |feasible_insertions| > 0 then
14:
            OrderDescending(feasible_insertions, Z)
15:
            selected\_move \leftarrow SelectRandom(feasible\_insertions, l)
16:
            UpdateSolution(S, selected_move)
17:
            S_{unvisited}. Remove (selected_move[1])
18:
        end if
19:
20: while |feasible_insertions| > 0
21: return S
```

Minimum Inertions logic Criterion: added_profit/added_cost Use of Restricted Candidate List

01 02

Neighborhood Exploration

- **Operators**
- **Tabu Policy**
- 03
- Intensification procedure

01 Ope 02 Tabu

03

Neighborhood Exploration

- Operators
 - 2
- **Tabu Policy**
 - 3
- Intensification procedure

Local Search Operators

Outer Insertion

Introduce a node into the solution

Inner Relocation

Move an inner node to a new position in the solution.

In-Out Swap

Interchange between an outer and an inner node

Customer Removal

Remove a node from the solution

Selection criterion: M*profit + cost

01 02 03

Neighborhood Exploration

- **Operators**
- **Tabu Policy**
- Intensification procedure

Tabu policy - Promises

Promises-based policy is a variation of the Tabu Search

Whenever a **set** is removed from the solution, a new promise is defined - equal to the solution's **objective**. **Restriction:** The set will be re-accessible to the operators **only** if current solution's objective is greater than the promise.

Promises are reinitialized after a certain number of iterations.

01 02

Neighborhood Exploration

- **Operators**
- **Tabu Policy**
- 03
- Intensification procedure

Intensification Procedure

Basic Intuition

In depth exploration of high quality regions, by applying exact and powerful heuristic methods.

Aim

Improvement of elite or promising solutions.

Intensification Procedure - Outline

Customer Insertion-Deletion (CID)

Optimal insertions-deletions

Shortest Path Problem

Optimal node selection given set sequence

TSP Heuristic

Optimal set sequence given node selection

Profit Increase

Cost Reduction

Customer Insertion-Deletion (CID)

Parameters

i: max number of insertions d: max number of deletions

Process

Solve the problem of simultaneous insertions and deletions to optimality, aiming at profit maximization.

Matheuristic Method

Suitable Algorithms

- Bellman-Ford O(VE)
- Dijkstra O(E+VlogV)
- Directed Acyclic Graph Shortest Path

(using Topological Sorting) - O(V+E)

Enhanced Solution

Heuristic: Lin-Kernighan-Helsgaun Solver

- Very effective heuristic capable of solving to optimality problems with up to a million nodes
- For the problem scale of our test cases a few hundreds of nodes - LKH usually obtains the optimal solutions very fast (less than a CPU second)

TSP heuristic

TSP heuristic

Enhanced Solution

Intensification Procedure - Outline

Customer Insertion-Deletion (CID)

Optimal insertions-deletions

Shortest Path Problem

Optimal node selection given set sequence

TSP Heuristic

Optimal set sequence given node selection

Profit Increase

Cost Reduction

Intensification Procedure

When is it executed?

- When a **new best** solution is found.
- When the gap between the current and the best solution is smaller than a threshold g.
- When promises are reinitialized.

Overall Scheme

Algorithm 1 Overall Scheme

1: $S \leftarrow ConstructInitialSol(), S^* \leftarrow \emptyset \longrightarrow$ Initial Solution Construction 2: for $r \leftarrow 1$ to RESTARTS do 3: $S \leftarrow LocalSearch(S)$ \longrightarrow Neighborhood Exploration 4: if $Z(S) > Z(S^*)$ then 5: $S^* \leftarrow S$ 6: end if $S \leftarrow SR-2()$ 7: 8: end for 9: return S^*

Solution Reconstruction

Solution Reconstruction

Adaptive Logic

- The algorithm uses a memory-based structure that takes advantage of previous Local Search states.
- This structure is a pool of high quality solutions.
- These solutions are stored during the Local Search iterations and are used in the **Solution Reconstrucion** stage.

Adaptive Logic

Solution Pool: A collection of elite solutions, sorted by their value of the objective function.

The decision of whether a solution will be inserted to the Pool depends on:

- The objective of the solution
- The non-violation of an upper similarity bound with the solutions currently present in the Pool.

Goal: Discovery of features that distinguish high quality solutions.

Solution Reconstruction

- The exploitation of Pool solutions begins with the extraction of frequent chains of nodes.
- Chains: sequences of 3 to 6 nodes
- The most frequently appearing node chains are encountered applying a pattern matching procedure.

Solution Pool

Sol 1: 0 -> 49 -> 89 -> 30 -> 103 -> 67 -> 22 -> 66 -> 42 -> 96 -> 109 -> 48 -> 32 -> 130 -> 16 -> 84 -> 45 -> 81 -> 31 -> 104 -> 82 -> 90 -> 6 -> 105 -> 72 -> 76 -> 37 -> 40 -> 97 -> 15 -> 54 -> 108 -> 64 -> 41 -> 123 -> 63 -> 17 -> 99 -> 29 -> 73 -> 125 -> 115 -> 10 -> 92 -> 0

Sol 2: 0 -> 5 -> 89 -> 30 -> 103 -> 67 -> 22 -> 66 -> 42 -> 96 -> 109 -> 48 -> 32 -> 130 -> 16 -> 127 -> 50 -> 55 -> 82 -> 27 -> 90 -> 6 -> 86 -> 43 -> 105 -> 72 -> 85 -> 19 -> 113 -> 40 -> 97 -> 15 -> 54 -> 108 -> 64 -> 41 -> 123 -> 17 -> 99 -> 73 -> 125 -> 115 -> 10 -> 92 -> 0

Sol 3: 0 -> 49 -> 89 -> 30 -> 103 -> 67 -> 22 -> 66 -> 42 -> 96 -> 109 -> 48 -> 32 -> 130 -> 16 -> 127 -> 50 -> 55 -> 82 -> 27 -> 90 -> 6 -> 105 -> 72 -> 76 -> 37 -> 113 -> 40 -> 97 -> 15 -> 54 -> 108 -> 64 -> 41 -> 123 -> 63 -> 17 -> 99 -> 29 -> 125 -> 73 -> 115 -> 10 -> 92 -> 0

Solution Pool

Sol 1: 0 -> 49 -> 89 -> 30 -> 103 -> 67 -> 22 -> 66 -> 42 -> 96 -> 109 -> 48 -> 32 -> 130 -> 16 -> 84 -> 45 -> 81 -> 31 -> 104 -> 82 -> 90 -> 6 -> 105 -> 72 -> 76 -> 37 -> 40 -> 97 -> 15 -> 54 -> 108 -> 64 -> 41 -> 123 -> 63 -> 17 -> 99 -> 29 -> 73 -> 125 -> 115 -> 10 -> 92 -> 0

Sol 2: 0 -> 5 -> 89 -> 30 -> 103 -> 67 -> 22 -> 66 -> 42 -> 96 -> 109 -> 48 -> 32 -> 130 -> 16 -> 127 -> 50 -> 55 -> 82 -> 27 -> 90 -> 6 -> 86 -> 43 -> 105 -> 72 -> 85 -> 19 -> 113 -> 40 -> 97 -> 15 -> 54 -> 108 -> 64 -> 41 -> 123 -> 17 -> 99 -> 73 -> 125 -> 115 -> 10 -> 92 -> 0

Sol 3: 0 -> 49 -> 89 -> 30 -> 103 -> 67 -> 22 -> 66 -> 42 -> 96 -> 109 -> 48 -> 32 -> 130 -> 16 -> 127 -> 50 -> 55 -> 82 -> 27 -> 90 -> 6 -> 105 -> 72 -> 76 -> 37 -> 113 -> 40 -> 97 -> 15 -> 54 -> 108 -> 64 -> 41 -> 123 -> 63 -> 17 -> 99 -> 29 -> 125 -> 73 -> 115 -> 10 -> 92 -> 0

Sol 1: 0 -> 49 -> 89 -> 30 -> 103 -> 67 -> 22 -> 66 -> 42 -> 96 -> 109 -> 48 -> 32 -> 130 -> 16 -> 84 -> 45 -> 81 -> 31 -> 104 -> 82 -> 90 -> 6 -> 105 -> 72 -> 76 -> 37 -> 40 -> 97 -> 15 -> 54 -> 108 -> 64 -> 41 -> 123 -> 63 -> 17 -> 99 -> 29 -> 73 -> 125 -> 115 -> 10 -> 92 -> 0

sol 2: 0 -> 5 -> 89 -> 30 -> 103 -> 67 -> 22 -> 66 -> 42 -> 96 -> 109 -> 48 -> 32 -> 130 -> 16 -> 127 -> 50 -> 55 -> 82 -> 27 -> 90 -> 6 -> 86 -> 43 -> 105 -> 72 -> 85 -> 19 -> 113 -> 40 -> 97 -> 15 -> 54 -> 108 -> 64 -> 41 -> 123 -> 17 -> 99 -> 73 -> 125 -> 115 -> 10 -> 92 -> 0

sol 3: 0 -> 49 -> 89 -> 30 -> 103 -> 67 -> 22 -> 66 -> 42 -> 96 -> 109 -> 48 -> 32 -> 130 -> 16 -> 127 -> 50 -> 55 -> 82 -> 27 -> 90 -> 6 -> 105 -> 72 -> 76 -> 37 -> 113 -> 40 -> 97 -> 15 -> 54 -> 108 -> 64 -> 41 -> 123 -> 63 -> 17 -> 99 -> 29 -> 125 -> 73 -> 115 -> 10 -> 92 -> 0

Chain frequency: 3

Sol 1: 0 -> 49 -> 89 -> 30 -> 103 -> 67 -> 22 -> 66 -> 42 -> 96 -> 109 -> 48 -> 32 -> 130 -> 16 -> 84 -> 45 -> 81 -> 31 -> 104 -> 82 -> 90 -> 6 -> 105 -> 72 -> 76 -> 37 -> 40 -> 97 -> 15 -> 54 -> 108 -> 64 -> 41 -> 123 -> 63 -> 17 -> 99 -> 29 -> 73 -> 125 -> 115 -> 10 -> 92 -> 0

Sol 2: 0 -> 5 -> 89 -> 30 -> 103 -> 67 -> 22 -> 66 -> 42 -> 96 -> 109 -> 48 -> 32 -> 130 -> 16 -> 127 -> 50 -> 55 -> 82 -> 27 -> 90 -> 6 -> 86 -> 43 -> 105 -> 72 -> 85 -> 19 -> 113 -> 40 -> 97 -> 15 -> 54 -> 108 -> 64 -> 41 -> 123 -> 17 -> 99 -> 73 -> 125 -> 115 -> 10 -> 92 -> 0

Sol 3: 0 -> 49 -> 89 -> 30 -> 103 -> 67 -> 22 -> 66 -> 42 -> 96 -> 109 -> 48 -> 32 -> 130 -> 16 -> 127 -> 50 -> 55 -> 82 -> 27 -> 90 -> 6 -> 105 -> 72 -> 76 -> 37 -> 113 -> 40 -> 97 -> 15 -> 54 -> 108 -> 64 -> 41 -> 123 -> 63 -> 17 -> 99 -> 29 -> 125 -> 73 -> 115 -> 10 -> 92 -> 0

Text Representation

 $\begin{array}{l} 0-49-89-30-103-67-22-66-42-96-109-48-32-130-16-84-45-81-31-104\\ -82-90-6-105-72-76-37-40-97-15-54-108-64-41-123-63-17-99-29-73\\ -125-115-10-92-0-0-5-89-30-103-67-22-66-42-96-109-48-32-130-16\\ -127-50-55-82-27-90-6-86-43-105-72-85-19-113-40-97-15-54-108-6\\ -441-123-17-99-73-125-115-10-92-0-0-49-89-30-103-67-22-66-42-9\\ 6-109-48-32-130-16-127-50-55-82-27-90-6-105-72-76-37-113-40-97\\ -15-54-108-64-41-123-63-17-99-29-125-73-115-10-92-0\end{array}$

Solution Pool

- 0 49 89 30 103 67 22 66 42 96 109 48 32 130 16 84 45 81 31 104

- -15-54-108-64-41-123-63-17-99-29-125-73-115-10-92-0

Input 67-22-66 (string to match)

Process

String matching algorithm (Boyer-Moore-Horspool)

Frequency: 3

Output

-82 - 90 - 6 - 105 - 72 - 76 - 37 - 40 - 97 - 15 - 54 - 108 - 64 - 41 - 123 - 63 - 17 - 99 - 29 - 73-125 - 115 - 10 - 92 - 0 - 0 - 5 - 89 - 30 - 103 - 67 - 22 - 66 - 42 - 96 - 109 - 48 - 32 - 130 - 16-127-50-55-82-27-90-6-86-43-105-72-85-19-113-40-97-15-54-108-6 (Text) 4-41-123-17-99-73-125-115-10-92-0-0-49-89-30-103-67-22-66-42-9 6 - 109 - 48 - 32 - 130 - 16 - 127 - 50 - 55 - 82 - 27 - 90 - 6 - 105 - 72 - 76 - 37 - 113 - 40 - 97

- This procedure is executed for every unique chain of nodes, and those that appear at least twice are collected.
- Out of all accumulated chains, the 50% most frequent sequences are qualified and used at the next stage.
- At the final step, the chosen chains will be employed by the Reconstruction Algorithms.

Reconstrucion Algorithms

SR-1
SR-2
SR-3

Reconstruction Algorithm SR-1

- Exactly same logic as the construction algorithm.
- But, it only takes into account the **nodes** that appear in the top 50% of the most frequent chains.

Reconstruction Algorithm SR-2

- Bin of Tmax capacity.
- Chains are inserted into the bin until it is full.
- The chains are connected to a single sequence.
- TSP heuristic is applied to this sequence.
- Nodes of duplicate sets are serially removed.
- Shortest path algorithm is applied, reducing the cost of the created solution.
- In case of infeasibility, nodes are deleted following a greedy criterion.

Reconstruction Algorithm SR-3

- Minimum Insertions logic
- Insertions are performed at a chain level.
- To do that, a center is assigned to each chain.
- Upper cost bound for the solution is set to
 Tmax' = 1.5 * Tmax.
- A single node of each set is stochastically selected, to be kept into the solution.
- TSP and Shortest Path algorithms are applied.
- In case of infeasibility, nodes are deleted following a greedy criterion.

O3 AMMH Results

Intensification Procedure value

. .

Instance	n	ω	\mathbf{pg}	Diff_{sol}	Diff _{sol.avg}	Diff_{time}
115rat575_RND	575	0.4	g1	0.47	0.24	1.18
115rat575_RND	575	0.6	g1	0.00	0.55	3.25
115u574	574	0.6	g^2	0.69	1.82	1.80
132d657_RND	657	0.4	g^2	0.00	0.65	1.70
132d657	657	0.4	g^2	0.44	1.27	0.35
132d657	657	0.8	g1	1.35	1.36	4.18
145u724	724	0.6	$\mathbf{g2}$	1.20	3.62	0.96
157rat783_RND	783	0.4	$\mathbf{g2}$	1.10	1.37	1.20
157rat783	783	0.6	g^2	1.14	3.55	0.62
157rat783	783	0.8	g1	1.35	1.97	1.33
201pr1002_RND	1002	0.6	g1	0.40	0.71	4.00
201 pr 1002	1002	0.6	$\mathbf{g2}$	1.52	3.86	0.56
212u1060_RND	1060	0.4	g1	0.10	0.62	1.95
212u1060_RND	1060	0.6	$\mathbf{g2}$	0.15	0.16	3.55
212u1060	1060	0.4	g1	-0.37	2.08	0.25
212u1060	1060	0.8	$\mathbf{g1}$	0.90	1.51	2.04
217 vm 1084	1084	0.4	g1	0.45	2.99	-0.08
217 vm 1084	1084	0.6	$\mathbf{g2}$	0.92	4.67	0.81
217 vm 1084	1084	0.8	$\mathbf{g2}$	1.46	1.62	3.08
53gil262_RND	262	0.6	$\mathbf{g2}$	0.00	0.07	12.75
80rd400_RND	400	0.4	$\mathbf{g2}$	0.00	0.54	2.79
80rd400	400	0.8	g1	0.82	0.83	3.97
89pcb442_RND	442	0.4	$\mathbf{g1}$	-0.26	0.00	2.95
89pcb442_RND	442	0.4	$\mathbf{g2}$	0.00	0.26	3.29
99d493	493	0.8	$\mathbf{g2}$	0.63	0.85	7.50
Average				0.58	1.49	2.64

Enhancement of best solution: 0.58% Enhancement of average solution: 1.49% Increase in computational time: 2.64%

SR algorithms comparison

Instance	Best	No pool	SR1	SR2	SR3	
		Gap	Gap	Gap	Gar	
1187rl5934_T40_p1	2953	0.038	0.058	0.000	0.01	
200E1k.0_T80_p1	911	0.001	0.002	0.000	0.00	
235pcb1173_RND_T60_p2	58877	0.028	0.000	0.072	0.00	
259d1291_T40_p2	29520	0.103	0.061	0.111	0.00	
261rl1304_T60_p2	48198	0.005	0.057	0.012	0.00	
265rl1323_T80_p2	61850	0.000	0.139	0.084	0.04	
276nrw1379_RND_T60_p1	1367	0.001	0.001	0.001	0.00	
280fl1400_T40_p1	884	0.000	0.000	0.000	0.00	
287u1432_T60_p1	1052	0.000	0.002	0.001	0.00	
316fl1577_T80_p1	1398	0.001	0.001	0.001	0.00	
331d1655_RND_T40_p2	64684	0.141	0.195	0.259	0.00	
350vm1748_RND_T60_p2	88203	0.000	0.000	0.000	0.00	
364u1817_T80_p2	82443	0.067	0.178	0.109	0.00	
378rl1889_T40_p2	49869	0.821	0.646	0.000	0.33	
421d2103_T60_p1	1410	0.002	0.001	0.000	0.00	
431u2152_T80_p2	96430	0.600	0.587	0.000	0.09	
464u2319_RND_T40_p1	1569	0.007	0.007	0.001	0.00	
479pr2392_RND_T60_p2	120627	0.255	0.125	0.034	0.00	
49usa1097_RND_T40_p1	1096	0.000	0.000	0.000	0.00	
608pcb3038_T80_p1	2709	0.012	0.003	0.000	0.00	
633E3k.0_T40_p1	1578	0.015	0.023	0.000	0.00	
759fl3795_T60_p2	140880	1.908	1.640	0.000	0.22	
893fnl4461_T80_p1	3804	0.001	0.006	0.000	0.00	
Average	-	0.174	0.162	0.030	0.03	

SR2 and SR3 algorithms produced the best results with SR2 being the best.

Summarized final results

Table 3: Algorithms comparison on data set

Clustering Type ω	D97	MASOP		VNS			BRKGA			AMMH					
		w 18	#Bst	t	Gap	#Bst	t	Gap	#Bst	t	Gap	#New	# Bst	t	Gap
0.4 Original 0.6 0.8	0.4	$0.4 \frac{g1}{g2}$	41	73.04	0.18	41	20.9	0.7	41	12.39	0.23	5	48	10.38	0.09
	0.4		36	89.98	0.54	39	20.4	0.8	40	12.57	0.24	7	49	13.61	0.07
	g1	37	45.32	0.24	35	35.2	1.0	36	20.60	0.44	12	51	20.91	0.00	
	g^2	37	51.04	0.15	34	35.2	0.9	39	20.67	0.32	11	50	21.08	0.00	
	0.8	as gl	37	35.66	0.20	34	52.0	0.7	35	28.29	0.64	10	51	22.95	0.00
	g2	37	39.27	0.12	36	52.5	0.6	33	28.30	0.61	11	49	29.85	0.01	
0.4 Random 0.6 0.8	$\mathbf{g1}$	31	97.83	1.29	33	85.8	0.7	34	46.04	1.05	13	51	19.72	0.00	
	g2	31	121.85	0.86	33	87.4	0.8	32	45.78	0.80	16	51	29.90	0.00	
	$\mathbf{g1}$	42	84.48	0.13	35	147.6	0.5	31	64.96	0.76	9	51	27.52	0.00	
	$\mathbf{g}2$	39	84.96	0.17	31	145.3	0.4	31	63.30	0.52	11	50	32.58	0.00	
	0.8	as gl	51	136.21	0.00	51	230.8	0.0	43	69.24	0.07	0	51	21.56	0.00
	$\mathbf{g}2$	51	148.92	0.00	51	233.4	0.0	44	67.78	0.06	0	51	21.36	0.00	
Total/Average			470	84.05	0.32	453	95.52	0.60	439	39.99	0.48	105	603	22.62	0.01

603/612 (98%) best 102/612 (17%) new best

Large Datasets

- The available SOP datasets were relatively small.
- The high efficiency of AMMH even at the largest of them, led us to create new and even bigger datasets.
- The new instances contain up to 3038 nodes and 633 sets.

References

- Angelelli E., Archetti C., Vindigni M. The Clustered Orienteering Problem // European Journal of Operational Research, 2014, 238, 2, 404-414.
- Applegate David, Bixby Ribert, Chvatal Vasek, Cook William. Concorde TSP solver. 2006.
- Archetti Claudia, Carrabs Francesco, Cerulli Raffaele. The Set Orienteering Problem // European Journal of Operational Research. 2018. 267, 1. 264–272.
- Bernardino Raquel, Paias Ana. Solving the family traveling salesman problem // European Journal of Operational Research. 2018. 267, 2. 453-466.
- Boyer Robert S., Moore J. Strother. A Fast String Searching Algorithm // Commun. ACM. X 1977. 20, 10. 762–772.
- Carrabs Francesco. A biased random-key genetic algorithm for the set orienteering problem // European Journal of Operational Research, 2020, 292, 3, 830-854.
- Chao I. Ming, Golden Bruce L., Wasil Edward A. A fast and effective heuristic for the orienteering problem // European Journal of Operational Research. 1996. 88, 3. 475-489.
- Chisman James A. The clustered traveling salesman problem // Computers Operations Research. 1975. 2, 2. 115–119.
- Fischetti Matted, Gonzalez Juan José Salazar, Toth Paolo. Solving the Orienteering Problem through branch-and-cut // INFORMS Journal on Computing. may 1998. 10, 2. 133–148.
- Fischetti Matteo, Salazar González Juan José, Toth Paolo. A Branch-and-Cut Algorithm for the Symmetric Generalized Traveling Salesman Problem // Operations Research, 1997, 45, 3, 378–394.
- Helsgaun Keld. An effective implementation of the Lin-Kernighan traveling salesman heuristic // European Journal of Operational Research. 2000. 126, 1. 106–130.
- Jongens Kees, Volgenant Ton. The symmetric clustered traveling salesman problem // European Journal of Operational Research, 1985, 19, 1, 68-75.
- Ke Liangjun, Zhai Laipeng, Li Jing, Chan Felix T.S. Pareto mimic algorithm: An approach to the team orienteering problem // Omega (United Kingdom). 2016. 61. 155–166.
- Keshtkaran Morteza, Ziarati Koorush. A novel GRASP solution approach for the Orienteering Problem // Journal of Heuristics, 2016, 22,

498 - 516.

816-825.

Research. 2019. 272, 2. 420-429.

797-809.

- Laporte Gilbert, Asef-Vaziri Ardavan, Sriskandarajah Chelliah. Some Applications of the Generalized Travelling Salesman Problem // The Journal of the Operational Research Society. 12 1996. 47.
- Laporte Gilbert, Nobert Yves. Generalized Travelling Salesman Problem Through n Sets of Nodes: An Integer Programming Approach // INFOR Journal. 1983. 21.
- Lin S., Kernighan B. An Effective Heuristic Algorithm for the Traveling-Salesman Problem // Oper. Res. 1973. 21.
- Lokin F.C.J. Procedures for travelling salesman problems with additional constraints // European Journal of Operational Research. 1979. 3, 2. 135–141.
- Morán-Mirabal L.F., González-Velarde J.L., Resende M.G.C. Randomized heuristics for the family traveling salesperson problem // International Transactions in Operational Research. 2014. 21, 1. 41–57.
- Pénička Robert, Faiql Jan, Saska Martin. Variable Neighborhood Search for the Set Orienteering Problem and its application to other Orienteering Problem variants // European Journal of Operational Research. 2019. 276, 3.
- Pop Petrică, Matei Oliviu, Pintea Camelia. A Two-Level Diploid Genetic Based Algorithm for Solving the Family Traveling Salesman Problem // Proceedings of the Genetic and Evolutionary Computation Conference. New York, NY, USA: Association for Computing Machinery, 2018. 340–346. (GECCO '18).
- Repoussis P. P., Tarantilis C. D. Solving the fleet size and mix vehicle routing problem with time windows via adaptive memory programming // Transportation Research Part C: Emerging Technologies. 2010. 18, 5. 695–712.
- Smith Stephen L., Imeson Frank, GLNS: An effective large neighborhood search heuristic for the Generalized Traveling Salesman Problem // Computers and Operations Research. 11 2017. 87. 1–19.
- Snyder Lawrence V., Daskin Mark S. A random-key genetic algorithm for the generalized traveling salesman problem // European Journal of Operational Research. 2006. 174.
- Taillard Éric D., Gambardella Luca M., Gendreau Michel, Potvin Jean Yves. Adaptive memory programming: A unified view of metaheuristics // European Journal of Operational Research. 2001. 135, 1. 1-16.
- Taillard Éric D., Helsgaun Keld. POPMUSIC for the travelling salesman problem // European Journal of Operational
- Tarantilis C. D. Solving the vehicle routing problem with adaptive memory programming methodology // Computers and Operations Research. 2005. 32, 9. 2309-2327.
- Tsiligirides T. Heuristic methods applied to orienteering // Journal of the Operational Research Society. 1984. 35, 9.
- Vansteenwegen Pieter, Souffriau Wouter, Oudheusden Dirk Van. The orienteering problem: A survey // European Journal of Operational Research. 2011. 209, 1. 1–10.
- Zachariadis Emmanouil E., Tarantilis Christos D., Kiranoudis Chris T. The load-dependent vehicle routing problem and its pick-up and delivery extension // Transportation Research Part B: Methodological. 2015, 71, 158–181.

Thank you for your attention!

Dontas Michael

✓ mdontas@aueb.gr
in Michael Dontas

Sideris Georgios

∑geosideris@aueb.gr in George Sideris

Manousakis Eleftherios Zachariadis Emmanouil

Imanousakis@aueb.gr
Imanousakis@aueb.gr

Department of Management Science and Technology, Athens University of Economics and Business

EURO 2022, Espoo Finland, 3 - 6 July

ezach@aueb.gr
in Emmanouil Zachariadis

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "2nd Call for H.F.R.I. Research Projects to support Faculty Members & Researchers" (Project Number: 02562).