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Abstract 
Our aim in this paper is threefold. First, to test the robustness of the relation between total 

factor productivity growth and inflation to the specification of the estimating model; second, to 
test the stability of their relationship in the short run and in the long run, and third, to investigate 
the direction of causality between these two variables. To accomplish the first objective, we esti-
mate a generalized Box-Box cost function using data from the two-digit Standard Industrial Clas-
sification of manufacturing industries in Greece during the period 1964-1980. The results show 
that: a) the acceleration of inflation from 1964-1972 to 1973-1980 reduced total factor productiv-
ity growth in a way that was both statistically significant and sizeable, and b) even when the ef-
fect of inflation is separated from the effects of technical change and economies of scale, the 
choice of functional form is most crucial. With respect to the second objective, somewhat to our 
surprise, we find that the inflation-productivity trade-off prevails even in the long run. And, fi-
nally, regarding the third objective, it emerges that in the great majority of two-digit manufactur-
ing industries the causality runs from inflation to productivity. On these grounds we conclude 
that for a precise estimation of the relationship under consideration it is imperative to sort out the 
three effects involved, do so by adopting the most general flexible functional form for the cost 
function, and run the appropriate stability and causality tests.   
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1. Introduction 

The efforts by a long list of investigators in the last two decades to shed light on the rela-

tion between total factor productivity growth and inflation have focused on two tasks. To estab-

lish its analytical form, and to characterise its significance and robustness to changes in the data 

and the research methodologies used. The literature that has accumulated shows that the results 

have been quite disparate. More specifically, while on the one hand the evidence indicates be-

yond reasonable doubt that total factor productivity growth is inversely related to inflation, on the 

other hand, the significance and robustness of the estimated relation remain uncertain.  

For an example in this respect, consider the findings by Buck and Fitzroy (1988), Grimes 

(1991), Barro (1991), Cozier and Selody (1992), Fischer (1993), Smyth (1995), Clark (1997) and 

Motley (1998) more recently. Even though they employ different sets of data and research ap-

proaches, all of them find that the relation between total factor productivity growth and inflation 

is negative. But with regard to its significance, some detect negligible effects of inflation on total 

factor productivity growth, whereas others come up with sizeable influences. Barro (1991), for 

instance, finds that, if a country reduced its inflation from, say, 7% to 2%, it would see its growth 

rate rise by only a little more than .01%. This implies that the government of that country would 

not need to strive to reduce inflation, because its gains in terms of total factor productivity growth 

would be marginal. On the contrary, Motley (1998) obtains a strikingly different result. Accord-

ing to this, a reduction in inflation by 5% would increase the growth rate of real Gross Domestic 

Product (GDP) per capita at least 0.1 percentage point. Hence the government would have a 

strong incentive to adopt anti-inflationary policies. 

 In view of this uncertainty researchers turned their attention to the reasons that might be re-

sponsible. From their endeavours it emerged that the main problem had to do with the specification of 

the models employed in the estimations. Two characteristic examples in this regard are the studies by 

Levine and Renelt (1992) and Clark (1997), which find that “…the estimates of the relationship suf-

fer robustness problems that plague a variety of model specifications”. So when in Bitros and Panas 

(1998) we visited the same issue, we were aware of the particular shortcomings that had to be over-

come in order to advance the evidence beyond the state it had reached at the time.  

  Our view then was that previous efforts had failed to pin down the relation because research-

ers had not managed to distinguish the effect of inflation on total factor productivity growth from the 

effects of technical change and scale economies. This realisation implied two consequences. First, 

that researchers attributed to inflation an effect that might very well be due to some extent to these 



 

sources; and, second, that it was natural for the effect of inflation to be very sensitive to model speci-

fication, because the models used in the estimations had not been targeted to account for the variabil-

ity of technical change and scale economies. For this reason, in Bitros and Panas (1998), we adopted 

a translog cost function approach that enabled us to sort out these three effects. 

However, while occupied with the aforementioned paper, we had not realised that by fol-

lowing Appelbaum (1979) and Berndt and Khaled (1979) we could have generalized our model 

even further. For, if instead of the translog we had adopted a generalized Box-Cox cost function, 

we could have tested far more strenuously the sensitivity of our estimates to model specification, 

since this function includes the translog, the generalized Leontief, and the generalized square root 

quadratic cost functions as special cases. So our first objective in this paper is to estimate a gen-

eralized Box-Cox cost function using the same data as before, and to test the robustness of the 

results to the new specification of the model.  

A second objective is to study the dynamics of the trade-off between inflation and produc-

tivity using appropriate data and econometric techniques. This is motivated by at least two rea-

sons. The first is that if the trade-off does not remain stable over time, its usefulness will be lim-

ited, whereas the second reason is the following. At the macroeconomic level the empirical evi-

dence is that an increase in the rate of inflation reduces economic growth in the short-run, but has 

no long-run effect either on the rate of economic growth or on the level of real per capita output. 

Yet at the sector or industry level our knowledge is at most scanty. So by focusing on the dynam-

ics of the trade-off at the two-digit manufacturing industries we may be able to shed some light 

on the microfoundations of the so-called principle of superneutrality of money.  

Finally, a third objective is the following. Since inflation is not exogenous, the most an 

empirical model without enough macroeconomic structure like ours may be expected to identify 

would be an association between changes in prices and productivity. To be sure even this much 

of evidence provides valuable guidance. But in the absence of tests regarding the direction of 

causality between these two variables the results would not be exploitable by policy makers. 

Consequently, to enhance the usefulness of our estimates and at the same time to stay clear from 

attributing to them more significance for policy applications than they deserve, we shall run a se-

ries of causality tests.   

 With respect to our first objective the estimates confirm that, on the average, the accel-

eration of inflation in Greece from 1964-1972 to 1973-1980 reduced total factor productivity 

growth in the two-digit Standard Industrial Classification manufacturing industries and did so in 



 

a way that was both statistically significant and sizeable. Moreover, the estimates reveal that, 

even when the effect of inflation is separated from the effects of technical change and economies 

of scale, the choice of functional form is most crucial. Regarding the second objective, much to 

our surprise the inflation-productivity trade-off survives even in the long run, thus suggesting that 

the principle of superneutrality of money may not hold in this sector. Finally, with respect to the 

third objective, we find that, while in the short run inflation Granger causes productivity, in the 

long run the causality between these two variables is bi-directional. On these grounds we con-

clude that, for a precise estimation of the adverse impact of inflation on total factor productivity 

growth, it is imperative both to sort out the three effects involved, do so by adopting for the cost 

function the most general flexible functional form, and perform the appropriate stability and cau-

sality tests.   

In the next Section we do three things. We explain the model adopted to assess the impact 

of inflation on total factor productivity growth. We describe the data and the definition and the 

construction of the variables entering the estimations; and, lastly, we present and comment on the 

results. In Section 3 we describe the data and the tests performed to investigate the existence and 

stability of the inflation-productivity trade-off in the long run. Our interpretations of the results 

from these tests are included in the same section. The tests, the results, and our comments regard-

ing the direction of causality in the inflation-productivity trade-off as well as its dynamic proper-

ties are contained in Section 4. And, finally, in Section 5, we summarise the conclusions. 

 
2. The inflation-productivity trade-off  

In this section we derive a generalized Box-Cox cost function, we estimate it using the 

same data as in Bitros and Panas (1998), and test the robustness of the results to the proposed new 

specification of the model.  

 
2.1 The model 

Economic theory suggests that there is a function  y),p ...., ,p ,p(CC n21= , where C de-

notes the total cost, n21 p ...., ,p ,p  are the observed prices of the n ...., 2, ,1 inputs and y is the out-

put produced. But economic theory is silent regarding the form of this cost function. For this rea-

son, in most cases, researchers have approximated it by a flexible functional form.  

Diewert (1974) has defined a flexible functional form as one that can provide a second-

order approximation to an arbitrary twice-differentiable function. The most popular flexible func-



 

tional forms in this class have been the translog function1 and the generalized Leontief function.2 

Their basic merit being that they do not constrain the partial elasticities of substitution or their 

ratios to a given constant. 

The present paper adopts the generalized Box-Cox approximation to the cost function. 

Berndt and Khaled (1979) introduced it because of its superior advantages over the above-

mentioned flexible functional forms. In particular, the generalized Box-Cox cost function: 

•  Includes the translog, the generalized Leontief and the generalized square root quadratic 

functions as special cases.  

•  Imposes a priori restrictions neither on the partial elasticities of substitution or their ra-

tios nor on the returns to scale or the bias of technical change, and  

•  Facilitates considerably the introduction of certain simplifications by recourse to the 

theory of duality. 

To highlight the last advantage, recall, say, from Varian (1978) that, given a cost function 

that is non-decreasing, homogeneous, concave, and continuous in prices, there exists a production 

function of which that cost function is a representation. More specifically, let  

 
)t,E,L,K(fy =                                                       (1) 

 

be a production function where y is output, K is capital, L is labour, E is energy, and t is time, 

serving as a proxy for technical change. If we assume that the producer minimises the cost of 

production subject to a given level of output, then (1), may be represented by the following dual 

cost function which summarises the underlying production process: 

    

)t,y,p,p,p(C 321Φ=                                                        (2) 
 

where C is total cost and p1, p2, and p3 are respectively the input prices of K, L, and E. 

So this study begins by assuming that the production technology of firms is represented 

by the generalized Box-Cox cost function: 

 
   (y,p,π)1 / .C [1 G(p)] yβλλ= +                                               (3) 

 

                                                 
1    See Christensen, Jorgenson and Lau (1971, 1973, and 1975). 
2    See also Diewert (1971). 
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For (3) to exist as a well behaved cost function it must satisfy several conditions. First, in order for 

it to be dual to a production function, it must meet the condition of linear homogeneity with regard 

to input prices. According to Berndt and Khaled (1979), this entails that:       
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Second, the system of input demand equations resulting from (3) must satisfy the condition of inte-

grability. The reason being that only then these functions will integrate into an aggregate cost func-

tion characterized by the properties of monotonicity and concavity. In this respect, Hurwicz (1971) 

and Hurwicz and Uzawa (1971) have shown that a system of demand equations is integrable, if and 

only if, its Hessian matrix is symmetric. Thus, under cost minimization, for a well-behaved aggregate 

cost function, and hence for a well behaved production function to exist, it must hold that:  

 
            j).(i   ,jiij ≠γ=γ                                                                (7) 

 
Next, in order to introduce disembodied technical change (see, Berndt and Khaled (1979)), (3) is 

modified as follows: 
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When conditions (6) -(7) and (9)-(10) are imposed, (7) transforms into: 



 

,ey})pp()/2{(C ),p,t(),p,y(/12/
jiij∑∑ πΤπβλλγλ=                                      (11) 

 

where β(y, p, π) is defined in (5) and T(t, p, π) is defined in (9). From (11) it is easy to verify that: 

a) when λ=1, (11) is equivalent to the generalized Leontief cost function, b) when λ=2, (11) is 

equivalent to the generalized square root quadratic, and c) when λ→0, (11) is equivalent to the 

translog. Therefore, (11) is indeed more flexible than all these functions  

In addition, (11) is non-homothetic with exponential non-neutral technical change. The parame-

ters iϕ  are the non-homotheticity coefficients. These parameters indicate the presence of scale economies 

with respect to the individual inputs. For instance, if i 0ϕ =  for all i, the production structure is homo-

thetic. If in addition θ=0 the production is homogeneous of degree 1/β . The parameter 
2 2( ln C / ln y )θ =∂ ∂ carries information regarding the slope of the cost curve of the industry. When 

0θ>  the minimum point of the average cost curve is reached as output increases. Hicks-neutral technical 

change may be imposed by constraining the non-neutrality parameters ir 0  i= ∀ ,  E. L,,Ki =  If this 

condition is not imposed, technical change is factor i-saving, if ir <0 , or factor i-using, if ir >0.     

According to Diewert (1974), given a generalized Box-Cox cost function that is: a) posi-

tive for positive values of y, an b) homogeneous of degree one, increasing and concave in p1, p2, 

and p3, it is possible to obtain the conditional factor demands by applying Shephard’s lemma. 

The expression in (11) is such a cost function. Therefore, differentiating it with respect to the in-

put prices, the conditional factor demand functions that result are given by: 
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These equations are the equations that are used in estimating the coefficients of the generalized 

Box-Cox cost function for each manufacturing industry. 

The Allen partial elasticities of substitution, ijσ , are defined by the relationship: 

  
 E, L,K,ji,for     ,CC/CC j

.
iij
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ij ==σ                                              (15) 

 
where the subscripts refer to first and second order derivatives with respect to input prices. Using (15) 

these partial elasticities can be computed from the generalized Box-Cox cost function as follows: 
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where the ji S  and S  refer to the cost share of i or j input.  

The Allen partial elasticities of substitution are related to input demand elasticities by:  
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From (17) follows that, if ijσ >0 , the inputs ji x ndax  are substitutes, thus implying that ijε >0 . 

Conversely, if ijσ <0 , the inputs ji x andx are complements, thus implying ijε <0 . 



 

In addition, the generalized Box-Cox cost function provides the growth rate of total factor 

productivity. Following Denny, Fuss and Waverman (1981), and Baltagi and Griffin (1988), the 

rate of total productivity growth (henceforth PFT ) is given by: 
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Equation (18) decomposes the total factor productivity growth, ,PFT  into three components: (i) the 

scale effect, which depends on cyε  and y , (ii) the effect of technological change, ctε , and (iii) the 

effect of inflation cπε π . This expression will be especially useful in looking at the effect of in-

creased inflation on total factor productivity growth. 

 

2.2 Data, definitions and measurement of variables 

Our data comprise observations from the two-digit Standard Industrial Classification of 

manufacturing industries in Greece and span the period from 1964 to 1980. Aside from the fact 

that we wished to compare our results with those reported earlier in Bitros and Panas (2001), the 

observation period had to be limited to 1980 for three reasons. The first of them was that the data 

provided by the National Statistical Service of Greece in its Annual Industrial Survey after 1980 

are not compatible with those before 1980. Up to 1980 the National Statistical Service of Greece 

reported employment in manufacturing enterprises with an average employment of at least 10 

persons. But after 1980 it started reporting employment by all manufacturing enterprises with an 

average employment of at least 20 persons and manufacturing establishments with an average 

employment of 10 to 19 persons.  

The second reason emanated from the lack of capital stock series at the two-digit level after 

1980. Due to the aforementioned incompatibility in the available data, even if we had the resources to 

construct capital stock series beyond 1980, they would not be internally consistent. Thus, we were 

compelled to use the capital stock series computed by Kintis (1986). 



 

 Finally, the third reason was that, if we had to choose between the period before and the 

period after 1980, we would have opted for the former. This is because the period 1964-1980 

consists of two sub-periods: one of low inflation (1964-1972) and another of high inflation 

(1973-1980). Hence, it is more suitable for our study than the period since 1980. 

Unless indicated otherwise, all data come from two publications of the National Statistical 

Service of Greece. These are the Annual Industrial Survey and the Statistical Yearbook of 

Greece. All variables are measured in 1975 prices and are defined as follows: 

C =  sum of input costs. 

y  =  value-added. 

L  =  man-hours per year. 

E  =  kilowatt-hours of energy consumption.  

K  =  capital stock as indicated above.  

Lp  = real wage rate. This was calculated with data from the Annual Industrial Survey as the 

ratio of the deflated wage bill to man-hours worked. 

Kp  = user cost of capital. This variable was constructed as )r(qK δ+ , where Kq is the in-

vestment deflator, r = the interest rate, and δ = depreciation rate of the capital stock. 

Ep = real price of energy obtained by dividing the deflated nominal energy expenditure by 

the energy consumption in physical units.  

 π  =  relative change in output price. 

The investment deflator for the construction of Kp was the implicit price deflator for gross in-

vestment in manufacturing and was extracted from the National Income Accounts of Greece. The 

interest rate came from the Monthly Statistical Bulletin of the Bank of Greece. And δ was calcu-

lated as the ratio of depreciation reserves over the value of undepreciated physical assets, ex-

cluding the value of land. 

 
2.3 Results  

To estimate the parameter of interest, we conceived of (12), (13) and (14) as comprising a 

three-equation system. Also, following Berndt and Khaled (1979), we added to each equation a sto-

chastic term to account for the errors that occur in cost minimisation. So the general form of the 

non-linear system that resulted was: 
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where   i, j = K, L, E and t = 1, 2, ..., 17 and  

                  itξ  =  observed input-output value; 

 Ct   = observed unit cost; 

 itu  = error term which is assumed to be distributed as )N(0,~u 2
it σ . 

All the parameters of the generalized Box-Cox cost function (11) are contained in (22). Spitzer 

(1981) has shown that it is possible to employ non-linear least-squares procedures to obtain the 

parameter estimates of a non-linear system. In this study we use the non-linear three-stage least-

squares method. From (22) it follows that the number of parameters to be estimated is very large in 

relation to the number of observations (problem of degrees of freedom). However, according to 

Amemiya (1977) and Gallant (1977), the non-linear three-stage least-squares technique permits using 

instrumental variables. So, to overcome the problem of degrees of freedom we adopted this estimat-

ing technique.3 Table 1 presents the estimates of the generalised Box-Cox cost functions for the 

twenty two-digit manufacturing industries. These were obtained in the following manner. In or-

der to apply the non-linear three-stage-least-squares estimator it was necessary to provide starting 

values for each and every parameter in (22). Initially, the starting values chosen were the parame-

ter estimates that we obtained in Bitros and Panas (1998) using the same data set in conjunction 

with a translog cost function. However, convergence failed in all industries and we had to adopt 

an indirect approach. If (22) satisfied the condition of integrability, the Hessian would be sym-

metric. So to reduce the number of estimable parameters we fixed the values of 332211  and , , γγγ to 

                                                 
3  In addition to the time trend and the constant, the set of instrumental variables included: the number of establishments, 

the average annual employment, the numbers of working proprietors, salaried employees and wage earners, the gross 
value of production, the amounts paid in salaries and wages, and the values of gross investment in machinery, build-
ings and transport equipment. 

 

 
Please insert Table 1 here 



 

the values shown in the table and went ahead with the estimation. This appeared to improve con-

vergence but not totally. For this reason we then fixed the values of 13γ  to the ones shown and 

achieved convergence in all industries.  

Moreover, since we had fixed the values of parameters 332211  and , , γγγ to achieve conver-

gence, from 6(ii) it is clear that we had imposed the condition of linear homogeneity of degree 

one on the cost function, with respect to input prices. So the remaining question was whether the 

estimates satisfied the conditions of monotonicity and concavity. 

       With regards to the former conditions, this required that:  

 

i

C 0     for all i K, L, E.
p

∂ > =
∂

                                            (23) 

 
By using the parameter estimates in Table 1 and substituting each observation, it was found that 

all predicted values for all industries were non-negative. Thus, the monotonicity condition was 

satisfied for all data points. 

As to the concavity of the cost functions, this would be satisfied if the Hessian matrix 

j,i, allfor   ,pp/C ji
2 ∂∂  turned out to be negative semi-definite at each observation. The estimates in 

Table 1 confirmed the negative semi-definiteness of the Hessian matrix. So, given that the symmetry 

conditions are satisfied a priori, the estimated conditional demand functions (11), (12), and (13) are 

integrable, and hence the generalized Box-Cox cost function is well behaved for the observed data.  

Now let us look closer at the estimates in Table 1. Clearly, the overwhelming majority of 

coefficients are significantly different from zero. The parameters of main interest in this table are 

the estimates of λ because they indicate how close the generalized Box-Cox specification comes 

to one of the three special cases. That is, the estimates of λ permit statistical tests for the cases of 

translog, generalized Leontief, and generalized square-root quadratic. For example, in industry 

21, using the estimate for λ of 1.4431, with asymptotic t-statistic of 5.48, it is clear that the trans-

log and generalized square-root quadratic cases are rejected, while the generalized Leontief is not re-

jected at any conventional level of significance. Out of a total of twenty estimates for λ, eight –i.e., for 

industries 21, 25, 26, 32, 34, 36, 37, and 39- are statistically different from one at the 5% level. There-

fore, the generalized Leontief specification is not rejected in 40% of the cases. The generalized 

square-root quadratic model is not rejected in 10% of the cases, i.e. industries 27 and 30. And, finally, 

the estimates for λ are different from zero, one, or two in ten industries or 50% of the cases. As a re-



 

sult, in 50% of the industries investigated none of these three flexible functional forms is supported 

by the data. In view of these findings it was clear that, if any of the less general functional forms had 

been used to represent the cost function, the estimates would be biased in unknown directions and mag-

nitudes.  

To highlight the nature of biases that would result from a misspecification of the func-

tional form of the cost function, it suffices to contrast the values of certain crucial parameters 

under the generalized Box-Cox and the translog specifications. Recall from above that the 

non-homotheticity coefficients  3 2  and ϕϕ measure the existence of input i-using or input i-

saving scale economies accordingly as 2 3 2 3, 0 or , 0.ϕ ϕ ϕ ϕ> <  Therefore, given from Table 1 

that  3 2  and ϕϕ  are generally positive and statistically different from zero, all two-digit indus-

tries experienced labour and energy-using scale economies. So the question arose as to what 

might have happened if, instead of the generalized Box-Cox specification, we had used the 

translog. The results from Bitros and Panas (1998) are quite revealing. In those industries in which 

the proper specification was another functional form, the adoption of a translog cost function led to 

significantly different estimates of the bias in scale economies. For an example, consider industry 21 

in which the adoption of a translog specification was inappropriate. According to our earlier results, 

industry 21 experienced labour and energy-saving scale economies, and hence the bias was exactly 

opposite to that from Table 1. And, of course, similar inconsistencies with regard to the bias of scale 

economies would arise in all those industries in which none other generalised flexible functional form 

than the Box-Cox was appropriate.  

Next consider the parameters 32 r and r , which indicate the nature of technical change. From 

Table 1 we see that all estimates of r2 are negative and statistically significant. This confirms that 

technical change was labour saving in all industries. By contrast, our earlier results using a translog 

specification of the cost function showed that industry 24 experienced labour-using technical change 

and that the inconsistencies were even wider with regard to 3r . For, as the results from Table 1 indi-

cate, technical change was energy saving in 14 out of 20 industries, whereas by our earlier results, 

energy-saving bias prevailed only in 10 out of 20 industries and, indeed, not the same ones.  

Finally, it should be pointed out that the adverse effects on the estimates from the mis-

specification of the cost function were not limited to the sign reversals just mentioned, be-

cause in many cases that the parameters preserved their signs, the misspecification distorted 

their values significantly. Two characteristic examples in this respect are represented by in-



 

dustries 27 and 29. From Table 1 we see that the coefficients of, say, technical change are: 

(27) 2 3r 0.03344,   r 0.00166=− =− and (29) 2 3r 0.01711,   r 0.00145=− = . But the same coeffi-

cients from our earlier study using the translog specification turned out to be the following: (27) 

2 3r 0.012,   r 0.053=− =− and (29) 2 3r 0.028,   r 0.002=− = . Therefore, while the misspecification 

did not affect the signs of the coefficients, it did distort their magnitudes by leading, in both indus-

tries, to serious underestimation or overestimation of the input bias in technical change.  

In the light of the above findings we surmised that the estimates in our earlier study re-

garding the relation between inflation and total factor productivity growth needed revision. To 

this effect we divided the data again into two sub-periods, characterised by low (1964-1972) and 

high inflation (1973-1980), and calculated for each the three components in equation (18) at the 

mean values of the variables. Table 2 below gives the results from these calculations. In compari-

son to those reported in our earlier study, several interesting differences have emerged. For one, 

observe that the acceleration of inflation from the one period to the other accelerated the slowdown in 

total factor productivity growth in all industries. On the contrary, according to our earlier results only 

in 8 out of 20 two-digit industries did the acceleration of inflation between the two periods result in a 

deceleration of total factor productivity growth. So the importance of adopting the most general flexi-

ble functional form available for representing the cost function should be obvious.  

 Another interesting finding is that there was not a single industry where, from the one pe-

riod to the other, the acceleration of inflation did not accelerate the slowdown in total factor pro-

ductivity in a statistically significant way. To obtain an estimate of this relationship at the overall 

manufacturing level, we used (18) to compute the following expression: 

 

ˆcπ
ˆcπ

ˆ ˆεTFP π πˆ=-( π+ε )ˆ ˆπ πTFP TFP
η ∂∂=

∂ ∂

� � ��
� �� �

                                               (24) 

 
where η  is the elasticity of total factor productivity growth with respect to inflation and the hat 

over a variable denotes its sample mean value during the period 1964-1972. The results of the 

calculations gave 1,02η ≈−  and this meant that a 10% increase in inflation, ceteris paribus, 

 
Please insert Table 2 here 



 

would reduce total factor productivity growth in this sector by 10.2%. Clearly, this is a notewor-

thy finding because it indicates that the losses in total factor productivity growth may increase 

(decrease) faster than the rate by which inflation increases (decreases).  

 Lastly, it may not be superfluous to point out that a misspecification of the cost function 

leads to overestimation or underestimation of total factor productivity growth. This is so because 

the biases introduced in the estimation of the components in the right-hand side of equation (18) will 

cancel out only by chance. In the present case, the estimates of total factor productivity growth that 

are exhibited in Table 2 differ significantly from those that we reported in our earlier study. 

 
3. The inflation-productivity trade-off in the long run 

In this section we examine the relationship between inflation and productivity in the long 

run using cointegration techniques. The Index of Industrial Production (IP) for each two-digit 

manufacturing industry is used as a proxy for productivity and the Consumer Price Index (CPI) 

as an indicator of inflation. The data come from the National Statistical Service of Greece and 

span the period from 1988: 1 to 2004: 12.  

 
3.1 Stationarity of the series IP and CPI 

As a preliminary step to the formal tests, it is necessary to determine the stationary character-

istics of the time series. This requires an investigation for the existence of unit roots in the level of the 

variables as well as in their first differences. The test employed for this purpose is the Augmented 

Dickey Fuller (ADF) test, which is based on the following regression:  

 
k

t t-1 i t-i t
i 1

Y t Y Y uα β γ ϕ
=

∆ = + ⋅ + ⋅ + ⋅∆ +∑  ,                                     (25) 

 
where ∆ is the first difference operator, tY  is the time series under consideration, t is a time trend 

and tu  is a random error. The Akaike Information Criterion (AIC) determines the length of the 

lag for the ADF test. The results of this test for log levels and first differences showed that all 

variables are nonstationary in the levels. If a time series has a unit root, the first-order difference of 

the series is stationary. A series that is stationary after being differenced d times is said to be inte-

grated of order d or I(d) . The results of the unit root tests show iR I(1)∼  and RCPI I(1)∼ , 

where i it i,t-1R =log(IP /IP ) , t t-1RCPI=log(CPI /CPI )  and i 20,21,..., 37= .  Hence, since the variables 

are integrated of order one, i.e., they are all I(1) , the question now is whether they are cointe-



 

grated. A cointegration between two variables means that they display common trends in the long 

run. As stressed by Edders (1995, p.359), cointegration only shows the existence of a long run ex 

post stable relationship between the variables in question. 

 
3.2 Cointegration 

Since i it i,t-1R =log(IP /IP ) and t t-1RCPI=log(CPI /CPI )  are I(1) , cointegration tests may be 

used to assess whether these variables share common trends. There are many possible tests for 

cointegration. The most commonly used is the residual-based Engle-Granger technique. The test 

of cointegration involves two steps. The first step requires estimating a cointegration regression 

using variables having the same order of integration. 

 
it i,t-1 0 1 t t-1 tlog(IP /IP ) log(CPI /CPI ) ε ,β β= + ⋅ +         i 20,21,..., 37=  .             (26) 

 

In the second step the estimated residuals ( tε̂ ) from the cointegration regression are subjected to 

the stationarity test based on ADF test: 

 
m

t 1 t-1 t-j t
j 1

ˆ ˆ ˆε ε ∆ε uα δ
=

∆ = ⋅ + ⋅ +∑ j                                                    (27) 

 
If the residual variable is stationary, i.e., tε̂ I(0)∼ , then there is a long run relationship between 

the two variables. The results of the unit root tests showed that all series, tε̂ , are I(0) . That is 

true cointegrating residuals confirm stationary relationship on the one hand between productivity 

and inflation, R= f (RCPI), and on the other between inflation and productivity, RCPI = g (R). Fur-

thermore, the cointegration coefficient, 1β , is negative and indicates that in the long run productivity 

and inflation move in opposite direction. 

 In conclusion, the results of the tests presented in this section ascertained that at the two-digit 

SIC level of Greek manufacturing industries, there existed during the 1988-2004 period (a) a stable 

relationship between inflation and productivity, and (b) this relationship was negative.   

 
4. The causality between inflation and productivity  

We turn now to the issue of causality between inflation and productivity. To highlight it 

we shall adopt the Error Correction Model (ECM). Our basis for doing so is that, according to the 

Granger representation theorem, the existence from the above of a stable long run relationship 



 

between the variables i it i,t-1R =log(IP /IP ) and t t-1RCPI=log(CPI /CPI )  renders the estimation of this 

model a consistent and effective choice.  

 
4.1 Causality tests 

Granger (1988) has noted that cointegration between two variables is a sufficient but not 

necessary condition for the presence of causality in at least one direction. Since our variables are 

cointegrated, an error-correction term must be included in the causality test. The presence of 

cointegration provides a dynamic framework in which an error-correction variable represents de-

viations from a long run cointegration relationship, and the lagged difference terms represent 

short run dynamics. Error Correction Models are useful because they reconcile the short and long 

run behaviour of the variables under investigation. 

The next step is to test for the causality between the cointegrated variables. The procedure 

is described by the following equations: 

 
m n

t 0 y y,t-1 y,i t-i y,j t-i t
i 1 j= 1

κ l

t 0 x x ,t-1 x ,i t-i x ,j t-i t
i= 1 j= 1

∆ y E C T ∆ y ∆ x + u ,       (i)

∆ x = + E C T + ∆ y + ∆ x + u ,               (ii)

α α α β

β β α β

=

= + ⋅ + ⋅ + ⋅

⋅ ⋅ ⋅

∑ ∑

∑ ∑
       (28) 

 
where y and x are i it i,t-1R =log(IP /IP )  and t t-1RCPI=log(CPI /CPI ) ; ∆ is the difference operator; 

and y,t-1ECT  and x,t-1ECT  are the error correction terms; m, n, κ and l are the optimal number of 

lags of the first differences chosen according to the AIC criterion. Short run dynamic adjustments 

are captured by nonzero values for the y,iα ’s, x,iα ’s, y,iβ ’s and x,iβ ’s. In the ECM framework 

causation comes from two sources: (i) the error-correction terms, i.e. ,
y sα  and ,

x sα  and (ii) the 

lagged dynamic terms, i.e. ,
y,j sβ  and ,

x,j sβ . The error-correction terms are related with the long 

run causation while the lagged dynamic terms capture short run causation. Long run causality 

now can be ascertained by the significance of the parameters yα  and xβ . The hypothesis of long 

run causality from inflation to productivity is accepted if yα  is significantly different from zero. 

If xβ  is significantly different from zero then productivity causes inflation in the long run. If yα  

as well as xβ  are significant then there is evidence of long-run causality in both directions. Ta-

bles 3 and 4 summarize the findings from the estimates of equations 28(i) and 28(ii). 



 

The error correction terms turn out to be negative and statistically significant for both 

equations 28(i) and 28(ii). It is noted that the ECTt-1 coefficients are statistically significant. This 

implies that inflation did long run Granger cause productivity and vice versa. Hence, the empiri-

cal results indicate the existence of a long run bi-directional Granger causality relationship be-

tween inflation and productivity. 

The error correction term indicates the speed with which deviations from long run 

equilibrium will be corrected. In our case, the magnitude of the coefficient of ECTt-1 im-

plies that this would take place quite fast with over 100 percent of deviation being elimi-

nated after a month. Equation 28(i) shows the impact of price changes (measured by 
,DRCPI s ) on productivity (see Table 3). The sign and the size of the lagged coefficients of 

the DRCPI variables give an indication of the impact. In all cases inflation initially has a 

negative impact on productivity.  Similarly, the estimation of equation 28(ii) provides in-

formation on the impact of productivity on inflation in the Greek manufacturing sector (see 

Table 4). With the exception of two industries, the coefficients of DRt-1 are negative and 

statistically significant. These results suggest that productivity changes have an adverse im-

pact on inflation in the long run. 

For short run Granger causality we examine the following null hypothesis:  

 
0 y,1 y,2 y,nH : = = = =0β β β"                                                            (29) 

 

In testing H0, the standard F-test is used. Failing to reject the null hypothesis, H0 implies that in-

flation does not short run Granger cause productivity. In the same way, if the null hypothesis 

0 x,1 x,2 x,nH : 0α α α= = = ="  is rejected, we can say that productivity does not short run 

Granger cause inflation. The results from these tests indicated the existence in all cases of a one-

directional short run causal link from inflation and productivity.4 This is an important finding 

since it indicates that in the case of Greek manufacturing, inflation and productivity do not inter-

                                                 
4 The results of the tests based on the equations (25), (27), and  (29) at the two-digit Standard Industrial Classifica-

tion of Greek manufacturing industries over the 1988-2004 period are available on request from the authors. 
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act causally in the short-run, except in four cases. Hence, in the short-run there seems to be a relation 

between inflation and productivity in which inflation impacts productivity in a negative way. 

 
5. Conclusions 

In this paper we pursued tree objectives. The first of them was to test the robustness of the 

relation between inflation and total factor productivity growth to the specification of the model 

adopted for its investigation.  To do so we estimated a generalized Box-Cox cost function and 

compared the results with those from Bitros and Panas (1998) where we used the same set of data 

but in conjunction with a translog specification of the cost function. The results showed that the 

adoption of the wrong functional form leads to substantial biases. More specifically, using the 

translog specification of the cost function in industries where a generalised Box-Cox would be 

appropriate, caused sign reversals for several key parameters, whereas for those that retained their 

signs, it led to serious over or under estimations. For this reason, in future research efforts in this 

area it is advisable to adopt the most general flexible functional form available.  

The results confirmed also that for a precise estimation of the relation under investigation 

the effect of inflation on total factor productivity growth must be separated from those of scale 

economies and technical change. The reason for this being that otherwise there is the risk of attribut-

ing to inflation effects that may be due to these sources. Finally, our revised estimates showed that a 

10% increase in inflation, ceteris paribus, could reduce total factor productivity growth by as much as 

10.2%. This finding established firmly the importance of the relationship under investigation and left 

no doubt about the substantial gains associated with the controlling of inflation.  

Our second objective was to inquire about the existence and stability of the relationship between 

inflation and productivity in the long run. To this effect we run cointegration tests at the two-digit SIC 

manufacturing industries and found that during the 1988-2004 period there existed a stable negative 

relationship between inflation and productivity, thus suggesting that the principle of superneutrality 

of money may not hold in this sector. Lastly, with respect to our third objective, the estimates of the 

error correction model showed that, while in the log run there existed a strong bi-directional trade-off 

between inflation and productivity, in the short run inflation Granger reduced productivity in all but four 

industries. As a result, we concluded that a spell of inflation reduces productivity in the short run, but in 

the long run inflation and productivity losses reinforce each other. 
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Parameters 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

λ 0,5849 1,4431 1,5956 2,1575 0,6501 0,8842 1,0129 2,7487 2,2547 0,4554 1,6647 3,4564 0,789 7,4583 0,8794 1,5796 0,7762 1,1255 0,5859 0,8078
(4,4) (-5,5) (-8,5) (-10,8) (-5,3) (-3,5) (-2,4) (-3,2) (-7,8) (-2,8) (-5,6) (-5,1) (-6,5) (-13,3) (-7,9) (-11,2) (-4,3) (-5,7) (-5,2) (-7,0)

γ11 2,043 2,9927 2,6117 1,7632 2,4395 3,0789 37.769 0,9193 1,2353 1,8085 1,688 1,6689 2,1779 2,3787 2,0119 2,1197 3,1801 4,6775 2,7531 2,9022

γ12 0,0168 0,0126 0,0284 0,013 -0,0056 0,014 0,0013 0,035 -0,0038 0,0131 0,0197 0,0666 -0,015 0,0219 0,0754 0,0128 -0,0005 -0,0041 0,0096 -0,0332
(-8,6) (-3,6) (-10,6) (-7,2) (-4,6) (-4,0) (-0,6) (-13,9) (-1,8) (-4,1) (-2,7) (-2,4) (-0,2) (-8,5) (-7,0) (-8,3) (-0,3) (-1,4) (-7,6) (-1,1)

γ13 0,5135 0,6877 0,6649 0,7176 1,2361 1,6542 0,5399 6,1524 6,6331 5,7982 5,8556 5,7917 8,0179 6,1407 6,2875 6,3399 5,7016 5,9022 5,9941 6,2542

γ22 6,1055 5,9172 5,4541 5,9829 5,3664 5,7136 5,4474 6,0249 5,2714 6,9472 5,6908 5,6644 4,8672 5,4711 6,1055 5,7376 5,9019 5,7298 5,456 5,5314

γ23 0,1724 0,1901 0,053 0,1636 0,148 0,1134 0,113 0,0939 0,1399 0,092 0,2961 -0,2245 1,1516 0,1217 0,1628 0,1738 0,2349 0,212 0,1132 0,4784
(-9,3) (-6,4) (-1,9) (-8,1) (-14,9) (-4,4) (5,3) (-3,6) (-4,1) (-3,6) (-3,8) (-0,7) (-0,7) (-4,5) (-1,7) (-10,8) (-15,6) (-5,9) (-9,7) (-2,21)

γ33 7,0384 6,6971 5,8971 6,051 6,7764 5,7744 5,8913 5,5985 6,7956 5,8411 6,4541 6,5439 5,1149 6,3882 5,607 6,0325 6,3965 6,378 6,5954 6,21438

α2π -0,1434 -0,1168 -0,045 -0,1328 -0,1499 -0,0205 -0,0676 -0,0536 -0,0422 -0,129 -0,2221 0,1594 0,0198 -0,0778 0,0515 -0,137 -0,1822 -0,0961 -0,0895 -0,2925
(-8,2) (-5,2) (-1,9) (-5,7) (-9,0) (-1,6) (-6,1) (-3,1) (-1,3) (-7,5) (-2,3) (-1,3) (-0,0) (-4,7) (-1,6) (-7,8) (-10,3) (-3,7) (-7,2) (-6,2)

α3π 0,0209 0,0088 0,002 0,002 0,012 -0,0056 0,0052 0,0439 0,001 0,0023 -0,0284 0,0036 0,0392 -0,001 -0,0319 -0,0016 0,0026 0,008 -0,0012 -0,0051
(-8,3) (-3,4) (-1,4) (-0,3) (-7,5) (-0,6) (-4,9) (-1,8) (-0,3) (-0,5) (-0,6) (-0,1) (-1,2) (-0,1) (-0,7) (-0,3) (-1,2) (-2,1) (-0,4) (-0,3)

αyπ 0,0015 3,3852 0,8929 0,6312 0,9887 1,1954 3,8315 1,5951 0,5404 3,316 4,5011 1,2548 0,6449 2,386 1,4665 2,2975 2,6798 1,074 1,4201 3,4946
(-2,0) (-2,8) (-2,6) (-3,3) (-1,9) (-3,5) (-5,3) (-4,6) (-2,6) (-4,6) (-5,3) (-3,2) (-5,5) (-4,9) (-4,6) (-4,6) (-4,3) (-5,8) (-6,3) (-2,6)

απ 0,1268 0,1459 0,158 0,185 0,0991 0,7373 0,6023 0,1856 0,1271 1,2009 1,4841 0,5292 1,0067 0,6463 0,6787 1,0832 0,7553 0,5121 0,7477 0,4509
(-3,5) (-4,1) (-2,2) (-3,6) (-2,5) (-4,6) (-3,0) (-2,5) (-2,2) (-4,7) (-2,6) (-1,9) (-2,7) (-1,7) (-1,5) (-3,1) (-2,1) (-3,6) (-3,9) (-1,8)

αt 0,0053 0,0094 0,0227 0,0084 0,004 0,0161 0,0128 0,0105 0,0091 0099 -0,0123 0,0302 0,0986 0,0119 -0,0246 0,0053 0,00001 0,009 0,0087 -0,0204
(-2,6) (-2,8) (-8,1) (-3,8) (-5,1) (-3,9) (-5,4) (-2,6) (-2,0) (-4,4) (-1,7) (-1,3) (-0,5) (-4,4) (-2,9) (-3,2) (-0,9) (-2,3) (-3,6) (-1,2)

β 0,4571 0,8632 0,8769 0,7465 0,8698 0,7558 0,7923 0,8933 0,9782 0,8753 0,9421 0,9339 0,853 0,7666 0,963 0,5157 0,7517 0,9784 0,7639 0,8263
(-5,1) (-6,4) (-4,7) (-6,6) (-1,8) (-3,7) (-5,3) (-2,8) (-1,6) (-3,7) (-3,3) (-1,5) (-4,9) (-2,6) (-2,1) (-2,8) (-2,6) (-1,2) (-3,8) (-4,1)

θ -0,3609 2,2573 -1,5886 4,6259 -0,3835 2,185 2,5331 1,4866 -0,1526 1,2321 1,6635 -0,0961 0,5083 0,5999 4,5211 3,3773 3,0182 -0,8519 0,7121 0,4946
(-1,3) (-3,6) (-1,4) (-5,92) (-1,11) (-5,8) (-3,8) (-2,5) (-1,6) (-3,3) (-3,9) (-1,1) (-4,2) (-3,8) (-8,9) (-4,1) (-6,7) (-1,0) (-2,9) (-2,6)

φ2 0,1018 0,1342 0,1119 0,1045 0,1672 0,1533 0,1731 0,1056 0,1488 0,1667 0,1235 0,0711 0,1172 0,0942 0,0549 0,01243 0,1563 0,1377 0,1344 0,2034
(-55,0) (-46,3) (-49,9) (-52,1) (-87,7) (-69,2) (-71,4) (-42,5) (-63,9) (-79,4) (-15,1) (-7,0) (-3,2) (-56,3) (-16,5) (-72,9) (-84,0) (-62,1) (-46,6) (-35,2)

φ3 0,0097 0,0072 0,0019 0,0071 0,0026 0,0052 0,0016 0,0201 0,0021 0,0033 0,0122 0,0152 0,0124 0,0188 0,0209 0,0067 0,0033 0,0041 0,0017 0,0005
(-35) (-26,8) (-13,6) (-10,8) (-11,4) (-2,8) (-4,2) (-3,6) (-4,0) (-5,1) (-6,3) (-8,2) (-3,4) (-12,6) (-4,6) (-11,9) (-11,5) (-9,2) (-2,5) (-2,4)

r2 -0,017 -0,0313 -0,0263 -0,0234 -0,0276 -0,0494 -0,0334 -0,0241 -0,0305 -0,0171 -0,0104 -0,0448 0,0521 -0,0265 -0,0264 -0,023 -0,0183 -0,0327 -0,0266 -0,0128
(-6,6) (-9,5) (-9,1) (-7,4) (-14,6) (-17,6) (-12,8) (-6,8) (-5,6) (-8,2) (-1,0) (-3,9) (-0,6) (-11,7) (-7,6) (-9,9) (-7,4) (-9,2) (-6,9) (-2,6)

r3 -0,0056 -0,0025 -4E-05 -0,0001 -0,0008 -0,0033 -0,0017 -0,0101 0,0008 0,0014 0,0026 -0,0028 -0,0084 -0,0018 0,0063 -0,2876 -0,0001 -0,001 0,0009 0,003
(-13,4) (-8,1) (-3,2) (-0,1) (-2,8) (-4,1) (-5,1) (-2,7) (-1,0) (-1,9) (-0,4) (-3,1) (-3,4) (-2,9) (-0,9) (-2,4) (-2,2) (-2,7) (-0,7) (-1,3)

R1
2 0,6491 0,8035 0,825 0,4097 0,4382 0,8847 0,8546 0,8376 0,8514 0,5691 0,3885 0,4429 0,1718 0,4706 0,9482 0,5095 0,7727 0,9233 0,9200 0,0175

R2
2 0,9656 0,9413 0,9772 0,9717 0,9928 0,9796 0,9457 0,9151 0,9718 0,9898 0,9016 0,9046 0,466 0,9749 0,9548 0,9837 0,9808 0,956 0,8706 0,9041

R3
2 0,9714 0,9811 0,9866 0,9661 0,9916 0,9456 0,9985 0,9177 0,9692 0,9502 0,7686 0,7761 0,9352 0,9646 0,7968 0,9444 9826 0,9753 0,862 0,6656

Note: the numbers in parentheses are asymptotic t-statistics

Table 1: Estimates of Generalized Box-Cox Parameters
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SOURCES 20 21 22 23 24
1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80

1.SCALE 0,0637 0,0422 0,0536 0,0728 0,0256 0,0506 0,0152 0,0233 0,0190 0,0355 0,0266 0,0313 0,0575 0,0538 0,0557
2.INFLATION 0,0012 0,0028 0,0087 0,000699 0,0199 0,0098 0,0006 0,0167 0,0082 0,0015 0,0213 0,0108 0,0002 0,0165 0,0078
3.TECHNICAL 0,0231 0,0223 0,0227 0,0568 0,0397 0,0487 0,0596 0,0419 0,0513 0,0495 0,0361 0,0432 0,0540 0,0388 0,0469
   CHANGE
4.TOTAL 0,0394 0,0171 0,0222 0,0153 -0,0340 -0,0079 -0,0451 -0,0352 -0,0405 -0,0155 -0,0308 -0,0227 0,0033 -0,0015 0,0010

SOURCES 25 26 27 28 29
1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80

1.SCALE 0,0694 0,0121 0,0425 0,0452 0,0130 0,0301 0,0452 0,0064 0,0269 0,0388 0,0314 0,0353 0,0146 0,0428 0,0279
2.INFLATION 0,0046 0,0306 0,0168 0,0013 0,0116 0,0061 0,0045 0,0311 0,0170 0,0011 0,0128 0,0066 0,0007 0,0195 0,0095
3.TECHNICAL 0,0810 0,0475 0,0652 0,0561 0,0314 0,0445 0,0214 -0,0014 0,0107 0,1398 0,1146 0,1279 0,0353 0,0221 0,0291
   CHANGE
4.TOTAL -0,0162 -0,0660 -0,0396 -0,0122 -0,0300 -0,0206 0,0193 -0,0234 -0,0008 -0,1020 -0,0960 -0,0992 -0,0214 0,0012 -0,0107

SOURCES 30 31 32 33 34
1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80

1.SCALE 0,0759 0,0301 0,0543 0,0632 0,0198 0,0428 0,0219 0,0635 0,0415 0,0334 0,0207 0,0274 0,0477 -0,0226 0,0146
2.INFLATION -0,0009 0,0076 0,0031 0,0009 0,0263 0,0129 0,0013 0,0082 0,0046 0,0039 0,0311 0,0167 0,0154 0,0174 0,0899
3.TECHNICAL 0,0190 0,0137 0,0165 0,0916 0,0624 0,0779 0,0178 0,0150 0,0165 0,0550 0,0476 0,0515 -0,0196 -0,0289 -0,0240
   CHANGE
4.TOTAL 0,0578 0,0087 0,0347 -0,0293 -0,0689 -0,0480 0,0028 0,0403 0,0205 -0,0256 -0,0580 -0,0408 0,0519 -0,0111 -0,0513

SOURCES 35 36 37 38 39
1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80 1964-72 1973-80 1964-80

1.SCALE 0,0520 0,0346 0,0438 0,0409 0,0211 0,0316 0,0637 0,0091 0,0380 0,0406 0,0319 0,0319 0,0280 0,0429 0,0350
2.INFLATION 0,0016 0,0231 0,0117 -0,0002 0,0167 0,0077 0,0004 0,0126 0,0062 0,0029 0,0258 0,0026 -0,0370 0,0283 -0,0063
3.TECHNICAL 0,0411 0,0263 0,0341 0,0336 0,0225 0,0284 0,0531 0,0325 0,0434 0,0134 0,0112 0,0112 0,0135 0,0108 0,0122
   CHANGE
4.TOTAL 0,0093 -0,0147 -0,0020 0,0076 -0,0180 -0,0045 0,0102 -0,0361 -0,0116 0,0242 -0,0051 0,0181 0,0514 0,0038 0,0290

  Table 2: Influence of Inflation on total factor productivity growth
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         Table 3: Estimates of Error Correction Models:  Dependent Variable DR 

 
CONSTANT 

 
 

 
 

 
 

 
 

 
 

      
D.W 

20 0.000141 -1.46604 0.35528 0.251967 0.130491 -0.602554 -1.242427 -1.311614 0.55 2.04 
(0.01) (-9.67) (2.8) (2.54) (1.96) (-1.44) (-0.94) (-0.97)     

21 -0.002458 -1.11924 0.013491 -0.00231 -0.13072 -0.18287 -0.952991 0.686982 0.58 1.94 
(-0.22) (-7.6) (2.11) (-0.02) (-1.99) (-1.23) (-1.26) (0.88)     

22 -0.001939 -0.87823 0.066085 0.139126 0.212605 -0.049609 -1.931643 1.408342 0.44 2.06 
(-0.15) (-8.31) (0.69) (2.67) (3.22) (-1.05) (-2.07) (1.5)     

23 -0.001072 -1.80116 0.458884 0.163671 -0.03517 -1.751108 -2.877833 1.882184 0.65 1.93 
(-0.08) (-9.2) (2.87) (1.4) (-0.51) (-2.47) (-2.68) (1.83)     

24 -0.00009 -1.43988 0.00562 0.08154 -0.06368 -0.826636 -3.021796 1.619915 0.73 1.97 
(-0.01) (-7.46) (0.03) (-0.66) (-0.92) (-2.58) (-2.33) (1.4)     

25 0.00135 -2.02293 0.409149 0.05145 -0.0701 -1.694937 -3.937473 3.061107 0.79 1.95 
(0.09) (-9.15) (2.24) (0.4) (-1.06) (-1.97) (-2.65) (2.4)     

26 -0.002249 -2.15824 0.594394 0.359519 0.270538 -4.194284 -5.563333 1.556472 0.75 1.76 
(-0.14) (-10.55) (3.36) (2.74) (3.86) (-2.27) (-3.45) (1.22)     

27 0.0018 -1.66867 0.292824 0.035845 -0.08258 -1.915006 -3.065531 0.744683 0.7 2.04 
(0.17) (-8.91) (2.01) (0.36) (-1.66) (-2.73) (-3.4) (0.9)     

28 -0.001695 -1.84398 0.322067 0.013532 0.019974 -1.002408 -0.201471 3.424705 0.72 1.86 
(-0.17) (-9.37) (1.99) (0.11) (0.29) (-1.88) (-0.2) (4.22)     

29 -0.000717 -2.56316 0.933546 0.433349 0.202084 -7.132078 -5.608495 1.353731 0.72 1.83 
(-0.04) (-11.01) (4.83) (3.18) (2.76) (-4.2) (-3.82) (1.13)     

30 -0.002297 -1.94368 0.629972 0.261774 0.21281 -11.01554 -11.99172 -0.681642 0.66 2.07 
(-0.05) (-10.69) (4.14) (2.38) (3.19) (-2.87) (-3.36) (-0.19)     

31 -0.000357 -1.94688 0.300777 0.054671 0.030361 -0.310476 -2.815798 3.016302 0.8 1.88 
(-0.02) (-9.15) (1.86) (1.42) (0.45) (-0.16) (-1.68) (2.21)     

32 -0.000839 -2.12362 0.547048 0.179546 0.127045 -4.126211 -5.557017 1.715441 0.76 1.99 
(-0.03) (-10.29) (3.15) (1.46) (1.92) (-2.1) (-3.04) (0.97)     

33 -0.001592 -1.64404 0.027867 0.161658 -0.03831 -0.367194 -1.778056 1.568244 0.8 1.99 
(-0.1) (-8) (0.16) (1.24) (-0.57) (-0.28) (-1.48) (1.38)     

34 -0.003447 -2.21678 0.597246 0.319986 0.177036 -2.86103 -3.43298 2.88536 0.76 1.93 
(-0.16) (-10.86) (3.46) (2.55) (2.64) (-1.52) (-1.97) (1.79)     

35 -0.0000186 -1.2347 0.125853 0.16061 -0.12716 -2.724719 -1.214685 3.572477 0.71 1.92 
0 (-7.14) (0.85) (2.39) (-1.87) (-1.85) (-0.89) (2.84)     

36 -0.001299 -2.23113 0.649821 0.274303 0.187049 -5.234769 -4.135267 3.895291 0.71 1.69 
(-0.07) (-10.55) (3.59) (2.04) (2.55) (-2.27) (-2.07) (2.56)     

37 -0.0000899 -1.88945 0.319343 0.070231 0.033696 -1.13091 -3.331409 3.503257 0.75 1.83 
 (-0.01) (-9.05) (1.8) (0.54) (0.49) (-2.61) (-2.04) (2.58)     

 

2Rt-2DR t-3DRt-1DR t-1D R C P I t-2DRCPI t-3DRCPIt-1ECT
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Table 4: Estimates of Error Correction Models:  Dependent Variable DRCPI 

 
CONSTANT 

 
 

 
 

 
 

 
 

 
 

      
D.W 

20 -0.00000976 -1.08253 -0.00357 -0.00449 0.00533 0.40842 0.06316 0.34559 0.51913 1.72465 
 (-0.13) (-9.55) (-1.56) (-1.71) (-2.33) (-4.04) (-0.81) (-5.52)   

21 -0.00000812 -1.10171 -0.0047 -0.00469 -0.00287 0.41155 0.06661 0.33543 0.5152 1.69242 
 (-0.1) (-9.84) (-1.23) (-1.02) (-0.75) (4.12) (0.86) (5.39)     

22 -0.00000736 -1.03706 -0.00634 -0.01384 -0.0012 0.37651 0.07391 0.3179 0.52524 1.680585 
 (-0.09) (-9.53) (-2.88) (-3.69) (-0.35) (3.87) (0.97) (5.14)     

23 -0.00000782 -1.07551 -0.00923 -0.0082 -0.00576 0.38584 0.05056 0.34757 0.49794 1.66256 
 (-0.1) (-9.32) (-2.74) (-2.14) (-1.86) (3.71) (0.61) (5.28)     

24 -0.00000763 -1.0254 -0.01328 -0.00914 -0.00161 0.36158 0.02865 0.30571 0.47579 1.68093 
 (-0.09) (-8.65) (-3.6) (-2.01) (-0.49) (3.37) (0.32) (4.28)     

25 -0.00000834 -1.06816 -0.01225 -0.01288 -0.00519 0.40806 0.1065 0.37307 0.4962 1.62712 
 (-0.1) (-9.17) (-4.36) (-3.7) (-2.05) (3.9) (1.24) (5.43)     

26 -0.0000072 -1.04357 -0.01056 -0.00898 -0.00314 0.36664 0.04145 0.32412 0.47684 1.67172 
 (-0.09) (-8.51) (-3.09) (-2.09) (-1.04) (3.26) (0.44) (4.61)     

27 -0.00013 -1.08072 -0.00908 -0.00355 0.00101 0.39647 0.04134 0.30059 0.49617 1.69379 
 (-0.17) (-9.23) (-2.28) (0.79) (0.37) (3.78) (0.48) (4.38)     

28 -0.00000523 -0.96724 -0.02145 -0.02525 -0.01027 0.3589 0.095 0.35332 0.48202 1.71414 
 (-0.06) (-8) (-4.48) (-4.45) (-2.31) (3.26) (1.09) (5.2)     

29 -0.00000798 -1.06953 -0.01104 -0.01108 -0.00134 0.40364 0.07678 0.31176 0.50587 1.6719 
 (-0.1) (-9.08) (-3.69) (-3.16) (-0.49) (3.82) (0.91) (4.82)     

30 -0.00000819 -1.0809 -0.00255 -0.00191 0.0003 0.40275 0.06308 0.31991 0.50617 1.68364 
 (-0.1) (-9.52) (-2.8) (-1.88) (0.35) (3.98) (0.8) (5.04)     

31 -0.00000595 -1.05646 -0.01366 -0.01292 -0.00411 0.41297 0.11658 0.3619 0.48703 1.64845 
 (-0.07) (-8.88) (-4.56) (-3.32) (-1.52) (3.84) (1.27) (5.03)     

32 -0.00000776 -1.07497 -0.00385 -0.00378 0.0009 0.4128 0.0707 0.32421 0.52037 1.67699 
 (-0.1) (-9.66) (-2.31) (-1.78) (0.54) (4.16) (0.91) (5.21)     

33 -0.00000664 -1.06885 -0.01029 -0.0118 -0.00404 0.40297 0.0908 0.33478 0.51708 1.67968 
 (-0.08) (-9.59) (-3.72) (-3) (-1.45) (4.04) (1.16) (5.36)     

34 -0.00000732 -1.06538 -0.00532 -0.00653 -0.00181 0.40534 0.07979 0.33862 0.50953 1.68998 
 (-0.09) (-9.43) (-2.78) (-2.55) (-0.96) (4) (1) (5.37)     

35 -0.00000508 -1.03742 -0.01449 -0.01333 -0.00629 0.38931 0.08255 0.35705 0.48366 1.69147 
 (-0.06) (-8.87) (-4.56) (-3.38) (-2.16) (3.68) (0.95) (5.11)     

36 -0.00000627 -0.99122 -0.0104 -0.01168 -0.00461 0.34387 0.0614 0.32872 0.47372 1.70891 
 (-0.08) (-7.94) (-3.38) (-3.19) (-1.73) (2.97) (0.64) (4.6)     

37 -0.00000745 -1.05762 -0.0115 -0.0131 -0.00597 0.40058 0.10519 0.3718 0.4959 1.63059 
 (-0.09) (-9.03) (-3.98) (-3.59) (-2.29) (3.77) (1.2) (5.47)     

 

2Rt-2DR t-3DRt-1DR t-1D R C P I t-2DRCPI t-3DRCPIt-1ECT


