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1 Introduction

This report presents the mathematical formulations studied and developed to address the critical
aspects and constraints of the optimization problems considered in this project. The primary
focus is on vehicle and commodity flow models which are integral to solving these complex prob-
lems. Additionally, following polytope studies, various valid inequalities are presented for these
formulations. By exploring the combinatorial properties of the associated optimization prob-
lems and their solution polytopes, this work lays the foundation for the matheuristic algorithms.
These studies aim to identify decomposition properties and tractable master-slave schemes, with
minimal information loss, that can be efficiently exploited by the proposed algorithms.

Section 2 presents a mathematical formulation for the Set Orienteering Problem (SOP), fol-
lowed by a proposed subproblem formulation designed to assist local search as an extended
operator. Next, a novel two-commodity flow formulation for the Cyclic Production Routing
Problem (CPRP) is introduced (Section 3), along with a set of valid inequalities. Subsequently,
Section 4 presents formulation for the Production Routing Problem (PRP) is provided, alongside
a relaxation subproblem and two additional subproblems that have been instrumental in guiding
a matheuristic algorithm to high-quality solutions. Following this, in Section 5, we propose a for-
mulation for the Multivehicle Set Orienteering Problem (MSOP) with tightened valid inequalities.
For the Crowdsourced Humanitarian Relief Vehicle Routing Problem, an Integer Programming
(IP) model is developed, which incorporates multiple cluster insertions and deletions into a given
solution (Section 6). Finally, Section 7 conclude with a Constraint Programming (CP) based for-
mulation for solving the Cumulative Capacitated Vehicle Routing Problem with Time Windows
(CCVRPTW).

2 The Set Orienteering Problem

The Set Orienteering Problem generalizes the Orienteering Problem (OP) by considering cus-
tomers to be divided into mutually exclusive clusters. The profit associated with each cluster is
collected by visiting at least one of the customers belonging to this cluster. The problem calls
for the determination of the closed route that maximizes the collected profit without violating a
given maximum route duration.

SOP was introduced by Archetti et al. (2018) together with a mathematical formulation and
a matheuristic algorithm based on tabu search and a mixed integer programming (MIP) based
move for performing broad solution modifications. Later, Pěnička et al. (2019) proposed a novel
ILP formulation of the problem and developed a Variable Neighborhood Search method applying
path and set relocations and exchanges. The most recent research work on SOP is published by
Carrabs (2020). It presents a Biased Random-Key Genetic Algorithm (BRKGA) which makes
use of three local search procedures to improve the fitness of the solution chromosomes. The
solution chromosome is an array of random keys, with each key referring to a customer set. To
decode a solution from a given array, the keys (sets) are firstly sorted. The sets whose values
are lower than 0.5 are discarded. Then, from the resulting sequence of sets, the node sequence
is determined by solving a suitably defined shortest path.

2.1 The Set orienteering problem formulation

The Set Orienteering Problem considers a depot and a set of clustered customers. A vehicle is
used to visit customers and collect the associated profit. The goal is to maximize the profit, while
respecting the maximum tour length limit. On this basis, let a directed graph G = (V,A), where
V = {0}∪Vc. Node 0 is the depot, whereas Vc = {1, 2, . . . , n} denotes the set of customer nodes.
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Set A = {(i, j) : i, j ∈ V, i ̸= j} contains arcs that connect all node pairs. The cost cij required
to traverse each arc (i, j) ∈ A is given. The cost matrix is assumed to satisfy the triangular
inequality. The customer set is divided into |P | clusters (sets) Cg ∈ P , where g = 1, 2, . . . , l.
Note that clusters are mutually exclusive, i.e., each customer is included in exactly one cluster
(∪l

g=1Cg = C and Cg ∩ Ch = ∅, ∀Cg, Ch ∈ P, g ̸= h). A profit pg is associated with every set
Cg ∈ P . This profit is collected, if at least one customer i ∈ Cg is visited by the vehicle. The
vehicle must start from the depot and return to it after the tour completion. The total cost
(time) of the vehicle tour cannot exceed maximum duration Tmax. The profit of each cluster
may be collected at most once. The objective is to minimize the total collected profit.

In the following, we introduce the notation used in the mathematical formulation of the SOP
model. Let yi be a binary variable equal to 1, iff node i ∈ V is served. In addition, routing
variable xij is equal to 1, if arc (i, j) ∈ A is traversed and 0 otherwise. Finally, binary variable zg
is equal to 1, iff the profit of cluster Cg is collected, i.e., any node i ∈ Cg is visited. In addition,
δ+(W ) = {(i, j) ∈ A : i ∈ W, j /∈ W} and δ−(W ) = {(i, j) ∈ A : i /∈ W, j ∈ W} for any subset of
nodes W ⊂ V . Therefore, δ+(i) and δ−(i) represent the outgoing and incoming edges of node i,
respectively.

Below, the described SOP formulation is provided:

max
x,y,z

f =
∑

Cg∈P

pgzg (1)

subject to ∑
(i,j)∈δ+(i)

xij = yi i ∈ V (2)

∑
(j,i)∈δ−(i)

xij = yi i ∈ V (3)

∑
(i,j)∈δ+(W )

xij ≥ yh W ⊆ V \ 0, h ∈ W (4)

∑
(i,j)∈A

cijxij ≤ Tmax (5)

zg ≤
∑
i∈Cg

yi Cg ∈ P (6)

yi ∈ {0, 1} i ∈ V (7)

zg ∈ {0, 1} Cg ∈ P (8)

xij ∈ {0, 1} (i, j) ∈ A (9)

The objective function (1) calls for the maximization of the collected profit. Constraints (2)
and (3) dictate that a node i is visited, only if exactly one arc enters and exactly one arc leaves
the node. Constraints (4) eliminate subtours. These constraints are exponential in number to
the size of the problem, thus they need to be generated dynamically as cuts during branching.
The total tour cost is limited by constraint (5). Constraints (6) ensure that the profit of each
cluster is collected, if and only if at least one vertex of this cluster is visited. Finally, constraints
(7)–(9) define the binary variables used in the SOP model. The presented formulation may be
directly solved by an MIP solver, if equation (4) is replaced by the MTZ subtour elimination
constraints. The interested reader is referred to the paper of Archetti et al. (2018) for more
information.
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2.2 Decomposition and subproblems formulation

We propose a novel and efficient matheuristic algorithm for solving the Set Orienteering Problem
(SOP), combining heuristic and exact methodologies. The approach decomposes the problem
into several subproblems, incorporating mathematical programming components within a local
search framework. The local search procedure utilizes relocation and swap operators for cus-
tomers and sets, supported by a tabu-based policy to ensure diversification and prevent cycling.
To intensify the search, a Traveling Salesman Problem (TSP) subproblem is periodically solved
using the Lin-Kernighan heuristic Helsgaun (2000), alongside a Shortest Path algorithm for
optimizing customer sequencing within sets. Additionally, an MIP-based move allows for simul-
taneous removal and insertion of multiple customer clusters. An Adaptive Memory strategy is
employed to enhance exploration, dynamically collecting and recombining solution components
from previous iterations, guiding the algorithm towards high-quality solutions.

To enable thorough solution space examination when promising solutions are encountered,
we employ an additional operator which allows for broader solution changes that would normally
require a possibly high number of local search iterations. This is achieved by solving an IP
model which considers multiple cluster insertions and deletions on a given solution S. We call
this model Customer Insertion-Deletion IP (CID). To ensure that CID can be efficiently solved
for large-scale instances, all cluster insertion and removal costs are approximated based on the
given solution S. The insertion cost of a customer i ∈ Vc in the route of solution S is the
cost of inserting this customer between the best (lower cost increase) pair of nodes. Obviously,
only clusters that are not served in S may be inserted, and only clusters already served in S
may be removed. The maximum number of cluster insertions and removals are determined by
two model parameters. In this way, the problem solver can control i) how drastic the solution
modification can be ii) the CPU time required for dealing with the CID model, and iii) the
quality of the cost approximation. The latter is because when multiple removals and insertions
take place simultaneously, the actual cost of the new solution may significantly differ compared
to the approximated cost. On the contrary, when a single insertion (deletion) is allowed the
approximation cost is the actual cost of performing the insertion (deletion). The idea of an
IP model which considers multiple cluster insertions and deletions simultaneously on a given
solution is motivated by the work of Manousakis et al. (2022a) who employed a similar idea for
the Production Routing Problem.

At this point, it is important to note that the use of approximate costs enhances the CID
ability to apply drastic modifications. However, this is done in a secure way, because the solution
of the CID model is directly improved by solving a Shortest Path Problem to determine the best
nodes to be served given the updated set of served clusters. Following this, a TSP model is
solved to generate the best visit sequence for the selected nodes.

To facilitate the CID model description, let us introduce the following notation. Let ỹi, z̃g and
x̃ij be the values of yi, zg, and xij variables, respectively for a given solution S. In addition, let
P+ = {Cg ∈ P | z̃g = 1} be the set of clusters served in solution S, and P− = {Cg ∈ P | z̃g = 0}
be the unserved clusters. Also, let constant Ag denote the minimal insertion cost (in terms of
cij) of any customer i of cluster Cg ∈ P− (only clusters not visited in the current solution).
This minimum insertion cost is obtained by considering all possible insertions of every customer
i ∈ Cg into every possible insertion position of the current solution. Similarly, constants Λg

are the cost savings of removing cluster Cg ∈ P+ from solution S. The savings are calculated
by connecting the two clusters before and after the removed cluster Cg. Obviously, when only
one insertion or removal takes place, the actual cost modification matches the one calculated by
the approximation. However, when multiple insertions occur, these can the place in consecutive
route positions, and as a result the approximate modification cost does not match the actual
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one.
Additionally, let us introduce binary variables αg and λg which are equal to 1, if cluster Cg

is inserted or removed, respectively. Variables αg and λg are only defined for clusters such that
z̃g = 0 and z̃g = 1, respectively. Finally, parameters NI and NR limit the maximum number of
allowed insertions and removals, respectively.

Below, the CID MIP is presented:

max
α,λ

f2 =
∑

Cg∈P−

αgpg −
∑

Cg∈P+

λgpg (10)

subject to

∑
Cg∈P−

αg ≤ NI (11)

∑
Cg∈P+

λg ≤ NR (12)

∑
(i,j)∈A

cij x̃ij +
∑

Cg∈P−

αgAg −
∑

Cg∈P+

λgΛg ≤ Tmax (13)

αg ∈ {0, 1} Cg ∈ P− (14)

λg ∈ {0, 1} Cg ∈ P+ (15)

Objective function (10) maximizes the difference between the additional profit collected by
the inserted clusters (first term) minus the profit lost due to cluster removals (second term).
Constraint (11) ensures that up to NI clusters are inserted into the solution. Similarly, constraint
(12) limits the number of removed clusters to NR. Constraint (13) guarantees that the the total
solution cost does not exceed the maximum duration Tmax. The first term represents the current
route duration. The second one is the extra cost incurred for serving the inserted clusters and
the third one is the cost savings inferred by removing clusters. Note that this constraint does
not guarantee that the modified solution cost respects the maximum duration. The use of
approximated routing costs may result into infeasible solutions, especially when large values of
NI and NR are used. Finally, constraints (14) and (15) are the binary variable bounds.

As already mentioned, the optimal CID solution may violate the SOP maximum duration
due to the approximate costs used for cluster removal and insertions. If an infeasible solution is
produced, feasibility is heuristically restored by iteratively removing customer clusters. At each
iteration, the customer cluster yielding the highest cost savings is removed from the solution.
Note that clusters pushed into the solution by the CID model are not considered as candidates
for being removed when the feasibility is restored.

3 The Cyclic Production Routing Model

The Cyclic Production Routing Problem (CPRP) seeks production, distribution, inventory and
routing plans which can be repeated in a cycles of length equal to the studied time horizon. As
per the basic PRP model, a product supplier is responsible for replenishing the inventories of
customers over a fixed cyclic planning horizon which consists of a predetermined set of periods
and guarantees that no stock-outs occur. The supplier decides the time and the quantity of

5



production and distribution, as well as the routes serving the customers. The differentiating
factor of the introduced CPRP variant is the requirement of equal ending and starting inventories
for both the production facility and the customers. As the model is clearly affected by the
initial inventory levels, the starting inventories of both the customers and the production facility
are considered to be decision variables. Unlike, the work of Manousakis (2021) on a periodic
PRP which considers starting inventories as parameters, handling initial inventories as variables
offers flexibility and increased cost savings. The cost of preparing and establishing the optimal
inventory levels is considered negligible. If this is not the case, this preparation cost may be
reflected in the objective function. The two-commodity flow PRP model of Manousakis et al.
(2022b) is adapted to the examined CPRP. It is worth mentioning that this type of modeling
has shown promising results for the IRP which can be regarded as a special case of the basic
PRP (Manousakis et al., 2021a).

Let G = (V,E) be an undirected graph where V = {0, 1, . . . , n, n + 1} is the set of nodes
and E = {(i, j) : i, j ∈ V, i < j} is set of edges. Node 0 represents the production facility
and node n + 1 represents a production facility clone, where the inverse flow originates from.
The set of customers is denoted as V C = {1, 2, . . . , n}. The considered planning horizon is
considered to repeat in cycles. Each cycle consists of |T | periods (so that the plans are repeated
every |T | periods). Let T = {1, 2, . . . , |T |} denote a complete cycle of the planning horizon. To
facilitate the model description, let prev(t) denote the index of the period before period t. This
is prev(t) = t− 1, if t > 1. For the first period of the cycle (t = 1), prev(1) = |T |.

Each node i ∈ V (both the production facilities and the customers) incurs a unit holding
cost hi for every period t ∈ T . Customer i ∈ V C faces a per period t ∈ T demand dti and has
a limited maximum inventory capacity equal to Li. At the start of period t ∈ T the production
facility may choose to produce any non-negative quantity pt up to the production capacity limit
C. At any period t ∈ T , if pt > 0, then a production set up cost st is incurred. In addition, a per
product unit production cost of ut also applies. The produced quantity may be used directly at
the same period t to satisfy customer demands. Each edge (i, j) ∈ E is associated with a non-
negative travel cost cij that represents the cost of a vehicle for traversing this edge. The supplier
delivers any non-negative quantity to every customer i ∈ V C at t ∈ T such that no stock-outs
occur. For every period, a homogeneous vehicle fleet of |K| vehicles K = {1, 2, . . . , |K|} each of
capacity Q is available at the depot.

We assume a symmetric transportation cost matrix, i.e., ∀i, j ∈ E, cij = cji, that satisfies the
triangle inequality. Binary undirected routing variables xtij = 1 for i, j ∈ V, i < j take value 1,
iff any vehicle k ∈ K traverses edge (i, j) in any direction at period t ∈ T . Binary variables zti
are equal to 1, iff i is visited by any vehicle at period t ∈ T . Similarly, binary variables yt are
1, iff production takes place at the production facility during period t. Non-negative continuous
flow variables ftij with i < j and ftji with i > j represent the load and the residual capacity of
the vehicle travelling from i to j at time t ∈ T , respectively. The quantities produced at each
period t are denoted as pt, whereas qti is the non-negative product quantity delivered to customer
i ∈ V C at time t ∈ T . The inventory at the end of period t for every node i ∈ V is captured
by the continuous variable Iti. According to the cyclicity constraint, the end inventories of each
node i ∈ V have to be equal to the starting ones, i.e., I|T |,i = I0i. The objective of the CPRP
is to minimise the overall fixed and variable production, transportation and inventory holding
costs for both the supplier and the customers.

Below, the two-commodity flow formulation for the CPRP with the maximum level (ML)
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inventory policy is provided, henceforward referred to as CPRP :

minimise
x,y,z,f,p,q,I

g =
∑
t∈T

(
utpt + styt +

∑
i∈V

hiIti +
∑
i∈V

∑
j∈V, i<j

cijxtij

)
(16)

subject to ∑
j∈V,i>j

xtji +
∑

j∈V,i<j

xtij = 2zti i ∈ V C , t ∈ T (17)

∑
j∈V C

xt0j ≤ |K| t ∈ T (18)

∑
j∈V C

xt0j =
∑
i∈V C

xti,(n+1) t ∈ T (19)

ftij + ftji = Qxtij i, j ∈ V, i < j, t ∈ T (20)∑
j∈V,i̸=j

ftij = Qzti − qti i ∈ V C , t ∈ T (21)

∑
j∈V C

ft0j =
∑
i∈V C

qti t ∈ T (22)

∑
i∈V C

fti,(n+1) = 0 t ∈ T (23)

pt ≤ Cyt t ∈ T (24)

It0 = Iprev(t),0 + pt −
∑
i∈V C

qti t ∈ T (25)

Iti = Iprev(t),i + qti − dti i ∈ V C , t ∈ T (26)

qti ≤ Li + dti − Iprev(t),i i ∈ V C , t ∈ T (27)

xtij ∈ {0, 1} i, j ∈ V, i < j, t ∈ T (28)

yt ∈ {0, 1} t ∈ T (29)

zti ∈ {0, 1} i ∈ V C , t ∈ T (30)

0 ≤ ftij ≤ Q i, j ∈ V, i ̸= j, t ∈ T (31)

0 ≤ qti ≤ min
{
Li + dti, Q

}
i ∈ V C , t ∈ T (32)

0 ≤ pt ≤ C t ∈ T (33)

0 ≤ Iti ≤ Li i ∈ V, t ∈ T (34)

The objective function (16) represents the sum of the depot (production facility) setup and
variable production costs, the inventory holding costs of both the depot and the customers
over the planning horizon, and the transportation costs. Note that no inventory holding costs
are considered for the depot clone node. Constraints (17) are the degree constraints for the
customers, whereas constraints (18) and (19) bound the number of vehicles leaving and returning
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to the depot, respectively. Constraints (20) ensure that the total flow (normal and inverse of each
edge) is equal to the vehicle capacity, if and only if the edge is traversed by a vehicle. Constraints
(21) are the flow continuity constraints that ensure that the total sum of the flows originating
from a node are reduced by the delivery quantity absorbed by the node. If any customer i ∈ V C ,
is not visited at period t (zti = 0), then constraints (17) and (20) make sure that both the
routing and the flow variables to and from this node are zero. As a result, constraints (21) force
the delivered quantity to be zero, qti = 0. Thus, the delivered quantity to a customer may be
positive, iff a visit is performed at this customer zti = 0. The total product quantity starting from
the depot is given by (22). Constraints (23) ensure that no products return to the production
facility, or in other words make sure that the total product quantity leaving the depot is delivered
to the customers. Constraints (24) allow production to take place, only when the production
facility is open. In this case, the produced quantity cannot exceed the total production capacity
limit. Constraints (25) and (26) are the inventory flow preservation constraints over the periods
of the planning horizon for the depot and the customers, whereas constraints (27) dictate the ML
policy. Note that constraints (25) and (26) jointly set the inventory of every node at the end of the
horizon equal to the starting inventory, and thus ensure the repeatability of the decisions made
for the the next cycle of the planning horizon. Finally, constraints (28)–(34) enforce integrality,
as well as lower and upper bounds on the decision variables. The flow variables ftij are defined
by (31) for both directions of each edge, because the existence of flows imposes direction to the
model.

The proposed flow formulation eliminates subtours by jointly considering constraints (20)–
(23). Therefore, there is no need to introduce 2|V | additional constraints to implement the
classic DFJ sub-tour elimination constraints (i.e., one for each subset of V ), or new variables
for the alternative MTZ sub-tour elimination constraints. Hence, the proposed formulation can
be solved as-is via any off-the-shelf Mixed Integer Linear Programming (MILP) solver. In the
case that the initial inventories cannot be set to the desirable levels, the model can be modified
to incorporate fixed initial inventories. Assuming a given initial inventory Iinit,i for each node
i ∈ V , the following constraints have to be added to the model:

I|T |,i = Iinit,i i ∈ V, t ∈ T (35)

Constraints (35) force the ending inventory of every node to be equal to the desired initial
inventory level.

Regarding the maximum allowed delivery quantity of customer i at period t, we distinguish
between two cases that have appeared in the production routing problem literature. The common
practice, is to allow the delivered quantity qti to exceed the maximum capacity Li making sure
that the excessive quantity is consumed during this period t, so that the inventory Iti at the
end of the period does not exceed maximum capacity Li. However, other research works, adopt
a stricter assumption forcing the delivery quantity qti ≤ Li,∀i ∈ V C , t ∈ T (Adulyasak et al.,
2014a, 2015; Qiu et al., 2018). In the present work, we consider the more frequent former case.
However, the proposed model can be modified to capture the latter case by replacing constraints
(27) and (32) with (36) and (37):

qti ≤ Li − Iprev(t),i i ∈ V C , t ∈ T (36)

0 ≤ qti ≤ min
{
Li, Q

}
i ∈ V C , t ∈ T (37)

3.1 Valid inequalities

This section presents valid inequalities that can be used to tighten the proposed CPRP formula-
tion. The valid inequalities are adopted from Manousakis et al. (2022b). For the sake of brevity,
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only the adapted valid inequalities are presented below, whereas the valid inequalities that are
used as-is to tighten the CPRP formulation are described in Appendix B.

The following valid inequalities bound the maximum delivery quantities:

qti ≤ min
{
Li + dti, Q

}
zti i ∈ V C , t ∈ T (38)

Similarly to constraints (32), valid inequalities (38) bound the maximum delivery quantities
with respect to the maximum inventory capacity and the vehicle capacity. The difference is
that they are multiplied by the visit variables, and thus ensure that the delivery quantity of a
customer may be positive, only if this customer is visited. Note that this is also guaranteed by
a combination of constraints in the basic formulation (see model description), but preliminary
experiments showed that adding these inequalities straightforwardly, contributes to the lower
bound of the root node relaxation.

The concept of sub-deliveries initially introduced by Desaulniers et al. (2016) is used to impose
a lower bound on the visits per customer for each period. Specifically, Lefever et al. (2018) bound
the visits prior to a specific period t with the minimum number of sub-deliveries (according to the
customer capacity) that are required to satisfy the demand of period t. For example, a customer
with maximum capacity Li = 60 and demand dti = 20, has to be visited at least once during
periods t ∈ {3, 4, 5, 6} in order to satisfy the demand for period t = 6.∑

t′∈P−
it

zt′i ≥ 1 i ∈ V C , t ∈ T (39)

The calculation of set P−
it is described in detail in Lefever (2018) and can be directly applied to

the examined CPRP model. It is therefore omitted for the sake of brevity.

4 The Production Routing Model

The generic PRP variant examined, describes the situation in which a manufacturer of a prod-
uct is responsible for production and replenishment of customers inventories over a given time
horizon, ensuring that no stock-outs occur. The decision-maker is responsible for deciding: i) the
time periods at which the production takes place, ii) the product quantities that are produced,
iii) the timing for replenishing each customer inventory, iv) the associated replenishment quantity
and v) the routing of all customer services, with respect to the minimization of the total cost of
the system.

For the sake of completeness, we provide a new formulation for the PRP which extends the
well-performing formulation of Manousakis et al. (2021b) for the similar IRP. The basic model
and valid inequalities are given for a complete PRP definition, and they are also employed for
modeling individual subproblems tackled in the context of the proposed algorithm.

Let an undirected graph G = (V,E), where V = {0, 1, . . . , n, n + 1} is the set of nodes
and E = {(i, j) : i, j ∈ V, i < j} is the edge set. Node 0 represents the production facility
and node n + 1 represents the production facility clone, where the inverse flow originates from.
The set Vc = {1, 2, . . . , n} is used to denote the customers. The problem spans over a set of
time periods T = {1, 2, . . . , |T |}. Each node i ∈ V starts with initial inventory I0i at period 0
and incurs a unit holding cost hi for every period t ∈ T . Customer i ∈ Vc faces a per period
t ∈ T demand dti and has a limited maximum inventory capacity Li. At the start of period
t ∈ T , the production facility (depot) may produce any non-negative quantity pt up to the per
period production capacity limit C, whereas the end inventory It0 cannot exceed the production
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facility storage capacity L0. The production facility faces a setup cost st for each period that
any non-zero quantity is produced, whereas a unit production cost of ut also applies for each
unit of production. The produced quantity may be directly used to satisfy customer demand at
the same period t. Each edge (i, j) ∈ E is associated with a non-negative travel cost cij that
represents the cost for traversing this edge. The supplier delivers any non-negative quantity to
each customer i ∈ Vc at t ∈ T , such that no stock-outs occur. For every period, a homogeneous
vehicle fleet of vehicles K = {1, 2, . . . , |K|} each of capacity Q is available at the depot.

We assume a symmetric transportation cost matrix, i.e., cij = cji. We use binary undirected
routing variables xt

ij = 1 for i, j ∈ V, i < j iff any vehicle k ∈ K traverses edge (i, j) in any
direction at period t ∈ T . Binary variables zti take a value of 1 iff i is visited by any vehicle at
period t ∈ T . Similarly, binary variables yt take a value of 1 iff production takes place at the
production facility during period t. Non-negative continuous flow variables f t

ij and f t
ji represent

the load and the residual capacity of the vehicle travelling from i to j at time t ∈ T , respectively.
Let pt be the quantity produced at period t, whereas qti denotes non-negative product quantity
delivered to customer i ∈ Vc at time t ∈ T . Finally, continuous variables Iti for each node i ∈ V
represent the inventory at the end of period t ∈ T . The objective of the PRP with the ML
inventory policy is to minimize the overall fixed and variable production, transportation and
inventory holding costs for both the supplier and the customers.
Below, the two-commodity flow formulation for the PRP with the maximum level (ML) inventory
policy is provided, henceforward named TCF :

minimize
x,y,z,f,p,q,I

g =
∑
t∈T

(
utpt + styt +

∑
i∈V

hiI
t
i +

∑
i∈V

∑
j∈V, i<j

cijx
t
ij

)
(40)

subject to ∑
j∈V,i>j

xt
ji +

∑
j∈V,i<j

xt
ij = 2zti i ∈ Vc t ∈ T (41)

∑
j∈Vc

xt
0j ≤ |K| t ∈ T (42)

∑
j∈Vc

xt
0j =

∑
i∈Vc

xt
i(n+1) t ∈ T (43)

f t
ij + f t

ji = Qxt
ij i, j ∈ V, i < j t ∈ T (44)∑

j∈V,i ̸=j

f t
ij = Qzti − qti i ∈ Vc t ∈ T (45)

∑
j∈Vc

f t
0j =

∑
i∈Vc

qti t ∈ T (46)

∑
i∈Vc

f t
i(n+1) = 0 t ∈ T (47)

pt ≤ min

{
C,

∑
i∈Vc

|T |∑
t′=t

dt
′

i

}
yt t ∈ T (48)

pt ≤
∑
i∈Vc

( |T |∑
t′=t

dt
′

i − It−1
i

)
− It−1

0 t ∈ T (49)
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It0 = It−1
0 + pt −

∑
i∈Vc

qti t ∈ T (50)

Iti = It−1
i + qti − dti i ∈ Vc t ∈ T (51)

qti ≤ Li + dti − It−1
i i ∈ Vc t ∈ T (52)

xt
ij ∈ {0, 1} i, j ∈ V, i < j t ∈ T (53)

yt ∈ {0, 1} t ∈ T (54)

zti ∈ {0, 1} i ∈ Vc t ∈ T (55)

0 ≤ f t
ij ≤ Q i, j ∈ V, i ̸= j t ∈ T (56)

0 ≤ qti ≤ min

{
Li + dti, Q,

|T |∑
t′=t

dt
′

i

}
i ∈ Vc t ∈ T (57)

0 ≤ pt ≤ min

{
C,

∑
i∈Vc

|T |∑
t′=t

dt
′

i

}
t ∈ T (58)

0 ≤ Iti ≤ Li i ∈ V t ∈ T (59)

The objective function g represents the sum of the depot setup and unit production costs,
the transportation costs and the inventory holding costs of both the depot and the customers
over the planning horizon. Note that the holding costs of the initial inventory at period t = 0
are also taken into account, whereas no inventory holding costs are considered for the artificial
depot node. Constraints (41) are the degree constraints for the customers, while constraints (42)
and (43) equate the number of vehicles leaving and returning to the depot and ensure that this
number does not exceed |K|. Constraints (44) ensure that the total flow (normal and inverse of an
edge) is equal to the vehicle capacity if and only if the edge is traversed by a vehicle. Constraints
(45) imply the flow as they force the total sum of the flows originating from a node to be reduced
by the delivery quantity absorbed by the node. The total product quantity starting from the
depot is given by (46). Accordingly, constraints (47) ensure that no products arrive at the depot
when routes are terminated, thus guaranteeing that the total product quantity leaving the depot
is equal to the quantity delivered to the customers. Constraints (48) ensure that the produced
quantity may be positive only when the production facility is open. In this case, the produced
quantity cannot exceed the total production capacity or the sum of the remaining demand of
all customers. More specifically, according to constraints (49) the produced quantity and the
remaining depot inventory cannot exceed the remaining demand after subtracting the existing
customer stocks as in any other case the solution would be sub-optimal. Constraints (50) and
(51) represent the inventory flow preservation over the periods of the planning horizon for the
depot and the customers, whereas constraints (52) implement the ML policy. Finally, constraints
(53)–(59) enforce integrality, as well as lower and upper bounds on the decision variables. The
flow variables ytij are defined by (56) for each edge and direction as the existence of flows imposes
direction to the model. Note that period t = 0 contributes to the overall holding costs; however,
no transportation takes place at this period. It should be underlined that the TCF formulation,
as a flow model, directly implies the sub-tour elimination from the flow related constraints (44)–
(47). Therefore, there is no need to introduce 2|V | additional constraints to implement the classic
DFJ sub-tour elimination constraints (i.e., one for each subset of V ) or new variables for the
alternative MTZ sub-tour elimination constraints. In our formulation sub-tours are prevented
by imposing the continuous flow of the load and the residual capacity. Hence, it can be solved
as-is via any off-the-shelf Mixed Integer Linear Programming (MILP) solver
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Regarding the maximum delivery quantity of customer i at period t, we distinguish between
two cases that have appeared in the PRP literature. The common practice, is to allow the
delivered quantity qti to exceed the maximum capacity Li making sure that the excessive quantity
is consumed during this period t, so that the inventory Iti at the end of the period does not exceed
maximum capacity Li. However, other research works, adopt a stricter assumption forcing the
delivery quantity qti ≤ Li,∀i ∈ Vc, t ∈ T (Adulyasak et al., 2015; Qiu et al., 2018). In the present
work and to enable comparisons, we consider the former case. However, the proposed model can
be modified to capture the latter case by replacing constraints (52) and (57) with (60) and (61):

qti ≤ Li − It−1
i i ∈ Vc t ∈ T (60)

0 ≤ qti ≤ min

{
Li, Q,

l∑
t′=t

dt
′

i

}
i ∈ Vc t ∈ T (61)

Furthermore, in order to facilitate the methodology description, additional notation is intro-
duced for all the algorithmic procedures that refer to a specific solution S. We define ỹt, z̃ti , x̃

t
ij ,

p̃t q̃ti , Ĩ
t
i and f̃ t

ij to be the currently assigned values of yt, zti , x
t
ij , p

t qti , I
t
i and f t

ij in the solution
S. Every solution consists of a set of routes R and each route r ∈ R is assigned to a specific
vehicle. Let function ζ : (Vc, T ) → R, return the route r in which customer i ∈ Vc is assigned for
period t ∈ T . Additionally, let V r

c ⊆ Vc be the subset of customers that are included in route
r ∈ R.

4.1 Production-distribution relaxation

The construction of an initial PRP solution is a challenging task. Common construction heuris-
tics cannot straightforwardly decide the continuous production and delivery quantities which
obviously are interconnected with the routing decision level. A simple heuristic design is difficult
to ensure feasibility due to the three interconnected decision levels. To overcome this challenge,
our proposed heuristic solves a production-distribution relaxation of the proposed TCF formula-
tion, named PD-Rel. The aim is to generate a partial solution with approximated routing costs.
Note that the production setup decisions are crucial for the quality of the final solution, due to
the fact that they usually make up for the largest part of the total objective. This means that it
is highly unlikely to obtain a good quality solution from a partial solution with poor production
schedule characteristics, and vice versa.

The ineffectiveness of modifying the production setup decisions during an iterative improve-
ment procedure is also stated in Adulyasak et al. (2014b). Indeed, preliminary experiments have
indicated that modifying the production setup in the context of the hybrid local search causes
excessive diversification due to the drastic objective value changes. Therefore, in the proposed
scheme, the production setup information defined by PD-Rel is maintained throughout the op-
timization process, whereas the production quantities, the delivery quantities, and distribution
plans may be modified.

We adapt the production-distribution relaxation of Adulyasak et al. (2014b) to our two-
commodity flow formulation. PD-Rel ignores the original routing cost matrix and considers
aggregated vehicle capacity over each period. Therefore, the complexity of the problem is dras-
tically reduced, and thus, a high-quality solution of the relaxed problem is usually obtained
within limited computational time. Similar to Adulyasak et al. (2014b) for each node i ∈ V , an
approximation of the routing (transportation) cost σi is calculated as shown in (62)

σi = min
{
2c0i, min

j,b∈V,j ̸=b
{cij + cib}

}
(62)
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The approximation of the cost of visiting a node i, is the minimum between: i) the sum of the
distances of the two closest nodes and ii) twice the distance between i and the depot (direct
shipping). This is the most optimistic approximation of the visit cost of each node.

The PD-Rel formulation is presented below:

minimize
y,z,p,q,I

ĝ =
∑
t∈T

(
utpt + styt +

∑
i∈V

hiI
t
i +

∑
i∈Vc

σiz
t
i

)
(63)

subject to ∑
i∈Vc

qti ≤ |K|Q t ∈ T (64)

Constraints (48)–(52), (54), (55), (57)–(59).
The objective function (63) is similar to the objective function of the original problem, except

for the fact that the last sum involves the approximated and not the actual transportation costs.
Constraints (64) ensure that the total delivered quantity for each period t does not exceed the
aggregated capacity of all available vehicles. Note that split deliveries are forbidden by the
original TCF model, thus the aggregated capacity constraint may generate delivery schedules
which are TCF infeasible. Therefore, it is possible that for a period t, although the aggregated
capacity constraint is satisfied for all vehicles together, the delivered quantities cannot be split in
a way that the capacity constraint of each individual vehicle is respected. To ensure feasibility,
the RHS of inequality (64) is commonly multiplied by a factor between zero and one. The factor
is iteratively reduced until a feasible TCF production and distribution schedule is constructed
(Absi et al., 2015; Chitsaz et al., 2019). However, this is quite restrictive and sacrifices the quality
of the solution for the sake of feasibility. Since our algorithm handles infeasible solutions, we
have not adopted such a restricting approach.

4.2 Mixed integer linear programming components

The FILS incorporates two exact components: i) the QOPT which simultaneously optimizes the
continuous variables of the delivery, production and inventory quantities, and ii) the FR which
restores the feasibility of a capacity infeasible solution. Both exact components are presented
below.

4.2.1 Quantity optimization method QOPT

The quantity optimization method QOPT is responsible for optimizing the production and deliv-
ery quantities in pursuit of total inventory costs minimization, given the ỹt, z̃ti , x̃ij and f̃ t

ij values
of an incumbent solution S. QOPT is responsible for counterbalancing the assumption of fixed
decision when a customer delivery quantities are calculated during neighborhood exploration.
To do so, it jointly optimizes all delivery and production quantities. The quantity optimization
sub-problem tackled by QOPT is as follows:

minimize
p,q,I

g1 =
∑
t∈T

(
utpt +

∑
i∈V

hiI
t
i

)
(65)

subject to ∑
i∈V r

c

qti ≤ Q r ∈ R t ∈ T (66)
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(49)–(52) and the variable bounds (48), (57), (59).
The objective function (65) is made up of the production and inventory terms of the original

TCF objective function. Note that, routing and setups decisions are not modified by the QOPT
model. Constraints (66) ensure that the vehicle capacity is not violated. Finally, since y variables
are unaffected by the model, the RHS of (48) is a constant stronger variable bound and thus,
replaces (58).

4.2.2 Feasibility repair method FR

Similarly, to the QOPT, the FR, optimizes the production and delivery quantities of a given
solution S. However, FR can also insert, remove and relocate customer visits. In addition,
as earlier stated QOPT is applied only to feasible solutions, whereas FR is applied to both
feasible, as well as infeasible solutions. Therefore, the underlying model faced by FR extends the
QOPT sub-problem presented above. To ensure a fast performance, all customer removal and
insertions costs are approximated. The number of customer visits that can be added, removed or
relocated is bounded, to ensure that: i) the repaired solution is similar to the original one, and
ii) the approximation impact on the solution quality is kept to manageable levels. To eliminate
capacity infeasibilities, the sub-problem faced by FR penalizes vehicle capacity violations. Note
that, FR not only restores the feasibility of a solution in a near optimal way, but also diversifies
the solution by applying several routing modifications, contrary to the FILS that can only apply
minor routing changes at each iteration. The use of approximation costs instead of the original
ones, further enhances the model ability to diversify the search by performing a leap in the
solution space. Every repaired solution is further optimized by solving the TSP associated with
each route of each period to balance the approximation trade-off.

Let ξ denote the per unit penalty for excess vehicle load. The continuous variable etr denotes
the excess load of route r at period t over the actual capacity Q and up to the effective capacity
Qe. Obviously, if any etr > 0, route r at period t is infeasible. Also, let constant ∆t

i denote the
minimal insertion cost of customer i in any of the routes of period t. Note that, this is defined
even for customers already visited in period t, since the model allows them to be relocated to
other routes, or even within the same route. Given the triangular inequalities, the cheapest
insertion for any customer cannot be in an empty route. For cases, where the number of vehicles
is not limited, this fact does not allow the algorithm to exploit routing alternatives, which involve
additional vehicles. In addition, this leads to routes serving many customers which are difficult
to be repaired. For these cases, if FR cannot restore feasibility, it is executed again with the
following modification: the ”cheapest” insertion of a customer is set to an empty route with a
25% probability. Let function ζ ′ : (Vc, T ) → R return the route of cheapest insertion of customer
i in period t. Similarly, constants Λt

i are the savings of removing customer i from period t and
are defined only when z̃ti = 1.

Additionally, let us introduce binary variables δti and λt
i equal to 1 iff customer i is added or

removed from period t, respectively. Variables λt
i can be only defined for customers such that

z̃ti = 1. To avoid non-linear constraints, we introduce delivery quantity variables q′
t
i representing

the delivery quantity of relocated customers (moved to another service position of the same
period). Therefore, if a customer i is relocated (by being removed and re-inserted), q′

t
i is used

instead of qti for the delivery quantity. Finally, parameter a bounds the number of insertions and
deletions per route. The value of a depends on the relationship of the objective of the solution

to be repaired Z(Srep) and the best objective Z(S∗) obtained so far: if |Z(Srep)−Z(S∗)|
Z(S∗) < 0.01,

then a = a− and otherwise a = a+. This is to control the structural changes caused by the
MIP to the solution, depending on the distance of the infeasible solution objective from the best
known objective. For conciseness, we denote the constant upper bound of the delivery quantity
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to customer i at period t, qti, as shown in equation (67):

qti = min

{
Li + dti, Q,

|T |∑
t′=t

(dt
′

i )

}
i ∈ Vc t ∈ T (67)

Below, the FR MIP is presented:

minimize
δ,λ,p,q,q′,I

g2 =
∑
t∈T

(
utpt +

∑
i∈V

hiI
t
i +

∑
r∈R

ξetr +
∑
i∈Vc

∆t
iδ

t
i +

∑
i∈Vc:z̃t

i=1

Λt
iλ

t
i

)
(68)

subject to∑
i∈V r

c

qti +
∑

i∈Vc:ζ′(i,t)=r,z̃t
i=0

qti +
∑

i∈Vc:ζ′(i,t)=r,z̃t
i=1

q′
t
i ≤ Qe r ∈ R t ∈ T (69)

etr ≥
∑
i∈V r

c

qti +
∑

i∈Vc:ζ′(i,t)=r,z̃t
i=0

qti +
∑

i∈Vc:ζ′(i,t)=r,z̃t
i=1

q′
t
i −Q r ∈ R t ∈ T (70)

δti ≤ λt
i i ∈ Vc t ∈ T : z̃ti = 1 (71)

qti ≤ (1− λt
i)q

t
i i ∈ Vc t ∈ T : z̃ti = 1 (72)

q′
t
i ≤ δtiq

t
i i ∈ Vc t ∈ T : z̃ti = 1 (73)

q′
t
i ≤ λt

iq
t
i i ∈ Vc t ∈ T : z̃ti = 1 (74)

qti ≤ δtiq
t
i i ∈ Vc t ∈ T : z̃ti = 0 (75)

∑
i∈Vc:ζ′(i,t)=r

δti ≤ a r ∈ R t ∈ T (76)

∑
i∈V r

c

λt
i ≤ a r ∈ R t ∈ T (77)

δti ∈ {0, 1} i ∈ Vc t ∈ T (78)

λt
i ∈ {0, 1} i ∈ Vc t ∈ T : z̃ti = 1 (79)

0 ≤ etr ≤ Qe −Q r ∈ R t ∈ T (80)

0 ≤ q′
t
i ≤ qti i ∈ Vc t ∈ T : z̃ti = 1 (81)

(49)–(52) and variable bounds (48), (57), (59).
Objective function (68) minimizes the total unit production and holding cost, the excessive

capacity penalty, as well as the costs for inserting and removing customers. Constraints (69)
ensure that the augmented total capacity Qe (allowing infeasibility) of any vehicle will not be
exceeded by the sum of the existing customers delivery quantities (first term), the customers
inserted delivery quantities (second term), as well as to customers relocated to the associated
route (third term). In a manner similar, constraints (70) sets the augmented vehicle capacity
slack variable for excess load. Next, constraints (71) guarantee solution consistency by allowing
the addition of an existing customer i in period t iff this customer is removed from its current
delivery position (relocation). For existing customers (i.e., z̃ti = 1), constraints (72) ensure that
qti = 0 if customer i is removed. Note that, if customer i is relocated to new delivery position of
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the same period t, qti = 0 and the delivery quantity associated with the new delivery position is
represented by a non-zero q′

t
i = 0. Constraints (73) and (74) ensure that the relocated delivery

quantity q′
t
i may be positive only if customer i is both inserted and removed (i.e., relocated). For

any customer i inserted in any period t (i.e., z̃ti = 0), constraint (75) sets the associated delivery
quantity to qti . Inequalities (76) and (77) limit the number of insertions and deletions per route
period to a. Additionally, (78)–(81) provide the bounds of the new variables introduced. Note
that, the removal, as well as the relocated delivery quantity variables, are defined iff customers
are not already routed at the associated period. Finally, since y variables are unaffected by the
model, the RHS of (48) is a constant stronger variable bound and thus, replaces (58).

It should be noted that, for the interested reader, a substantially more compact and compre-
hensible formulation of the aforementioned model is proposed. This model does not make use
of the q′ variables and thus is non-linear. Preliminary experiments with the non-linear model
demonstrated significantly inferior performance compared to the linear one. As mentioned the
non linear formulation of the FR MIP is more straightforward and comprehensible as there is not
need for introducing variables q′. However, it showed inferior performance during preliminary
experiments.

Below, we present the non-linear Feasibility Repair NLFR MIP:

minimize
δ,λ,p,q,I

g2 =
∑
t∈T

(
utpt +

∑
i∈V

hiI
t
i +

∑
r∈R

ξetr +
∑
i∈Vc

∆t
iδ

t
i +

∑
i∈Vc:z̃t

i=1

Λt
iλ

t
i

)
(82)

subject to ∑
i∈V r

c

(1− λt
i)q

t
i +

∑
i∈Vc:ζ′(i,t)=r

δtiq
t
i ≤ Qe r ∈ R t ∈ T (83)

etr ≥
∑
i∈V r

c

(1− λt
i)q

t
i +

∑
i∈Vc:ζ′(i,t)=r

δtiq
t
i −Q r ∈ R t ∈ T (84)

δti ≤ λt
i i ∈ Vc t ∈ T : z̃ti = 1 (85)

qti ≤ (1 + δti − λt
i)q

t
i i ∈ Vc t ∈ T : z̃ti = 1 (86)

qti ≤ δtiq
t
i i ∈ Vc t ∈ T : z̃ti = 0 (87)∑

i∈Vc:ζ′(i,t)=r

δti ≤ a r ∈ R t ∈ T (88)

∑
i∈V r

c

λt
i ≤ a r ∈ R t ∈ T (89)

δti ∈ {0, 1} i ∈ Vc t ∈ T (90)

λt
i ∈ {0, 1} i ∈ Vc t ∈ T : z̃ti = 1 (91)

0 ≤ etr ≤ Qe −Q r ∈ R t ∈ T (92)

Objective function (82) minimizes the total unit production and holding costs, the excessive
capacity penalty and the costs for inserting and removing customers from periods. Constraints
(83) ensure that the additional total capacity Qe (considering the allowed infeasibility) of the
vehicles will not be exceeded by the delivery quantities of the existing (first term) and the inserted
or relocated customers (second term). Constraints (84) force the slack variable to take the value
of excess load. Next, constraints (85) ensure solution consistency by allowing the addition of
an existing customer i in period t iff the customer is removed from the current position. For
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existing customers (i.e., z̃ti = 1), constraints (86) guarantee that quantity may be delivered to
an existing customer if the customer is either removed and reinserted or remains in the same
position (both δti and σt

i are zero). According, to constraints (87), the delivered quantity of
the customers that are not already in the current solution is allowed to be positive only if the
customer is inserted. Inequalities (88) and (89) limit the number of insertions and deletions per
route period to a. Additionally, (90)–(92) provide the bounds for the new variables introduced.
Note that the removal variables are defined iff the customer is not routed is in the incumbent
solution.

5 The Multi-Vehicle Set Orienteering Problem

The Multi-vehicle Set Orienteering Problem considers a depot and a set of clustered customers.
A vehicle fleet of |K| vehicles is used to visit customers and collect the associated profit. The
goal is to maximize the collected profit. Each vehicle k ∈ K has a maximum tour length limit
Tmax. On this basis, let a directed graph G = (V,A), where V = {0} ∪ Vc. Node 0 is the depot,
whereas Vc = {1, 2, . . . , n} denotes the set of customer nodes. Set A = {(i, j) : i, j ∈ V, i ̸= j}
contains arcs that connect all node pairs. The cost cij required to traverse each arc (i, j) ∈ A
is given. The cost matrix is assumed to satisfy the triangular inequality. The customer set is
divided into |P | clusters (sets) Cg ∈ P , where g = 1, 2, . . . , l. Note that clusters are mutually
exclusive, i.e., each customer is included in exactly one cluster (∪l

g=1Cg = C and Cg ∩ Ch = ∅,
∀Cg, Ch ∈ P, g ̸= h). A profit pg is associated with every set Cg ∈ P . This profit is collected,
if at least one customer i ∈ Cg is visited by a vehicle. Each vehicle must start from the depot
and return to it after the tour completion. The total cost (time) of each vehicle tour cannot
exceed maximum duration Tmax. The profit of each cluster may be collected at most once. The
objective is to maximize the total collected profit.

We consider an extended graph of graph G defined as follows. Let Ḡ = (V̄ , Ā) where the
set of vertices V̄ is partitioned as {0} ∪ Vc ∪ Vd, where set Vd represents a set of final depots
{n+ 1, . . . , n+ |K|}. Depot 0 represents the start depot, and a vehicle route starts at vertex 0,
visits vertices from set Vc and ends at a vertex in Vd. The set of arcs Ā is defined as Ā = {(0, i) :
i ∈ Vc}∪{(i, j) : i, j ∈ Vc, i ̸= j}∪{(i, j) : i ∈ Vc, j ∈ Vd}. With each arc (i, j) ∈ Ā are associated
a cost cij and a travel time tij . Hereafter, we use (i, j) and a interchangeably to represent an
arc in Ā.

For any subset S ⊆ V̄ , the outgoing arcs of set S are denoted δ+(S) ={
(i, j) ∈ Ā : i ∈ S, j ∈ V̄ \ S

}
and similarly δ−(S) =

{
(i, j) ∈ Ā : i ∈ V̄ , j ∈ V̄ \S

}
for incoming

arcs. If S = {i}, δ+(i) and δ−(i) are used for simplicity.
The mathematical formulation uses the following decision variables:

• ξi ∈ {0, 1}, i ∈ Vc: equal to one if customer i is visited by a route in solution, zero otherwise.

• ya, za ≥ 0, a ∈ Ā: representing the residual and accumulated times of arc (i, j), respectively.

• xa ∈ {0, 1}, a ∈ Ā: equal to one if arc a is selected in solution, zero otherwise.

• sg ∈ {0, 1}, g = 1, . . . , l: equal to one if cluster g is covered, zero otherwise.

The problem can be formulated as follows:

max

l∑
g=1

pgsg (93)
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∑
a∈δ+(0)

xa = |K|, (94)

∑
a∈δ+(i)

xa =
∑

a∈δ−(i)

xa = ξi, ∀i ∈ Vc (95)

∑
a∈δ−(j)

xa = 1, ∀j ∈ Vd, (96)

sg ≤
∑
i∈Cg

ξi, g = 1, . . . , l, (97)

∑
a∈δ+(i)

za =
∑

a∈δ−(i)

za +
∑

a∈δ−(i)

taxa, ∀i ∈ Vc (98)

∑
a∈δ−(j)

za +
∑

a∈δ−(j)

taxa ≤ Tmax, ∀j ∈ Vd (99)

(za + ya) = Tmax xa, ∀a ∈ Ā, (100)

ξi ∈ {0, 1}, ∀i ∈ Vc (101)

ya, za ≥ 0, ∀a ∈ Ā (102)

xa ∈ {0, 1}, ∀a ∈ Ā (103)

sg ∈ {0, 1}, g = 1, . . . , l (104)

The objective function (93) maximises the total profit of the clusters selected in solution.
Equation (94) imposes the degree constraint at the vertex 0 whereas constraints (95) state degree
constraints for the vertices in Vc visited or selected in solution. Equations (96) impose degree
constraints on the set of vertices in Vd. Constraints (97) link variables s and ξ, thus selecting
the clusters covered or visited in solution. Equations (98) impose flow constraints for the flow
variables z and together with linking equations (100) also on the flow variables y. Constraints
(99) imposes that the maximum time duration Tmax is not exceed by the vehicle routes in
solution.

5.1 Valid inequalities

The following inequalities can be used to strengthen the Linear-Programming (LP) relaxation of
formulation F which can be written in terms of variables za and ya only using equations (100).

1. Trivial inequalities (TI).
za + ya ≤ Tmax, ∀a ∈ Ā. (105)

2. Profit-based (PrB) inequalities.

sg ≤ ξi, ∀i ∈ Cg, g = 1, . . . , l. (106)

3. Flow-based (FB) inequalities.

ya ≥ ta
ya + za
Tmax

, ∀a ∈ Ā. (107)
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4. Path-based (PB) inequalities. Given a solution (y∗, z∗) of the LP-relaxation of formu-
lation F, let x∗ be the vector computed as x∗ = (y∗ + z∗)/Tmax. Consider a path
P = (0, i1, i2, . . . , ik, j) in G with j ∈ Vd and {i1, i2, . . . , ik} ⊆ Vc such that

∑
a∈Ā(P ) x

∗
a >

|Ā(P )| − 1 with
∑

a∈Ā(P ) ta > Tmax, where Ā(P ) ⊆ Ā is the set of arcs traversed by path
P . The following inequality is valid for formulation F:∑

a∈Ā(P )

xa ≤ |Ā(P )| − 1. (108)

5. Generalized-subtour-based (GS) inequalities.∑
a∈δ−(S)

xa ≥ ξi, ∀S ⊆ Vc, |S| > 1, i ∈ Vc, i ∈ S. (109)

6. Time constraints (TC) inequalities. For a given S ⊆ Vc, |S| > 2, let T (S) be the minimum
number of vehicles required to visit customers in S based on the time constraint Tmax.
Then, the following inequality is valid for formulation F:∑

a∈δ−(S)

xa ≥ T (S). (110)

Computing T (S) for the given S is NP-hard, but a lower bound on T (S) can be computed
as follows. Let t̄i, i ∈ Vc, be a lower bound on the travelling time to reach customer i in
any feasible solution where customer i is visited by a vehicle. Value t̄i can be computed as
t̄i = mina∈δ−(i){ta}. The following inequality is valid:

∑
a∈δ−(S)

xa ≥
⌈∑

i∈S t̄iξi

Tmax

⌉
. (111)

Inequalities (111) are nonlinear. A linearised version of the inequalities can be easily derived
removing the rounding operator.

7. Knapsack-based (KP) inequalities. The following inequality is valid:∑
a∈Ā

taxa ≤ |K|Tmax. (112)

Inequality (112) is a knapsack-based inequality where the set of arcs represents the items
with corresponding weights (times) and the knapsack capacity is the total maximum travel
time of the vehicle fleet.

6 The Crowdsourced Humanitarian Relief Vehicle Routing
Problem

To enable thorough solution space examination when promising solutions are encountered and
to allow different supply points, we employ an additional operator which allows for broader
solution changes that would normally require a possibly high number of local search iterations.
This is achieved by solving an IP model which considers multiple cluster insertions and deletions
on a given solution S. We call this model Node Insertion-Deletion IP (NID). To ensure that
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NID can be efficiently solved for large-scale instances, all cluster insertion and removal costs are
approximated based on the given solution S. Supply point i ∈ Vs and customer nodes i ∈ Vc are
allowed to be inserted and removed.

The insertion cost of a node i ∈ Vc in the route of solution S is the cost of inserting this
customer between the best (lower cost increase) pair of nodes. Note that the supply points can
only be inserted in the second index of the route (between the depot and the first customer).
Obviously, for each route only nodes that are not visited by this route in solution S may be
inserted, and only nodes already visited by this route in S may be removed. The maximum
number of nodes insertions and removals are determined by two model parameters. In this way,
the problem solver can control i) how drastic the solution modification can be ii) the CPU time
required for dealing with the NID model, and iii) the quality of the cost approximation. The
latter is because when multiple removals and insertions take place simultaneously, the actual
cost of the new solution may significantly differ compared to the approximated cost. On the
contrary, when a single insertion (deletion) is allowed the approximation cost is the actual cost
of performing the insertion (deletion). Also, in order to introduce diversification into the solution
the model forces a minimum number of supply point removals and insertions. The idea of an IP
model which considers multiple node insertions and deletions simultaneously on a given solution
is motivated by the work of Manousakis et al. (2022a) who employed a similar idea for the
Production Routing Problem.

To facilitate the NID model description, let us introduce the following notation. For a given
solution S, let w̃k

i , be the values of wk
i variables, respectively.

Also, let constant Ak
i denote the minimal insertion cost (in terms of cij) of node i ∈ VS ∪VC :

w̃k
i = 0. This minimum insertion cost is obtained by considering all possible insertions of every

customer i ∈ VC into every possible insertion position of the current solution. For nodes i ∈ VS

the insertion cost is the insertion cost of adding it between the depot and the first node.
Similarly, constants Λg are the cost savings of removing a node i ∈ VS ∪ VC : w̃k

i = 1
from route k of solution S. The savings are calculated by connecting the two nodes before
and after the removed node i. Obviously, when only one insertion or removal takes place, the
actual cost modification matches the one calculated by the approximation. However, when
multiple insertions occur, these can the place in consecutive route positions, and as a result the
approximate modification cost does not match the actual one.

Additionally, let us introduce binary variables αk
i and λk

i which are equal to 1, if node i is
inserted (removed) in (from) route k of solution S, respectively. Variables αk

i and λk
i are only

defined for nodes such that w̃k
i = 0 and w̃k

i = 1, respectively. Finally, parameters N+
C and N−

C

limit the maximum number of allowed insertions and removals, respectively. Parameter NS is
the minimum number of allowed supply point swaps.

Also, let z be the time of visit of the last customer to be served.
Below, the NID MIP is presented:

min
α,λ

z (113)

subject to

∑
i∈VS∪VC :w̃k

i =0

αk
i ≤ N+

C k ∈ K (114)

∑
i∈VS∪VC :w̃k

i =1

λk
i ≤ N−

C k ∈ K (115)
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∑
i∈VC

w̃k
i +

∑
i∈VC

αk
i −

∑
i∈VC

λk
i ≤ Cmax k ∈ K (116)

∑
k∈k

αk
i − λk

i = 0 i ∈ VC (117)

∑
k∈K

αk
i ≥ NS i ∈ VS (118)

∑
k∈K

λk
i ≥ NS i ∈ VS (119)

∑
k∈k

αk
i − λk

i = 0 i ∈ VS (120)

∑
i∈V

∑
j∈V :i ̸=j

cij x̃
k
ij +

∑
i∈VS∪VC

Ak
i α

k
i −

∑
i∈VS∪VC

Λk
i λ

k
i ≤ z k ∈ K (121)

αk
i ∈ {0, 1} i ∈ VS ∪ VC : w̃k

i = 0 (122)

λk
i ∈ {0, 1} i ∈ VS ∪ VC : w̃k

i = 1 (123)

z ∈ R>0 (124)

Objective function (113) minimize the time of service the last customer. Constraint (114)
ensures that up to N+

C nodes are inserted into the solution. Similarly, constraint (115) limits
the number of removed nodes to N−

C . Constraint (116) guarantees that the the total load does
not exceed the maximum capacity Cmax. The first term represents the current route load. The
second one is the extra load incurred for serving the inserted customers and the third one is the
load removed by removing customers. Constraints (117) ensure that all customers are visited by
not allowing a node to be only removed or only inserted. Constraints (118) and (119) enforce the
minimum number of supply point swaps. Constraints (120) ensure that only one supply point
is preserved per route. Inequalities (121) force variable z to take the value of the last served
node. Of course, due to the approximation, this is an approximation of the actual time. Finally,
constraints (122), (123) and (124) are variable bounds.

7 The Cumulative Capacitated Vehicle Routing Problem
with Time Windows

The Cumulative Capacitated VRP (CCVRP), is an extension of the Capacitated Vehicle Rout-
ing problem. It was first introduced and solved by Ngueveu et al. (2010). The CCVRP shares
a similar structure with the CVRP, but differs primarily in its optimization objective. Instead
of minimizing the total travel distance, the CCVRP aims to minimize the cumulative sum of
customer arrival times. Ngueveu et al. (2010) proposed two memetic algorithms that utilize
local search as the primary mechanism for search intensification. Lysgaard and Wøhlk (2014)
developed a branch-cut-and-price (BCP) algorithm to solve multiple instances of the CCVRP,
while Mattos Ribeiro and Laporte (2012) introduced an adaptive large neighborhood search al-
gorithm. This approach incorporates an adaptive probabilistic model to select the most effective
destruction and repair operators. In a comparison study, Ozsoydan and Sipahioglu (2013) eval-
uated the performance of several optimization algorithms, including genetic algorithms, particle
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swarm optimization, and Tabu Search, on the CCVRP. Ke (2018) later proposed a brain storm
optimization algorithm, which is capable of solving large-scale instances with up to 1,200 cus-
tomers. Finally, Kyriakakis et al. (2021) implemented both an ant colony optimization algorithm
and a hybrid variable neighborhood descent algorithm to address the CCVRP.

Although the literature on the CCVRP and its extensions is extensive ((Rivera et al., 2015,
2014; Lalla-Ruiz and Voß, 2020)), very few studies have explored the CCVRP with time window
constraints (CCVRPTW). To our knowledge, only two works have examined this variation. Liu
and Jiang (2019) were the first to introduce and analyze the CCVRPTW, proposing a hybrid
large-neighborhood search algorithm that utilizes a constraint relaxation scheme to extend the
search space, allowing for the exploration of both feasible and infeasible neighboring solutions.
More recently, Kyriakakis et al. (2022) presented a hybrid Tabu Search-variable neighborhood
descent algorithm for solving this problem.

Formally, the problem can be defined as follows: Let G = (V,E), be a directed graph, where
V = {0, 1, . . . , n} is the set of nodes and E = {(i, j) : i, j ∈ V, i < j} is the set of edges, i.e., an
edge (i, j) denotes a directed edge between nodes i and j with an associated travel time/distance
ti,j . A homogeneous fleet of K vehicles is considered, with Q denoting the capacity of each
vehicle. Furthermore, a time window [ei, li] and a demand qi are associated to every node i ∈ V ,
while a common service time s is required for every visit. Also, let tki define the arrival time of a
vehicle k on a node i. Note that, T k

i = 0, when a vehicle k visits node i at the start of the time
horizon, or when it does not visit node i. The objective is to minimize the cumulative arrival
time of the vehicle to all the customers:

Minimize Z =

K∑
k=1

n∑
i=0

T k
i (125)

Note that, when s = 0, the objective describes the cumulative distance for visiting all the
customers.

7.1 Constraint Programming formulation

A CP model is proposed to solve the problem. Note that, we adopt the IBM CP Optimizer
nomenclature, nevertheless, the type of global and local constraints used are available on most of
the available CP frameworks of the literature and therefore the model should be straightforward
to adapt and reproduce.

Let vi,k an interval variable that denotes a visit of a vehicle k at node i, with a fixed duration
equal to s and an interval variable vi that denotes the visit to i. Also, let ck and denote the load
of a vehicle k. Given the above notation, the CP model is presented below:
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Z =

K∑
k=1

∑
i=0

StartOf(vi) (126)

StartOf(vi) ≥ ei ∀i ∈ V \ {0} (127)

EndOf(vi) ≤ li ∀i ∈ V \ {0} (128)

ck ≤ Q ∀k ∈ K (129)

ck =

n∑
i=1

PresenceOf(vi,k)di (130)

Alternative(vi, {vi,k ∀k ∈ K}) ∀i ∈ V \ {0} (131)

NoOverlap({vi,k ∀i ∈ V \ {0}}) ∀k ∈ K (132)

Constraint (126) calculates the cumulative arrival time. Constraints (127) and (128) enforce
a customer visit to occur only within the associated time window. Note that, Constraints 127
and (128) are satisfied in the case that a vehicle k does not visit a node i. Constraints (129) and
(130) ensure that the vehicle capacity constraints are respected. Lastly, Constraints (131) allow
for only one vehicle to visit a customer, while Constraints (132) ensure the visits of every vehicle
will not overlap with each other. Note that, Constraints (132) takes notice of the edge set E, so
as to impose the correct traveling time between two nodes.
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