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Asymptotics of a QLR-type test for optimal

predictive ability

Stelios Arvanitis∗

Abstract

The limit theory of a Gaussian Quasi-likelihood Ratio (QLR)-type test for the hypothesis
of Optimal Predictive Ability is developed in the present note. This hypothesis which
generalizes the Superior Predictive Ability hypothesis from a single given loss function to
an entire class of loss functions was considered in APPK21 (1). The results are developed
indicatively for the class of Convex Loss functions. As in APPK21 (1), the research hy-
pothesis is formulated in terms of moment inequality conditions, the empirical versions of
which are reducible to a set of piece-wise linear functions. A consistent and exact test is
constructed based on a QLR-type test statistic, moment selection and subsampling.
Keywords: Forecast Comparison, Stochastic Dominance, QLR-type test, Moment Selec-
tion, Subsampling.

1 Introduction

The comparison of a multiple forecasting models potentially based on different sta-
tistical information and inference methods was facilitated by the formulation of the
hypothesis of Superior Predictive Ability-see for example White (2000) (10) and
Hansen (2005) (2). To improve robustness w.r.t. the choice of loss function, Jin,
Corradi and Swanson (2017) (3), generalized the aforementioned hypothesis by in-
troducing a stochastic dominance relation based on a class of loss functions, and
considering the hypothesis of whether a given forecast model is a maximal element.
Maximal elements rarely exist especially if the class of loss functions and/or the num-
ber of competing models is non-trivial, hence this generalization could suffer from
lack of discriminatory power.
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1 Introduction 2

In order to obtain robustness and improve discriminatory power, Arvanitis, Post,
Poti and Karabati (2021-hereafter APPK21) (1) use an alternative generalization of
the hypothesis of Superior Predictive Ability, which transliterates the criterion of
SD Optimality (see for example Post (2017) (8) and the references therein) to the
forecasting background, labeled as Optimal Predictive Ability (OPA). The ingredi-
ents of the OPA hypothesis are similar to the Jin, Corradi and Swanson (2017) (3)
approach; a class of loss functions that define a stochastic dominance relation on the
set of competing forecasting models. Optimality however is generally weaker than
maximality; a model is considered optimal iff it is selected over the competing models
by at least a loss function in the class in terms of expected loss. Maximality is quite
stronger as it requires selection by every loss function in the class. Both concepts are
stronger than (Pareto) efficiency; a model is efficient iff there exists a loss function
and a competing model compared to which the efficient one is selected. Efficient
models could be ubiquitous, maximal models are generally rare or non-existent, op-
timal models provide an application-wise attractive compromise; AAPK21 report
significant reductions in the set of considered models if the researcher discards from
analysis models that are not inferred optimal.

Given the latency of expected loss, AAPK21 use an Empirical Likelihood method-
ology in order to construct a statistical procedure that tests whether a given fore-
casting model is optimal; given the class of loss functions and the resulting domi-
nance relation, as well as a time series of observable forecasting errors for each of
the competing models, a Block Empirical Likelihood Ratio statistic is considered
that is obtained from piece-wise linear approximation of the empirical moment in-
equalities that define the empirical version of the dominance relation and bi-convex
optimization. Then, via a moment selection methodology that is based on a slack
augmentation of the moment inequalities involved, an asymptotically conservative
rejection region is obtained via a chi-squared distribution that dominates the latent
asymptotic distribution of the test statistic under the null.

The conservative character of the APPK21 testing procedure could imply poor
power properties on the boundary of the hypothesis of optimality and meager op-
timality reduction in the set of forecasting models. One way to circumvent such
shortcomings, is via considering an asymptotically exact modification of the proce-
dure above. In the present note this is formulated via a Gaussian Quasi-Likelihood
Ratio statistic (QLR) that assumes the form of the infimum w.r.t. the loss functions
involved of a quadratic form w.r.t. the selected empirical moment conditions; this
is asymptotically equivalent to the Empirical Likelihood Ratio statistic of APPK21.
In this approach and compared to APPK21, the moment selection procedure is also
applied to the construction of the test statistic, while the estimation of a long-run
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covariance matrix is also required; this is achievable by the HAC estimator of Newey
and West (1987) (6). This is something that APPK21 avoid due to their block
structures. Given the above, an approximation of the asymptotic rejection region is
achievable via subsampling. Pseudo-consistency of the estimators of the parameters
associated with the forecasting models allow for the possibility that the long-run co-
variance matrix that appears in the QLR statistic is kept fixed at the original sample
and not re-evaluated at each subsample. Also, the full sample optimal loss function
involved in the construction of the statistic is also kept fixed at the subsampling
phase; the above contributes to the computational simplicity of the procedure. The
full sample optimizations involved for the evaluation of the QLR statistic have at
worst the form of quadratic programming, while the ones associated with the sub-
sampling phases are trivial. As long as the subsampling rate diverges to infinity at
a slower rate compared to the sample size, and population dominance relations that
hold as equalities exist for every optimal loss, the test that rejects the null of opti-
mality iff the full sample sample QLR statistic lies inside the subsampling rejection
region is consistent and asymptotically exact given assumptions that among others
require non-singularity of relevant covariance matrices and an empirically innocuous
restriction on the significance level.

The rest of the note is structured as follows: the next section introduces the
forecasting framework, the dominance relation and its empirical version, the OPA
hypothesis, the moment selection procedure and given those, the QLR statistic and
the Monte Carlo procedure. The forecasting and dominance frameworks are identical
to the ones in APPK21. Our results are indicatively presented for the class of Convex
Loss Functions. They can be easily extended to other classes of losses as long as
those satisfy uniform Lipschitz properties. The final section presents the assumption
framework and the limit theory of the test as well as a brief concluding discussion;
the proofs are heavily based on the proofs in the supplementary material of APPK21.

2 Framework and testing procedure

This section introduces the general forecasting framework, the loss function class
indicatively used, the concepts of dominance and optimality, the empirical approx-
imation of the moment inequalities associated with dominance by piece-wise linear
inequalities, the moment selection procedure and the subsequent construction of the
test statistic and the subsampling approximation of the rejection region.
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2.1 Forecast errors and loss functions

The APPK21 framework and notation is more or less employed here; a random vari-
able X is forecast using M ≥ 2 distinct and fixed by the researcher forecast models,
generating point forecasts Y := (Y1 · · ·YM). Examples of forecast models could in-
corporate predictive regressions, means based on local estimation windows or past
market prices of securities via martingale considerations. The forecast models could
also include forecast combinations-i.e. convex mixures-of multiple base forecasts.

The researcher chooses one of the forecasting models to be compared with the
remaining (M − 1) ones. The models are indexed such that the evaluated model takes
the M -th position; the alternatives are collected in the set I := {1, · · · ,M − 1}.

The-potentially latent-forecast errors of the models are given byE := (E1 · · ·EM),
Ei := X − Yi, i = 1, · · · ,M . The joint cumulative distribution function (CDF) of
the errors is denoted by P : XM → [0, 1], where X := [a, b], −∞ < a < 0 < b < +∞.
The compactness of the support is used without much loss of generality. The results
below would also hold at the cost of strengthening several assumptions to incorporate
for example the existence of suffcient moments for the random elements involved in
the constructions that follow.

Predictive ability is measured using expected loss EP [ℓ(Ei)] based on a loss func-
tion ℓ : X → R+. The class of permissible loss functions employed in the present
note is denoted-as in APPK21-by L1. This set contains the totality of the convex
non-negative real functions definable on X . The results below are easily extendible
to the other two classes considered in APPK21-the General Loss functions, and the
Symmetric Convex Loss functions, as well as in any other function class that satisfies
the uniform Lipschitz conditions that appear in the Supplement of APPK21.

2.2 Stochastic dominance, optimality and hypothesis structure

The loss function class adopted above permits the definition of a stochastic domi-
nance relation between the forecasting models employed in the analysis-as noted in
APPK21-this is closely related to the SSD relation in the expected utility paradigm:
model i ∈ I stochastically dominates model M for loss function class L1, or Ei �L1,P

EM , iff EP [ℓ(EM)] ≤ EP [ℓ(Ei)] for all ℓ ∈ L; non-dominance occurs iff the moment
inequalities’ system above is violated for some loss function in the class.

The concept of dominance can be extended in several distinct ways to a joint
analysis of all models via joint properties of the order. The concept of optimality
is considered here-the interested reader is referred to APPK21 for the definitions
and comparisons between optimality, admissibility based on Pareto efficiency and
superiority based on maximum elements.
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Thus, OPA occurs iff the evaluated model minimizes expected loss for some per-
missible loss function over all competing forecasting models, i.e. ∃ℓ ∈ L1, ∀i ∈ I :
EP [ℓ(Ei)− ℓ(EM )] ≥ 0, or equivalently and due to the finiteness of I:

sup
ℓ∈L1

inf
i∈I

EP [ℓ(Ei)− ℓ(EM )] ≥ 0. (1)

If the considered model is non optimal, then it can be discarded from the anal-
ysis; every loss function would prefer a competing model. Thus the OPA concept
constitutes a criterion for refining the set of considered forecasting models.

Usually, P is latent and yet estimable using empirical data. This allows for
statistical inference on optimality; given the null hypothesis of optimality statistical
tests can be formulated using the empirical information. In this context, Definition
(1) implies that the null hypothesis of optimality can be formulated as (M − 1)
moment inequalities over the infinite-dimensional parameter space L1:

H0(L1,P) : (EP [ℓ(Ei)− ℓ(EM )] ≥ 0, i = 1, · · · ,M − 1) , ∀ℓ ∈ L1. (2)

Dually, the alternative is formulated as

H1(L1,P) : (EP [ℓ(Ei)− ℓ(EM )] < 0, ∃i = 1, · · · ,M − 1) , ∃ℓ ∈ L1. (3)

2.3 Time series data

It is assumed that the available data lie in the time series’ context; the analyst has
at her disposal the time series realizations Xt, and point forecasts ŷt := (ŷ1,t · · · ŷM,t),
for t = 1, . . . , T .

The analysis allows for the existence of latent point forecasts yt := (y1,t · · · yM,t);
those are functions mi (Zi,t,θ0i) of a random vector of predictive variables, Zi,t ∈ R

di ,
and a latent parameter vector θ0i ∈ IntΘi from the parameter space Θi ⊆ R

di . The
forecasts at time t are constructed as ŷi,t := mi (Zi,t,θti) for realizations Zi,t and
parameter estimators θti .

Given Xt, the unobservable error is ut := Xt1
′
M − yt and the observed er-

ror is εt := Xt1
′
M − ŷt, where yt := [m1 (Z1,t,θ10) · · ·mM (ZM,t,θM0)]

′ and ŷt :=
[m1 (Z1,t,θ1t) · · ·mM (ZM,t,θMt

)]′.
Given the observable data εt, t = 1, . . . , T , the latent P is approximated by its

empirical version:

PT (E) := T−1

T
∑

t=1

I (εt ≤ E) , (4)
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where I denotes the relevant indicator functions.
Several of the procedures and the results below are extendable to other estimators

for P like kernels, polynomial approximations, parametric estimators, etc.

2.4 Empirical moment piece-wise linear approximations

Given PT , the OPA conditions that appear in the null hypothesis can be empirically
approximated by a finite system of linear inequalities. APPK21 show that this system
is obtainable by replacing the infinite-dimensional parameter ℓ ∈ L1 by a permissible
piecewise-linear loss function, along the lines of Post (2003, Thm 2). Following their
derivations it is obtained that for L1, and if {zt}T+1

t=1 represent the ranked values

of {εM ,t}Tt=1 ∪ {0}, so that z1 ≤ · · · ≤ zT+1. Let T0 := sup {t : zt < 0} , so that

zT0+1 = 0. For L2, let {zt}T+1
t=1 represent the ranked values of {|εM ,t |}Tt=1 ∪{0}. Then

for an arbitrary Convex Loss function ℓ ∈ L1, let σs := (ℓ(zs+1)− ℓ(zs)) / (zs+1 − zs),
s = 1, · · · , T , be slopes of chords between two consecutive points, and βs := σs+1−σs,
s = 1, · · · , T0 − 1; βT0 := −σT0 ; βT0+1 := σT0+1; βs := σs − σs−1, s = T0 + 1, · · · , T ,
increments of the slopes (recall that the slope at E = 0 is zero). A convex piecewise-
linear loss function is then given by:

ℓ1,β(E) :=











+∞ E < z1
∑T0

s=1 βs (zs+1 − E)+ +
∑T

s=T0+1 βs (E − zs)+ z1 ≤ E ≤ zT+1.

+∞ E > zT+1

(5)

Then for any i ∈ I, define the T × T coefficient matrix M1,i with the following
elements for s, t = 1, · · · , T :

(M1,i)t,s :=

{

(zs+1 − εi ,t)+ − (zs+1 − εM ,t)+ s = 1, · · · , T0

(εi ,t − zs)+ − (εM ,t − zs)+ s = T0+1, · · · , T . (6)

Using the probability vector p associated with the atoms of PT , and the fact
that the dominance relation is invariant to renormalization of the loss functions,
APPK21 finally obtain that an empirical linear system that approximates the system
of moment inequalities that appear in the null hypothesis of OPA is:

p′M1,iβ ≥ 0, i = 1, · · · ,M − 1;

β ∈ ∆T .
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2.5 Empirical moment selection

Moment selection is implemented in order to estimate the set of moment inequalities
in the null that hold as equalities; those are usually referred as contacts. This is
important due to the fact that the test statistic to be considered below is constructed
as a quadratic form over this set. To implement moment selection, as in APPK21,
the present study uses the following set of forecast models which are approximately
equivalent to the evaluated model for a given loss function ℓ ∈ L, that is represented
by the parameter β-see the previous paragraph:

CS(ℓ,PT , cT ) := {i = 1, . . . ,M − 1 : |p′M1,iβ| ≤ cT} ,

where, cT > 0 is a sample-dependent slack parameter which converges to zero at
an appropriate rate. The number of moment conditions which are approximately
binding amounts to:

N(ℓ,PT , cT ) := #CS(ℓ,PT , cT ).

2.6 QLR-type statistic

The moment selection procedure above, and the orientation of the moment inequali-
ties employed in the null hypothesis for OPA enable the consideration of a QLR-type
statistic. In order to define it consider vT (ℓ, cT ) :=

√
T (p′M1,iβ)i∈CS(ℓ,PT ,cT ), for ℓ

any loss function representable as in (5), and VT is the Newey-West matrix

1
T

∑L

l=0

∑T

t=l+1

(

1− l
L+1

)

vt(ℓ, cT )v
′
t(ℓ, cT )

− 1
T

∑L

l=0

∑T

t=l+1

(

1− l
L+1

)

1
T

∑T

t=1 vt(ℓ, cT )
1
T

∑T

t=1 v
′
t−l(ℓ, cT ),

for the bandwidth parameter 0 < L ≤ T − 1, where vt(ℓ, cT ) := ℓ(εt,i)i∈CS(ℓ,PT ,cT ).
Then, provided that the matrix above is almost everywhere invertible, the statistic

considered here has the form:

QLRT := inf
β∈∆T

inf
v∈RN(ℓ,PT ,cT )

+

(v(ℓ, cT )− v)′V −1
T (v(ℓ, cT )− v). (7)

The statistic is first order asymptotically equivalent under the null to the BELR
statistic considered in APPK21-see the following section. Its computation is not
particularly involved: given an ℓ ∈ L1, the inner optimization is trivial. The piece-
wise linear constructions above imply that the outer approximation is a standard
problem of quadratic programming over the standard T − 1 simplex.
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2.7 Subsampling inference

A rejection region is constructed, based on the null limit theory of QLRT derived in
the following section, via subsampling. Let 0 < bT ≤ T , and consider the subsamples
from the original observations (εj)j=t,...t+bT−1 for all t = 1, 2, . . . , T − bT + 1. For
α ∈ (0, 1), denote with qbT (1− α) the 1 − α quantile of the subsample empirical
distribution of the subsample realizations of the statistic







inf
v∈R

N(ℓ,Pt,bT
,cbT

)

+

(vbT (ℓ
⋆
T , cbT )− v)′V −1

t,bT
(vbT (ℓ

⋆
T , cbT )− v); t = 1, . . . , T − bT + 1







,

where Pt,bT denotes the empirical distribution of the relevant subsample, and ℓ⋆T is the
optimal loss obtained from the optimization for the evaluation of the statistic in the
full sample. Vt,bT is the relevant Newey-West matrix associated with bT -conformable
bandwidth. The parameter estimators in the relevant forecasting models are likewise
set fixed at their full sample values for simplicity. Then the null hypothesis of OPA
is rejected iff QLRT > qbT (1− α).

3 Limit Theory

The limit theory of the testing procedure described above is derived in this section.
The following paragraph presents the relevant statistical and probabilistic framework.
This is almost identical to the one in APPK21-the differences lie in that in the present
situation there are no blocking parameters, yet there are parameters associated with
bandwidths and subsampling rates. Section 3.2 derives the null limiting behavior of
the test statistic, along with the exactness and consistency of the testing procedure.
The final paragraph provides with a brief discussion of the results.

Some additional notation is needed in what follows; ‖·‖ denotes the Euclidean
norm, ℓ∞ (A) the space of real-valued bounded functions on a set A equipped with the
sup norm, and  convergence in distribution. B̄λ (η) denotes the closed Euclidean
ball in R

M centered at λ with radius equal to η > 0.

3.1 Assumption framework

As mentioned above the assumption utilized is almost identical to APPK21. It cor-
responds to (a) stationarity and dependence properties of the predictive variables;
(b) smoothness properties of functions of the unknown parameters; (c) limiting rep-
resentations for the estimators of the unknown parameters in the forecasting models,
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and their sample sizes; (d) the asymptotic rates of the slacks, the bandwidths and
the subsampling rates that appear in the constructions of the test statistic and the
subsampling rejection region. Those are exemplified in:

Assumption 1. The following conditions hold:

i. For rT > 0, as T → ∞, rT → ∞ and rT
T

→ γ ∈ (0,∞].

ii. For all i = 1, . . . ,M , and any t = 1, . . . , T , as T → ∞,

θit = θi0 + HirT

(

1
rT

∑t

j=t−rT
hi,j + oa.s.

(

1√
rT

))

, HirT
 H0i which is a non-

singular di×di matrix, E [hi,j] = 0di×1 and E

[

‖hi,j‖2+δ
]

< +∞ for some δ > 0.

iii. The vector process Zt :=
[

Xt, (Zi,t, hi,t)i=1,...,M

]

t∈Z
is strictly stationary and

absolutely regular with mixing coefficients (βk)k∈N that satisfy βk = O (k−r) for
r > 1. The joint distribution of Z0 has continuous marginals.

iv. For some η > 0, such that for θ := (θ1, . . . ,θM) restricted to B̄θ0 (η) ⊂
R

∑M
i=1 di, and θ0 = (θ10 , . . . ,θM0), the function θ → u (Z0,θ) := X01

′
M −

[m1 (Z1,0,θ1) · · ·mM (ZM,0,θM)] is almost surely Lipschitz continuous with re-
spect to θ, with Lipschitz coefficient l (Z0), that satisfies E [l (Z0)] < +∞. Fur-

thermore, E

[

supθ∈B̄θ0
(η) ‖u (Z0,θ)‖p

]

< +∞ for some p ≥ 3, and for all t,

the random variable xt −mM (ZM,t,θMt
) has a density, that is uniformly in t

bounded away from zero.

v. The functions θM → EP [uM (Z0,θM )], and (ℓ,θ) → EP [ℓ (ui (Z0,θ))] are con-
tinuously differentiable with respect to θM on ProjM B̄θ0 (η), and θ on B̄θ0 (η),
for all ℓ ∈ L1 and supProjM B̄θ0

(η) ‖DθMEP [uM (Z0,θM )]‖ < +∞ and further-

more sup{1,...,M}×L1×B̄θ0
(η) ‖DθEP [ℓ (ui (Z0,θ))]‖ < +∞, where κi denotes the

ith -coordinate of κ, Proji denotes projection to the ith -coordinate, and
DθMEP [uM (Z0,θM)] , DθEP [ℓ (ui (Z0,θ))] denote the relevant gradients w.r.t.
θM and θ respectively.

vi. There exists some ǫ > 0 such that

inf
ℓ∈L∗

1(P), CS(ℓ,P,0) 6=∅
λmin

(

EP

[

(ℓ (ui,0)− ℓ (uM,0))i∈CS
(ℓ (ui,0)− ℓ (uM,0))

′

i∈CS

])

> ǫ,

where λmin (A) denotes the minimum eigenvalue of the positive-definite matrix
A, and L∗

1(P) denotes the subset of L1 containing the loss functions that lie in
the null hypothesis.
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vii. The slacks satisfy cT → 0 and for any subsequence (T⋆),
√
T⋆cT⋆

→ +∞ almost
surely.

viii. The subsampling rate satisfies bT → +∞ and bT
T

= o (1). Furthermore, the
bandwidth L satisfies L → +∞ and L

bT
= o(1).

Assumption 1.i-vii is identical to Assumption 4.1.1 of APPK21. For a detailed
commentary of it and a comparison to assumption frameworks that appear in the
literature the interested reader is referred to APPK21. It is remarked though that: i.
the framework is restricted to unital forecasting horizons and rolling windows-both
restrictions are generalizable to arbitrary horizons and/or fixed or moving estimation
windows. ii. Stationarity of the process of the forecast errors is assumed. This is not
harmless, as it for example disallows recursive estimation of latent model parameters
using expanding estimation windows. iii. A plethora of regular M-estimators for the
latent parameters of the forecasting models is allowed.

Assumption 1.viii is standard. It employs slower than the sample size divergence
of the subsampling rates, and slower than the subsampling rates divergence for the
bandwidths. The latter accommodates the use of the Newey-West estimators inside
the subsampling phase.

3.2 Null limit theory and test properties

The main result below establishes the limiting properties of the empirical processes
associated with the moment conditions, the null limiting distribution of the QLR
test statistic, as well as the first order limiting properties of the associated testing
procedure.

Theorem 1. Under Assumption 1.i-v, and as T → ∞, the following limiting distri-
bution is obtained for the empirical process

√
T [EPT

[ℓ (εi ,t)]− EP [ℓ (ui,0)]] G1 (i, ℓ) in ℓ∞ ({1, . . . ,M} × L1) , (8)

where G1 is a zero-mean Gaussian process with covariance kernel:

KG1 ((i, ℓ) , (i
∗, ℓ∗)) :=

∑∞
t=0 κtCov (ℓ (ui,0) , ℓ

∗ (ui∗,t))
+̺

∑∞
t=0 κtCov (ℓ (ui,0) , DθEP [ℓ (ui (Z0,θ0))]Hht)

+̺
∑∞

i=0 κtCov (ℓ
∗ (ui∗,0) , DθEP [ℓ

∗ (ui (Z0,θ0))]Hht)
+̺⋆DθEP [ℓ (ui (Z0,θ0))]HVhH

′DθEP [ℓ
∗ (ui (Z0,θ0))]

′

, (9)
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i, i∗ ∈ {1, . . . ,M} , ℓ, ℓ∗ ∈ L1, and κt =

{

1, t = 0

2, t > 0
; in addition, H is the

∑M

i=1 di ×
∑M

i=1 di block diagonal matrix diag1≤i≤∑M
i=1 di

(H0i), ht := (hi,t)
′
i=1,...,M , Vh :=

∑∞
t=0 κtE [h0h

′
t],

and ̺ =

{

1− γ

2
, γ < 1

1
2γ
, γ ∈ [1,+∞]

, ̺⋆ =

{

1− γ

3
, γ < 1

1
γ
− 1

3γ2 , γ ∈ [1,+∞]
.

Furthermore, if also Assumption 1.vi-vii holds, and under H0(L1,P) and as T → ∞,
the limit distribution of the test statistic can be characterized as follows: i) if ∀ℓ ∈
L∗

1(P), CS(ℓ,P, 0) 6= ∅,

QLRT  inf
ℓ∈L∗

1(P)
inf

v∈RN(ℓ,P,0)
+

(v (ℓ,M)− v)′ Var−1 (v (ℓ,M)) (v (ℓ,M)− v) , (10)

where v (ℓ,M) := (G1 (i, ℓ)−G1 (M, ℓ))i∈CS(ℓ,P,0) , ii) if ∃ℓ ∈ L∗
1(P), CS(ℓ,P, 0) = ∅,

QLRT  0. (11)

Finally, if also Assumption 1.viii holds, then, for any α ∈ (0, 1), and as T → ∞, the
testing procedure has the following properties:
A. Under H0(L1,P), if i) above holds and α < 0.5, then

lim sup
T→∞

P (QLRT ≥ qbT (1− α)) = α, (12)

while if ii) above holds, then

lim
T→∞

P (QLRT ≥ qbT (1− α)) = 0. (13)

B. Under H1(L1,P),

lim
T→∞

P (QLRT ≥ qbT (1− α)) = 1. (14)

Proof. (8) follows directly from the proof of (21) in Theorem 4.2.1 of APPK21 forB =
1. Also from the proof of the aforementioned theorem it follows that CS(ℓT ,PT , cT ) 
CS(ℓ,P, 0) in the Painleve-Kuratowski topology, for any L1 ∋ ℓT → ℓ ∈ L∗

1(P)
uniformly, when L∗

1(P) 6= ∅. Skorokhod representations, applicable due to Knight
(1999) (4) and the fact that L∗

1(P) is compact in the uniform topology-see Paragraph
A.2 in the Supplement of APPK21, Theorem 3.4 of Molchanov (2006) (5), the uniform
in B̄θ0 (η) convergence of the Newey-West estimator (as a function of θ), the pseudo
consistency of the estimators, the non-degeneracy of the limiting variance matrix,
and the previous imply (10) and (11). Assumption 1.vi implies the applicability of
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Theorem 3.5.1.i of Politis et al. (1999) (7) to obtain (12), since the null limiting
distribution of the statistic cannot have an atom at zero of probability greater than
0.5, due to the zero mean Gaussianity and the non degeneracy of the associated
covariance kernel. (13) is obtained from (11) and the slower than the sample size
divergence of the subsampling rate. (14) follows from that when L∗

1(P) = ∅, QLRT  

+∞ and the slower than the sample size divergence of the subsampling rate.

The results along with Theorem 4.2.1 of APPK21 show directly that the first order
limiting behavior of the QLR statistic is identical to the one of the BELR statistic
used in the aforementioned paper as claimed before. This implies that both testing
procedures are thus consistent, and very conservative when under the null there exist
loss functions inside the null without contacts; conservativeness is due to the limiting
degeneracy of the statistic. Absense of contacts for some loss function inside the null
hypothesis is not unusual due to the finiteness of the number of moment conditions.

However, when every loss function in the null hypothesis attains contacts, there is
a stark difference between the current testing procedure and the BELR conservative
procedure of APPK21. The subsampling construction of the rejection region here,
and the fact that the null limiting distribution of the QLR statistic cannot have
an atom of probability greater than 0.5 at the origin, under the empirical relevant
restriction that the significance level is less than 0.5, implies that the procedure is
exact. Thus the current subsampling QLR procedure could have better local power
properties under sequences of alternative hypotheses that converge on the boundary
of the null. As explained in APPK21, this non-degeneracy for the limiting statistic is
natural in several important cases. For example, if the set of alternative forecasting
models includes nesting specifications and the null holds, then the contact sets are
non-empty by construction and the procedure is asymptotically exact.

Similarly to what is remarked in APPK21, the limit theory can be extended to
hold uniformly in the underlying distribution at least in iid settings. Under the
appropriate topology on a class of underlying distributions containing P, and via
results like Theorem 2.8.9 of van der Vaart and Wellner (1996) (9), it is possible
to extend (10) and (11) to hold locally uniformly in this class, and thus derive
locally uniform exactness (consistency) for the test using convergent sequences of
distributions for which the null (the alternative) holds.

3.3 Discussion

Besides the possible extensions mentioned in APPK21 that are also relevant here, an
interesting path of further research could involve the extension of the present results
in cases where pseudo-consistency for the estimators that live inside the forecasting
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models. The results concerning the limiting behavior of the test statistic per se
are extendable to this case, under the appropriate extension of Assumption 1.i-v to
hold for every possible accumulation point of the θt. The issue of tracking of the
resulting sub-sequential behavior of the test statistic by the subsampling phase of
the procedure seems more involved. The potential modification of the construction
of the rejection region so as to accommodate the sub-sequential behavior of the test
statistic while resulting into a procedure that is asymptotically exact and conservative
seems important given the plausibility of misspecification for the forecasting models
employed.
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