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Abstract

This paper introduces a new instantaneous, intensity-based metric for estimating

the proportion of different agent-types at any time interval, coined the (i)ntensity-

based (R)elative (P )roportion (iRP). iRP is based on the notion that differences

in trading motives are expressed in agent specific arrival rates, which are modelled

using conditional hazard functions. This novel framework is applied on identifying

the presence of private information and it exhibits empirical and theoretical properties

that are superior to existing metrics, even at very short intervals. A variety of other

agent-types can be modeled, accordingly, as long as their actions can be mapped into

differentials in conditional intensities.
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1 Introduction

This paper introduces a novel instantaneous estimate for the presence of different agent-

types, which can be integrated over any time interval, providing an (i)ntensity-based (R)ela-

tive (P )roportion (iRP) metric, suitable for (H)igh (F)requency (T)rading (HFT). The new

framework ventures the idea that different trading motives are reflected on tangible actions

and, thus, differences on observable variables, aligned with these actions, can reveal the

presence of different agents. In particular, in HFT, the time(-ing) of the action is of utmost

importance and, thus, differences in the arrival rates should reflect the differential presence

of agents. Drawing on the theory of point processes, the conditional intensity (hazard func-

tion) is a tool that can describe fully these arrival rates and it is used to capture the presence

of these agents. iRP exhibits two major advantages. First, it is interval free and, second, it

can be employed to investigate the presence of any agent-type, as long as her actions can be

captured by some observable variables. iRP is applied in the context of identifying private

information and it exhibits superior theoretical and empirical properties.

Markets, from an asset-pricing point of view, are seen as an information clearing mecha-

nism, where different agent-types interact and resolve their private information. According to

the Efficient Market Hypothesis (EMH, [30]), new information is the only reason for perma-

nent price movements, and this process is assumed to be instantaneous and unanimous, since

it is the co-ordinated action of rational agents clearing information arbitrage opportunities.

However, modern markets, which are mostly dominated by algorithmic trading ([57]), pose

a significant challenge to this notion. Algorithms operate at a sub-human attention speeds

(<650ms, [43]), rendering the instantaneous price adjustment assumption rather unrealistic.

Instead, markets are understood to be semi-strong efficient ([54]), in the sense that private

information is incorporated into prices gradually ([12]). This has two major implications.

First, the nature of information that is price resolved changes (e.g., [57]). The EMH

advocates that prices are martingales with respect to differential degrees of “fundamental”
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information about the future cash flows of an asset. That is a lower-frequency, human-like

attribute of price discovery that is practically unattainable at the sub-human attention realm

of algorithmic trading. Algorithms, with varying degrees of sophistication, extract price re-

lated signals from previous trading activity aiming at extracting “trading” information about

the fundamental value of the asset, rather than collecting fundamental information. Conse-

quently, the nature of information that affects intraday price discovery is mostly endogenous

to trading and requires an assessment of the actions of other market agents, rather than

of the magnitude and riskiness of cash flows (e.g., [57]). These signals are mostly related

to the arrival rate ([25]) of trading related, observable factors and the direct implication of

this is that information and the intensity of these trading factors are inextricably bound in

intraday price discovery; highlighting the importance of time/-ing.

Second, the gradual price adjustment, due to the transition from “fundamental” to “trad-

ing” information, advocates an implicit classification of actors according to the timing of their

access to information. Since information is not price-resolved instantly, it exhibits a “life

span”, during which different agents might access, interpret and act upon it differently.([57]).

Whatever their motivation, they are understood to co-exist in the market and their interac-

tions are the mechanism by which information is price-resolved under a dynamic equilibrium.

Albeit the fact that the agent-type composition is essential for describing this equi-

librium, their identification is latent information and cannot be known either ex-post or

ex-ante. [5] argues that the identification of individual agent-type strategies is impossible

under only public information and, consequently, mean field theory ([45]) cannot address the

complexity of this equilibrium, because agent-specific modelling cannot address adequately

the emergence properties arising from the interactions of these agents. Consequently, the

identification of agent-types cannot be done by designing their individual actions, but rather

in a probabilistic way as a sample property.

Toward this end, prior literature suggests using the aggregated characteristics of trading

activity and as an observable proxy for the actions of different agent-types, suggesting that
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they can be used to infer their existence. Considering that at this scale, the timing of events is

of utmost importance, the literature focuses, naturally, on trading intensity, complemented

by other observable factors. More specifically, since its early stages, the microstructure

literature associates the arrival rate of trades ([25]) and volume ([23]; [22]; [21]) with the

existence of informed agents. Along the same lines, other agent-types are also identified

by the observable characteristics, such as trade sidedness ([62]) associated with asymmetric

information, trade initiation runs ([58]) associated with information cascades and herding

and trade/order imbalances ([18]; [19]) associated with order flow toxicity. The common

denominator of all these metrics is that they are based on the fluctuations in the intensity

of a variable and that they derive the probability of the existence of a specific agent-type by

the aggregated magnitude over a time-interval.

Albeit intuitive, these metrics suffer from two major issues that might render them prac-

tically unusable in HFT; sampling bias and frequency. According to [5] a top-down approach

would be more suitable in capturing the emergence properties arising from the interactions

of the agents and, thus, interval-based measures are more likely to capture the aggregated

properties in manner that is less likely to suffer from noisy signals ([59]). However, there is no

clear indication of what an optimal sampling interval might be and empirical evidence (e.g.,

[18]; [19]; [3]) report a significant sampling bias. They are subject to a trade-off between

longer intervals that deal better with noisy signals (e.g., trade initiation, [19]) and shorter

ones that are more sensitive to its fluctuations due to mean-reversion properties ([3]). Con-

sequently, higher sampling frequencies that would be more relevant to HFT due to shorter

time-intervals, might render interval-based metrics inapt in capturing the finer properties of

the data that would reveal the presence of different agent-types, due to noise. In HFT where

the timing of possessing information is crucial because it can turn a time priority into an

information advantage ([57]); “to be uninformed is to be slow” ([35]). This requires a faster

identification of agent-types, ideally as a point rather than as an interval estimate.

This is the primary concern of this study, which suggests a novel, data-driven way to
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extract the latent information concerning the presence of different agents-types in a proba-

bilistic way as a point estimate. This is done by introducing the instantaneous conditional

probability of the arrival of an event type.1 The arrival rate of different events, such as

trades or trading volume, is then linked to the material actions of different agent-types,

which should vary according to their motivation for trading. Unlike previous approaches

that focus on the ‘aggregated properties’ of the accumulated actions of each agent-type, this

study focuses on the properties of their ‘accumulation rates’. The starting point is the pres-

ence of the agent-type itself. Each agent-type is assumed to act upon (information) stimuli in

a distinct time-invariant way and, consequently, her actions exhibit a distinct time-invariant

arrival rate. However, her presence in the market is assumed to be conditional on her ac-

cess/interpretation of relevant information and thus, her probability of entering the market

is conditional. The market as a whole is seen as an infinite mixture (i.e., time-varying prob-

abilities of entering the market) of the (time-invariant) arrival rates of different agent-types

and this formulation provides a flexible framework to estimate the probability of an event

to be initiated by a particular agent-type. From that, the proportion of this agent-type

compared to the total number of trades can be estimated at any time interval.

This approach exhibits several advantages. First, it is interval free, as well as event

specific. Instead of estimating the proportion of an agent-type over an interval through the

distributional properties of aggregated events, the modelling here uses the instantaneous

arrival rates in order to identify the presence of an agent and then it derives the probability

of the presence of each agent by the accumulation rate of her actions. This enables its use

at any time interval without introducing sampling bias ([3]).

Second, the presence of each agent-type is linked to a precise statistical measure, i.e.,

the arrival rate/intensity, rather than a specific variable. Previous approaches associate

different levels of an observed variable, e.g., trading volume, to a particular agent-type,
1The point estimate of the instantaneous conditional probability of the arrival of an event type is the

conditional intensity of the point process that describes the arrival rate of this event type. The conditional
intensities are a natural measure of arrival rates, which can be interpreted heuristically as “how fast” an
event is expected to occur.
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such as informed. The approach employed here poses no such restriction. The trading

characteristics of an agent-type can be described by any set of observable variables, but the

detection of the agent-type is done by how they affect the conditional intensity and not

by their magnitude, without assuming any prior link. This provides a data-driven way to

extract the latent information about the presence of a multitude of agent-types as long as

their fundamental (time-invariant) trading characteristics can be captured by the variation

of some observable variables and be mapped into a distinctively shaped hazard function.

Finally, the estimates of the probability of different agent-types is by construction condi-

tional and time variant and thus, it can adapt to evolving market conditions in real time. The

modelling approach proposed here satisfies all the properties of a complex system ([44]) by

defining the market activity as an infinite mixture of multiple agents that exhibit stationary

behaviour (assumed for traceability), who adapt (feedback mechanism) to evolving (evolu-

tion) market conditions and thus, their interaction with the market also evolves (becomes

non-stationary). Consequently, the modelling here exhibits several desirable properties not

present in previous approaches (see Appendix B.1). By assuming stationary behaviour, in-

dividual agent-types can be identified, while at the same time, conditioning their interaction

with market on market conditions, captures the emergence properties of their collective ac-

tions. This duality is done in real time and, therefore, it is relevant to human and algorithmic

trading speeds.

The remainder of this paper is organized as follows. Section 2 presents the theoretical

framework of how the market is seen as an infinite mixture of time-invariant, agent-specific

intensities, as well as how the intensity-based estimator, iRP, can be derived. Section 3

presents an empirical application of iRP on identifying private information. Sections 4 and 5

investigate the empirical and theoretical properties of the new estimator. Further examples

and their performance are presented in Appendix B.2. Finally, Section 6 concludes.
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2 An Intensity-Based Estimator of Agent-Types

2.1 The Market as a Collection of Different Agents

The market is a collection of Z = 1, 2, ..., K different types of agents that interact and for-

mulate the overall trading activity. Each agent-type is assumed to be driven by a stationary,

time-invariant (baseline) motivation for trading, e.g., information, liquidity, technical rule,

etc., which determines her (conditional) arrival rate, λk (t|Fs). The arrival rate, λk (t|Fs),

can be mathematically described as the conditional intensity of a simple point process.

2.1.1 Agent-Specific Trading as a Simple Point Process

Let {Ti}i∈Z be a simple point process on [0,∞), defined as a sequence of non-negative

random variables on some probability space (Ω,F ,P), such as 0 < Ti < Ti+1∀i .N(t) is

the counting process of {Ti}i∈Z defined as N(t) =
∑

i≥1 1(Ti < t) that counts the events

up to time t. Then λ(t|Fs) is defined as the intensity of N(t), given some filtration Fs, if

E(N(t)−N(s)|Fs) = E
(∫ t

s
λ(u) du

∣∣∣Fs

)
, for 0 < s < t, and fully describes {Ti}i∈Z.

The counting function and the arrival rate of each agent-type are defined as follows:

Nk(t) =
∑
i≥1

1(Ti < t)(Zi = k) (1)

E(Nk(t)−Nk(s)|Fs) = E
(∫ t

s

λk(u) du

∣∣∣∣Fs

)
= E

(∫ t

s

(pkt |Fs)λ
k
0(u) du

)
(2)

which, defines the arrival of the events of type k as a function of a time-invariant intensity

λk0(t), which captures the instantaneous probability of a trade of type k to occur, and of a

time-variant weighting component (pkt |Fs) = P(Zt = k|Fs),
∑K

k=1(p
k
t |Fs) = 1, which defines

the conditional probability of an agent-type k entering the market at a stationary rate of

λk0(t). The rationale behind this formulation is traceability.

The existence of the different agent-types is known only theoretically and not in the limit

when ∆t → 0. Whether an event is initiated by a specific agent-type, k, cannot be known
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with certainty and, therefore, its conditional probability is defined as (pkt |Fs). However, in

order to trace their existence, their trading characteristics should be able to be mapped into

a statistical measure. Following recent literature ([38]; [46]) the trading characteristics of a

particular trading behaviour, as they are manifested by an underlying trading motivation,

are matched with a distinct shape of the intensity of the relevant point process.

The assumption here is that the underlying characteristics that motivate trading (learning

pattern, speed of adjustment, etc.) are time invariant and, thus, stationary. For example,

previous literature (eg., [38]) suggests that uninformed traders arrive randomly in the market

and, therefore, their arrival rate should be time invariant. This could be mapped into a

constant intensity, λk0(t). In contrast, technical traders are assumed to extract, analyse

and use information in a time-invariant manner. Consequently, their intensity of trading,

captured by λtechnical
0 (t), should not change over time either. This does not mean that the

intensity of technical trading is the same (flat) over time. It is a function of time. However,

if their trading characteristics, e.g., their learning models or learning speed, do not change,

it is the same function of time. This stationarity condition is imposed on all agent-types.

However, the conditions that might instigate their trading might change over time, in a

way that is conditional on past information. This would result in a time-varying mixture of

different agent-types, which is captured by the weighting component, (pkt |Fs).

Collectively, the market can be seen as a time-varying mixture, (pkt |Fs), of different agent-

types, λk0(t). Unlike the intensities or the weighting components of each agent-type that are

latent, the intensity of the market, λ(t|Fs) =
∑K

k=1 λ
k(t|Fs), and its counting function,

N(t) =
∑

i≥1 1(Ti < t) =
∑K

k=1(N
k(t) =

∑K
k=1

∑
i≥1 1(Ti < t)(Zi = k), are observable. They

are the sum of the trading activity of each agent k. The expected number of all events in

the market is defined as the sum of all events of all agents present in the market:

E(N(t)−N(s)|Fs) = E
(∫ t

s
λ(u) du

∣∣∣Fs

)
=
∑K

k=1 E
(∫ t

s
λk(u) du

∣∣∣Fs

)

=
K∑
k=1

E
(∫ t

s

(pkt |Fs)λ
k
0(u) du

)
(3)
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Eq.(3) implies that all observed events are necessarily the sum of the events instigated by

each agent-type. Consequently, their presence can be ’reversed engineered’ from observing

the market activity, by estimating a fundamental baseline intensity for each agent-type, as

well as a weighting component that captures the probability of its presence.

2.1.2 The Market as an Infinite mixture of Simple Point Process

This formulation has some notable merits that will be used later on in order to construct

proxies for latent information. First, it suggests a specific statistical measure, λk0(t), that

the trading behaviour of different agent-types can be mapped onto. Assuming that the

underlying properties of a trading behaviour do not change, they should then be expressed

in a particular way. Or else their baseline intensity should be (a) time-invariant (function of

time). This property makes it traceable in a data-driven way and this will be the fundamental

block of the analysis below. Depending on the particular characteristics of each agent-type,

this can be translated into a distinctively shaped intensity, λk0(t), that is empirically traceable.

Second, it would be restrictive to assume a time-invariant arrival rate for each agent-type,

because this would imply that λ(t|Fs) is also time invariant. Instead, it is more natural to

consider that the presence of different agents varies according to evolving market conditions.

In Eq.(3) this conditionality is captured by the term (pkt |Fs). This is a weighting component

of the baseline intensity, λk0(t), which leads to a time-variant intensity for each agent-type,

λk(t|Fs), the sum of which is the intensity of the market, λ(t|Fs). This way, λ(t|Fs) becomes

a weighted average intensity of the baseline intensities, driven by a weighting factor that is

conditional on all past information, Fs, up to time s < t. Ft can contain information with

respect to past realizations of the full market, Ft = FN
t , or the intensity of each agent-type,

Ft ⊇ Fk
t ,∀t, or any other observable variable X, Ft ⊇ FX

t ,∀t.

Third, a combination of the two enables a data-driven way to extract information about

the existence of different agent-types, as well as their probability of entering the market,

from the observed aggregated (superposed process) trading activity in the market. More
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specifically, the contribution of this paper lies in the interpretation and the modelling of

the formulation above and the interpretations of the baseline intensity and its weighting

component. Eq.(3) enables the identification of the existence of different agent-types, as

long as their trading characteristics can be mapped onto a trading behaviour that exhibits

a distinctive intensity, fully captured by λk0(t). λk0(t) can be empirically extracted from data

and this would imply the presence of an agent-type with the ‘mapped’ trading characteristics.

However, this cannot be known with certainty at every point in time and Eq.(3) considers

that the superposed process λ(t|Fs) is a weighted average of the baseline intensities λk0(t),

with weightings (pkt |Fs). This makes (pkt |Fs) a measure of the probability of an event to

happen now (≡ λ(t|Fs)) is the instantaneous probability of an event to happen now given

that it has not happened so far) to be of type k (≡ λk0(t) is the baseline instantaneous

probability of an event of type k to happen now given that it has not happened so far).

Thus, (pkt |Fs) can be thought of as the conditional probability of the realization of an event

of type k. (pkt |Fs) is conditional on observable information and thus, it can be extracted

from the data. This way, Eq.(3) can be used in order to extract information about the

existence, λk0(t), of different types of agents, their conditional probability, (pkt |Fs), as well as

their conditional instantaneous probability,λk(t|Fs) = (pkt |Fs)λ
k
0(t).

2.2 Toward an Empirical Specification

In order to use Eq.(3) empirically, the conditional intensities, λk(t|Fs), must be extracted

from the observed intensity of the market, λ(t|Fs). The approach preferred here, over other

alternatives, estimates the baseline intensities, λk(t|Fs) and the weighting functions, (pkt |Fs),

in a data-driven way.2 Following relevant literature (e.g., [46]), the intensity of the market

and of each agent-type are extracted from the conditional distribution f(t|Fs) , and survival

function, S(t|Fs), of arrival times as f(t|Fs) = λ(t|Fs)S(t|Fs). Following [29], this is done
2Since λk(t|Fs)’s are not directly observable they cannot be directly estimated using a multivariate

Hawke’s (e.g., [10]; [37]) process. An alternative approach would be a Markov Renewal (e.g., [60]) process,
but this would require a pre-determined number of states, as well as a latent classification.
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by focusing on durations, xi = ti− ti−1 , i.e., the time between two consecutive events, i and

i− 1, also defining the information set as Fs = Fi−1. The trading activity of the market as

a whole is modelled following an ACD specification:

xi = ψiεi (4)

ψi = E(xi|Fi−1) is the expected duration, conditional on past information Fi−1. εi = χi

ψi

is the standardized duration, the distribution of which, f(εi|Fi−1), is used to derive the

distribution of χi, f(χi|Fi−1) = f(εi|Fi−1)ψ
−1, which in turn is used to derive the conditional

intensity for the whole market, λ(χi|Fi−1) = f(χi|Fi−1)/S(χi|Fi−1). Following Eq.(3), f(χi|Fi−1)

and f(εi|Fi−1) are modelled as a mixture of distributions (e.g., [38]; [33]; [16]):

f(χi|Fi−1) =
K∑
k=1

Pi(Zi = k|Fi−1)f
k(x) (5)

This specification is consistent with Eq.(3) and defines the distribution of durations at

market level as a weighted average of the baseline distributions of the different agent-types k,

fk(x). fk(x)’s are assumed to be time invariant due to time-invariant trading characteristics,

but the trigger points that instigate their trading activity are affected by market conditions,

Fi. This is captured by the weighting functions P(Zi = k|Fi−1), which act as time-variant

estimates of the probability that the next event will be instigated by agent-type k.

In order for fk(x) to be traceable, they must be identified based on observable informa-

tion. A convenient way to do this ([15]; [16]; [46]) is to restrict the difference to a set of

q = 1, ..., Q scale/shape parameters of a distribution, different values of which would indicate

either a different shape or a different (nested) distribution. Eq.(5) can be rewritten as:

f(χi|Fi−1; τi) = f(χi|Fi−1; τi(Wi(:), τ
m) =

K∑
k=1

Lki (Wi)f
k(x, τ k) (6)

where, for brevity conditionality can be denoted by the index i and not by (·|Fi),
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τi = (τ qi )
Q
q=1 is a vector of q = 1, 2, ..., Q parameters, dissected into m = 1, ...,M regimes,

that determine the shape and/or the scale of the distribution and, consequently of the con-

ditional intensity, which can then be expressed as a function, τi(:), of a [Q ×M ] matrix of

weighting functions, Wi(:), and a [Q ×M ] vector of shape/scale distribution parameters,

τm =
((
τQm
)Q
q=1

)M
m=1

. Different combinations of shape/scale parameter τ qm estimates would

lead to a distribution with a particular shape of the conditional intensity λk(x) that would

match the actions of an agent-type k. The probability of this agent-type k to enter the

market, Pi(Zi = k|Fi−1), can be expressed as a function Lki (:) of the weighting functions Wi.

Differentiation in Eq.(6) can be reduced to estimable parameters τ qm, which can then lead

to vectors τ k =
(
τ q=1
m:k , ..., τ

q=Q
m:k

)
, with m : k indicating the identification of regimes m that

can lead to an intensity λk(x) that fully describes the baseline arrival rate of agent-type k.

τi =
K∑
k=1

P(Zi = k|Fi−1)τ
k =

K∑
k=1

Lki (Wi)τ
k (7)

Each distribution fk(x) is fully defined by a set of shape/scale parameters, τ k, which,

according to Eq.(3) describe a time-invariant trading pattern for each agent-type k. The

agent-types are not observable and they are inferred from the data by modelling f(xi|Fi−1 :

τi) as an infinite mixture with smooth transition functions Gi ([66]) that lead to Wi as:

W q
m,i =

(
Gq
m,i −Gq

m,i+1

)
, with Gq

1,i = 1, Gq
M+1,i = 0 and

M∑
m=1

W q
m,i = 1 (8)

Gi =
((
Gq
m,i

)Q
q=1

)M
m=1

is a matrix of smooth transition functions across regimes. They

are employed to derive τ k in a data-driven way. A combination of Gi’s is used as a weighting

Wi =
((
W q
m,i

)Q
q=1

)M
m=1

to capture the conditional probability of being in regime m. This

estimate is esential in defining P(Zi|Fi−1), which can then be expressed as a combination

Lki (:) of W q
m:k,i, where m : k is an indicator of regimes in each shape/scale parameter q that

exhibit a shape of the distribution that matches the characteristics of type k.
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P(Zi = k|Fi−1 = Lki (Wi) =
∑

Q
⊗
m:k

∏
Q
⊗
M

W q
m,i (9)

The term
∏

Q
⊗
M W q

m,i is the cross-multiplication product of W q
m,i that defines the prob-

ability of the intersection between shape/scale parameters, q, and regimes, m, in the con-

tingency table with dimensions MQ. The term
∑

Q
⊗
m:k(:) identifies all the intersections

(Q
⊗

m : k) where the shape/scale parameters result in a distribution that matches the

characteristics of agent k. Then it defines the conditional probability of a trade being insti-

gated by an agent of type P(Zi = k|Fi−1), as the sum of all these intersections, Q
⊗

m : k.

This specification, following Eqq. (5) - (9), considers that all conditionality is summarized

into the functions Gi. Consequently, the definition of Gi becomes essential in identifying, in

a data-driven way, the number of regimes, as well as the shape of distribution in each regime.

A convenient way to do that is by defining them as smooth transition functions ([66]):

Gq
m,i = Gq

m,i(Ji : g
q
m, j

q
m) =

(
1 + e−g

q
m(Ji−jqm)

)−1

(10)

where, in the spirit of [52], Ji =
((
Jqv,i
)Q
q=1

)V
v=1

, Ji is measurable with respect to Fi−1, is

a vector of v = 1, 2, ..., V threshold variables (might be a different set for each shape/scale

parameter τ qi ), the level of which in combination with the vector of threshold values, jqm,

determines the allocation of each event into a regime. Then, each shape/scale parameter,

τ qi , can be defined as a weighted average of the parameters of each regime, τ qm, as:

τ qi =

 1︷ ︸︸ ︷
Gq
m=1,i−G

q
m=2,i


︸ ︷︷ ︸

W q
m=1,i

τ qm=1 +
(
Gq
m=2,i −Gq

m=3,i

)︸ ︷︷ ︸
W q

m=2,i

τ qm=2 + ...+

(
Gq
m=M−1,i −Gq

m=M,i

)︸ ︷︷ ︸
W q

m=M−1,i

τ qm=M−1 +

Gq
m=M,i −

0︷ ︸︸ ︷
Gq
m=M+1,i


︸ ︷︷ ︸

W q
m=M,i

τ qm=M (11)
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Eq.(11) is a specific derivation of Eq.(7) and defines each shape/scale parameter of the

distribution of the amrket point process, τ qi , as a wieighted average of the shape/scale pa-

rameters, τ qm, with m regimes. This way, it becomes possible to match the time-invariant

characteristics of an agent-type to a specific parameter, τ qu , in a data-driven way. How-

ever, although the characteristics of an agent-type might not be time-variant, their presence

in the market is. Eq.(11) captures this in the weights W q
m,i, which make τ qi time-variant.

Heuristically, this can be interpreted the following way. The market is composed of different

agent-types, whose trading characteristics are time invariant (captured by τ qm). The proba-

bility that a particular agent-type will instigate the following trade, however, is time varying

(captured by W q
m,i). This makes the market trading activity (captured by τ qi ) time varying

too. All parameters, including the smoothness parameters, gqm, are estimated from the data,

which can also determine the number of statistically significant regimes, m, through the

significance of the threshold values, jqm, and thus, the inferred number of agent-types present

in the market.

2.3 The (i)ntensity-based (R)elative (P )roportion

Finally, the expected proportion of an agent-type relative to the total number of events, i.e.,

intensity-baased Relative Proportion (aka iRP), can be defined using Eq.(3):

(iRP k
t |Fs) =

E
(
Nk(t)−Nk(s)

∣∣Fs

)
E (N(t)−N(s)|Fs)

=
E
(∫ t

s
λZ=k(u) du

∣∣∣Fs

)
∑K

k=1 E
(∫ t

s
λk(u) du

∣∣∣Fs

)
=

E
(∫ t

s

(
pZ=kt

∣∣Fs

)
λZ=k0 (u) du

∣∣∣Fs

)
∑K

k=1 E
(∫ t

s

(
pkt
∣∣Fs

)
λk0(u) du

∣∣∣Fs

) =

(
pZ=kt

∣∣Fs

)
HZ=k(t|Fs)∑K

k=1

(
pkt
∣∣Fs

)
Hk(t|Fs)

(12)

Eq.(12) expresses the expected proportion of agent-type k, as a proportion of total events

in a general form. Then, considering a specific distribution for each agent-type, the integral∫ t
s
λZ=k(u) du can be estimated using the cumulative hazard function Hk(t|Fs). The flexibil-
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ity of the assumed distribution for the superposed (market) process in exhibiting differently

shaped hazard functions (matched to specific trading patterns), becomes crucial. Previous

literature (e.g., [16]; [38]; [33]; [46]) consider relatively simple positive support distributions,

like the Weibull and/or the Burr distributions, which can only generate monotonically in-

creasing or decreasing hazard functions.

However, the generalization proposed here tries to match the trading behaviour of a con-

siderably wider range of agent-types to the shape of the hazard function and, therefore, mono-

tonic hazard functions might be restrictive. Instead, another distribution is ’indicatively’ pro-

posed here, the q-Weibull distribution, for its relative flexibility in generating non-monotonic

hazard functions and its link to ”information entropy”. 3 Following Eqq.(4)-(6), the ”q-

Weibull” distribution can be defined for (χi|Fi−1) ∼ Wq

Ai =
Γ

(
1+ 1

τ
q=2
i

)−τ
q=2
i

ψi

 , τ q=1
i , τ q=2

i

,

as:

f(χi|Fi−1; τi) = (2− τ q=1
i )

τ q=2
i

χi

[
χi
Ai

]τq=2
i

eq

(
−
[
χi
Ai

]τq=2
i

)
(13)

where, Ai is the scale parameter, ”q”:= τ q=1
i is the entropy parameter, τ q=2

i is a shape

parameter and eq is the q-Exponential distribution ([11]) that collabses to the exponential

when τ q=1
i = 1. The q-Weibull can generate non-monotonic hazard functions:

0 < τ q=2 < 1 τ q=2 → 1 τ q=2 > 1

0 < τ q=1 < 1 Bath-tub Increasing Increasing

τ q=1 → 1 Decreasing Flat Increasing

1 < τ q=1 < 2 Decreasing Decreasing Unimodal

3The selection of the q-form is based on ”information entropy” ([67]) or the ”information rate” of a data
generation process ([63]) or the ”degree of informativeness” of each observation. This is highly relevant in the
venture pursued here, which tries to extract latent information (presence of agent-types) from a noisy signal
(the superposed process of the market). The ”information rate” is introduced in the ”q”-form distributions
by measuring the impact of the ”surprise” through the Box-Cox transformed parameter (1 − "q"), which
captures the degree of extensivity of the stochastic process that generates the data; or else the impact of
the informativeness of an observation in changing the moments of the overall distribution. This is crucial in
the framework proposed here because it provides a more flexible way to estimate the state probabilities and
how they are affected by the realization of events.
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Finally, Hk(t|Fs) over ∆t = t− s, (e.g., Eq.(12)), can be defined as (e.g., [55]):

H(t|Fs) =


(2− τ q=1) (Ai(t− s))τ

q=2∑∞
j=0

[
(
(
1−τq=1

)
Ai

]j
j+1

when τ q=1 < 1

(Ai(t− s))τ
q=2

when τ q=1 → 1

2−τq=1

τq=1−1
ln
[
1 + (τ q=1 − 1) (Ai(t− s))τ

q=2
]

when 1 < τ q=1 < 2

(14)

3 Empirical Application: iRP and Information

The empirical specification introduced in Section 2.2 is a generalization of the infinite mixture

of distributions methodology (e.g,. [38];[46]) towards an explicit linking with a multitude of

agent-types, as long as their trading characteristics can be mapped into a distinctive shape

of the hazard function of durations. In more detail, Eq.(12) expresses the relative proportion

of a specific agent-type as a function of the cumulative hazard function that describes her

’on average’ trading characteristics. Consequently, it is essential to map distinctive trading

characteristics to distinctively shaped hazard functions. Eqq.(4)-(11) propose an explicit

empirical framework that links observable variables, different regimes of which are associated

with different values of shape/scale parameters of the distribution of durations. Naturally,

the magnitude of these parameters determine the shape of the distribution, as well as the

shape of the hazard function. Therefore, the Eqq.(4)-(12) can identify a plethora of different

agent-types, as long as their trading behaviour (i) has a material impact on some observable

variables (ii) in a manner that is associated with a distinctively shaped hazard function.

There is no constraint on the number of observable variables and/or of distinctive shapes

of hazard functions and, thus, the modelling here can theoretically identify the existence of

any number of agent-types, as well as their structural changes.

This is a significant generalization over previous approaches and it constitutes the major

contribution of this study. The empirical framework proposed in Section 2.2 contributes

to the literature in the following ways. First, it proposes a data driven way to a) iden-
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tify the number of different agent-types in the market b) associate their distinctive trading

characteristics to a measurable metric, c) estimate their conditional probability to enter the

market and d) ultimately develop a metric for their relative proportion (i.e., iRP in the

market. Second, Unlike previous approaches, it develops iRP in the limit when ∆t→ 0 and

not over an interval, which is more appropriate for an HFT environment. This is also done

without imposing any prior classification or constrain in the number of observable factors

and/or agent-types. Section 3.1 illustrates the mechanics of the proposed modelling with

the discussion of an example. Finally, last but not least, another major contribution of this

study is the derivation of the limit theory of iRP, which is presented in Section 5.

3.1 (i)ntensity-based (P)robability of (IN)formed trading (iPIN)

One of the most well-documented concepts in the literature ([26]; [56]), is the presence of

private information. This information refers to changes in the fundamental value of an asset

and it is gradually revealed to the market through the actions of traders that have a timing

advantage on it ([57]). These agents, called “informed”, as opposed to “uninformed”, exploit

their information benefit and their actions are revealed to the market by their directional

trading. This idea, that deviations from a random arrival of buys and sells (order flow) can

carry price-relevant information has been employed by [22, 23] which propose a measure of

the (P)robability of (IN)formed trading (PIN). The basic notion in PIN is that when there

is no information only liquidity traders exist in the market and the direction of their trading

should be random with a probability of 50%. In contrast, when there is private information,

informed agents align their demand with the direction of the signal and this creates an order

imbalance. The PIN interprets the magnitude of these deviations as increased presence of

informed agents. Accordingly, the PIN is defined as, αµ
(αµ+e)

, where a is the probability of the

existence of private information and µ and e are the arrival rates of informed and uninformed

agents, accordingly. This intuitive measure estimates the proportion of informed agents, i.e.,

αµ, relative to the number of all trades, i.e., αµ+ e.
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Albeit insightful, PIN has a notable limitation. It is derived from the trade direction,

which is usually latent in raw data. To mitigate the issue of noise in trade direction classifica-

tion algorithms (e.g., [28]), PIN is estimated over a period of time, without a clear selection

criteria for the optimal interval length 4. This makes it a rather slow interval estimate, inapt

for using it a higher trading frequencies required in algorithmic trading ([57]). This is further

exacerbated by the fact that PIN is a time invariant estimate. Several approaches propose

time variant probabilities conditional on either daily trade imbalances (derived from Bayesian

inference [51])) or trade durations (e.g., [20])). These approaches account for differential ar-

rival rates of buys and sells on a daily scale, but they still require a trade classification

algorithm and the selection of an optimal interval to mitigate the impact of classification

bias; thus, it is relatively slow for high frequency trading standards.

Instead, following a different strand of literature (e.g., [33, 38, 46]) Eq.(12) shifts the focus

from the aggregated properties of order flow to the aggregation rate trading to estimate the

instantaneous probability of a trade to be informed or uninformed, i.e., P(Zi=inf|Fi−1) and

P(Zi=uninf|Fi−1) = 1− P(Zi=inf|Fi−1), as well as their relative (time- invariant) arrival rates,

i.e., λZ=inf
0 (t) and λZ=uninf

0 (t), respectively. Then using Eq.(12) and considering a time-variant

arrival rate of uninformed agents, i.e., (et|Fs) with e0 being their baseline intensity, PIN can

be transformed into an intensity-based equivalent, iPIN:

iPINt =
(
iRPinf

t

∣∣Fs

)
=

(αt|Fs)µ

(αt|Fs)µ+ {1− (αt|Fs} e0︸ ︷︷ ︸
(et|Fs)

=
E
(∫ t

s
λZ=inf(u) du

∣∣∣Fs

)
∑K

k=1 E
(∫ t

s
λk(u) du

∣∣∣Fs

)

=
E
(∫ t

s

(
pZ=inf
t

∣∣Fs

)
λZ=inf
0 (u) du

)
∑K

k=1 E
(∫ t

s

(
pkt
∣∣Fs

)
λk0(u) du

) =

(
pZ=inft

∣∣∣Fs

)
HZ=inf (t|Fs)∑K

k=1

(
pkt
∣∣Fs

)
Hk(t|Fs)

(15)

which, can then be expressed in terms of the regimes of shape parameters, τ qi , as:
4([3]). [22, 23] suggest that a time interval of approximately one month produces a sufficient quantity of

data to estimate PIN with relative accuracy; a claim that has been debated in the literature (e.g., [59])

18



iPINi =
E
(∫ t

s
LZ=inf
i (Wi)λ

Z=inf
0

(
u, τZ=inf) du)∑K

k=1 E
(∫ t

s
Lki (Wi)λk0 (u, τ

k) du
) =

=

∑
Q
⊗

(m:k=inf)

{∏
Q
⊗
M W q

m,iH
Q
⊗

(m:k=inf)(t)
}

∑
Q
⊗
M

{∏
Q
⊗
M W q

m,iH
Q
⊗
M(t)

}

=

∑
Q
⊗(

m
(
τq=1
m ≥1,τq=2

m ≤1
)
:k
){∏

Q
⊗
M W q

m,iH
Q
⊗(

m
(
τq=1
m ≥1,τq=2

m ≤1
)
:k
)
(t)

}
∑

Q
⊗
M

∏
Q
⊗
M W q

m,iH
Q
⊗
M(t)

(16)

Eqq. (15)-(16) express the probability of informed trading (Z = inf) in terms of es-

timable parameters. The parameters in τ k determine the shape of the hazard function that

is then matched to the trading characteristics of different agent-types. The parameters in

Wi capture the probability of belonging to different regimes, m, and consequently, the con-

ditional probabilities that a trade is initiated by a particular agent-type. The numerator is

the number of trades initiated by informed agents and the denominator is the total num-

ber of trades. This is a definition identical to conventional PIN, but Eq.(16) provides an

instantaneous estimate of PIN that can be estimated conditionally over any interval.

The last line of Eq.(16) expresses iPIN explicitly when the characteristics of informed

agents can be described by more threshold variables and/or shape/scale parameters. A

matching shape (decreasing) of the hazard function, would be observed when τ q=1 ≥ 1 and

τ q=2 ≤ 1. In this formulation, the regimes, m (might be different for each q) of τ q=1 τ q=2

that lead to a decreasing shape of the hazard function, identify informed trading (k = inf).

Then, according to Eq.(12, the aggregated number of informed agents over time is the sum of

all the probabilities, i.e.,
∏

Q
⊗
M W q

m,i, of intersections Q
⊗

(m (τ q=1
m ≥ 1, τ q=2

m ≤ 1) : k) in

the contingency table, where τ q=1 ≥ 1 and τ q=2 ≤ 1, times the respective cumulative hazard

functions of these intersections, i.e., HQ
⊗(

m
(
τq=1
m ≥1,τq=2

m ≤1
)
:k
)
(t). This is then compared to

the expected number of the trades of all agent-types, defined explicitly in the denominator.

A specific version of Eq.(16), as an example, is discussed in Section 4.
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3.2 VPIN: A High(er) Frequency PIN and iVPIN

A fundamental difference of iPIN compared to the conventional PIN is that it derives the

probability of informed trading not from the aggregated sign of trades, but from two ele-

ments of the trading activity; trading frequency and trading volume. This is in line with

previous studies that challenge the relevance of the original version of the PIN, and account

for the time dimension (e.g., [20]), as well as for the volume dimension (e.g., [18, 24]). Since

the beginning the literature recognised that the PIN is a rather noisy measure, primarily

due to its reliance on the noisy signal of trade initiation, with different time interval lengths

changing its distributional properties ([3]), rather than mitigating the issue. In a series of

studies (e.g., [18, 24]), [18] relax both assumptions and suggest a(n), more HFT-friendly, es-

timate for the probability of informed trading, based on fixed buckets of volume or time, as

well as from price changes (rather than trade imbalances). The new measure, named VPIN,

is an explicit recognition that the speed of volume accumulation might be more strongly as-

sociated with information. Furthermore, aggregated signed volume, which could be thought

of as Volume Imbalance, VIi, in the limit approaches αµ (informed trades). In parallel,

the total aggregated volume accounts for all trading and thus for αµ + e. Then, using a

rolling window of length n, VPINt can be estimated as VPINtbucket =
∑tbucket

tbucket−n

∣∣∣V B
tbucket

−V S
tbucket

∣∣∣∑tbucket
tbucket−n Vtbucket

,

with E
(∥∥V B−V S

∥∥)
E(V B+V S)

→ αµ
(αµ+e)

, where
∑tbucket

tbucket−n

∣∣V B
tbucket

− V S
tbucket

∣∣ is the volume imbalance and∑tbucket
tbucket−n Vtbucket is the total volume over the last n buckets preceding bucket-time tbucket .

Extending on this idea, Eq.(12), can be parameterised to account for the arrival rate

of volume and associate it with different agent-types. Whereas VPIN approaches informed

trading from the perspective of aggregated outcome of signed volume, the approach here

focuses on the aggregation process itself. iPIN in Eqq.(15)-(16) is based on the counting

function of the trades instigated by different agent-types, which renders it a one dimensional

(trades) metric that is inadequate to capture the volume dimension. N(t) counts the total

number of trades over an interval, but not the total volume. For this purpose a reformulation

of t is required. Previous literature provides various ways that the arrival times ti can be
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transformed to account for a higher dimension of additional “marks”, but all boil down

to the concept of measuring the arrival rate of a “differently” defined event. [29] suggest

focusing on the waiting time for a price change of certain magnitude, a term coined “price

duration”, while [47] focus on the waiting time of a unit magnitude of an associated mark,

e.g., the waiting time per unit of volume. Accordingly, t → t∗ , where the counting process

N(t∗) =
∑

i≥1 1(Ti < t∗) counts how many events, described by the additional dimension,

occur over a time interval. Define t∗ = t∗i − t∗i−1 as the waiting time for a given magnitude of

volume ([47]). N(t∗) counts how much volume is traded over a time interval and following

Eqq.(2)-(3) it can be traced back to the agent-type who initiated it. N(t∗) can be defined as

N(t∗) =
∑

i≥1 1(Ti < t∗) =
∑K

k=1

∑
i≥1 1(T < t∗)(Zi = k). This way, each counting function

Nk(t∗) counts the volume traded by each agent-type k. With this formulation, the (volume)

trading activity of each agent-type is modelled and its relative proportion to the total trading

activity can be computed according to Eq.(12). Accordingly, in a similar fashion to iPIN ,

the intensity-based VPIN, i.e., iVPIN, can be formulated as:

iVPINi =

∑
Q
⊗(

m
(
τq=1
m ≥1,τq=2

m ≤1
)
:k
){∏

Q
⊗
M W q

m,iH
Q
⊗(

m
(
τq=1
m ≥1,τq=2

m ≤1
)
:k
)
(t∗)

}
∑

Q
⊗
M

∏
Q
⊗
M W q

m,iH
Q
⊗
M(t∗)

(17)

The formulation above is different from Eq.(16) in the way the conditional intensities are

considered. Instead of the intensities λk(t) that account for the arrival rate of the transactions

instigated by agent-type k, Eq.(17) is based on the intensities λk(t∗) that account for the

arrival rate of volume traded by agent-type k. This way, in Eq.(17), the regimes, m of τ q=1

and of τ q=2 (m could be different for each parameter) that lead to a decreasing shape of the

hazard function, identify informed trading (k = inf), by considering the arrival rate of their

trading measured in terms of volume. Then the numerator defines the aggregated volume

traded by informed agents over time as the sum of all the probabilities, i.e.,
∏

Q
⊗
M W q

m,i,

of intersections Q
⊗

(m (τ q=1
m ≥ 1, τ q=2

m ≤ 1) : k) in the contingency table, where τ q=1
m ≥ 1
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and τ q=2
m ≤ 1, times the respective cumulative hazard functions of these intersections, i.e.,

H
Q
⊗(

m
(
τq=1
m ≥1,τq=2

m ≤1
)
:k
)
(t∗). This is then compared to the aggregated total volume that is

defined in the denominator. This is an alternative measure to VPIN in continuous time.

Again, a specific parameterization can be found in Section 4.

iVPIN exhibits notable advantages over VPIN, on top of the fact that it is not an interval

measure. The empirical properties of VPIN depend on the selection ([3]) of the time (e.g.,

[18, 24]) or volume ([17]) bucket size, as well as on trade classification. iVPIN, instead of

selecting an “optimal” time or volume size that could potentially account for the aggregation

properties of information, it models exactly this process with the implied intensities of the

different agent-types. Consequently, iVPIN, unlike VPIN, derives the presence of private

information from the relative speed that volume accumulates, rather than from the direction

of accumulated volume and its sampling properties.

4 Empirical Properties of the iRP

The objective of this section is to investigate the empirical (Section 4.2) properties of the iRP

measure (Eq.(12)) before investigating its theoretical properties. This is done in the following

way. First, Section 4.1 presents an example of an empirical specification for iVPIN and

discusses how the relevant probabilities can be linked to specific, estimable parameters. Then,

Section 4.2 provides empirical estimates of these parameters and compares the empirical

performance of iVPIN to other conventional metrics. Then, the following section (5) discusses

the theoretical properties of iVPIN as an example metric of iRP.

4.1 From iRP to iPIN and iVPIN. An Empirical Specification

Drawing on previous literature (e.g., [46, 47]), in order to illustrate how Eqq.(16, 17) can be

linked to estimable parameters, the following specification of iVPIN is employed in all the

analysis below, as an indicative example:

22



Table 1: Indicative Empirical Specification Example
χi = ψiεi, ψi = E (χi|Fi−1, ω, β, φ, δ) = ω + βψi−1 + (χi − βχi−1)− (χ̃i − φχ̃i−1)

f

(
χi|Fi−1;Ai =

[
Γ

(
1+ 1

τ
q=2
i

)−τ
q=2
i

/ψi

]
, τ q=1, τ q=2

i

)
= (2− τ q=1)

τq=2
i

χi

[
χi

Ai

]τq=2
i

eq

(
−
[
χi

Ai

]τq=2
i

)

τ q=2
i =

 1︷ ︸︸ ︷
Gq=2
m=1,i−G

q=2
m=2,i


︸ ︷︷ ︸

W q=2
m=1,i

τ q=2
m=1 +

Gq=2
m=2,i −

0︷ ︸︸ ︷
Gq=2
m=3,i


︸ ︷︷ ︸

W q=2
m=2,i

τ q=2
m=2

for Gq=2
m=2,i =

(
1 + e−g

q=2
m=2(Ji−j

q=2
m=2)

)−1

, with Ji = tii = (durationi ∗K(volumei))
−1

where, χi being defined as χi = ∆ti, when a trade-”clock” is employed (relative to

PIN), or as as χi = ∆t∗i , when a volume-”clock” is employed (relative to VPIN). The

conditional mean follows a FIACD(1, δ, 1) (e.g., [41]) specification, where χ̃i = (1− L)δ χi

is a fractional difference (L is the lag operator) of χ with a fractional differentiating pa-

rameter δ.5 τ q=1 is time invariant and τ q=2
m has a dimension of M = 2 regimes, identified

by different levels of the threshold variable Ji (e.g., [47]). Ji = tii is the inverse of vol-

ume weighted duration, which is estimated as the product of diurnally adjusted durations

and K(volumei) = e

(
− volumei−volume

σvolume

)
, where volume and σvolume are the sample mean and

standard deviation of volume, estimated per stock. Ji is an increasing variable of trading

intensity. This specification models the inter-trade or volume weighted inter-trade wait-

ing times as an infinite mixture of two q-Weibull distributions that are identified by a sole

time-varying shape parameter, τ q=2
i .6

5This specification is preferred over more conventional specifications, such as in [29] due to the potentially
long memory of durations. The rationale for selecting a long memory specification is primarily due to the
objective pursued in this study. Eqq. (12)-(13) extract the information about the presence of different agent-
types from the impact of their material actions. The impulse response functions, embedded in FIACD, are
versatile enough to account for these actions. The parameter δ is the degree of decay that captures, in a sense,
the life span of trading information. This allows dinstant past events to affect the conditional expectation of
χ, ψi = E(χi|Fi−1), and its conditional distribution, f (χi|Fi−1;Ai). Variations in f (χi|Fi−1;Ai), captured
by τ q

m, depend on ψi and, thus, on the long memory, i.e., δ, and its impact, i.e., φ, on ψi. This way, the
identification of the different agents is done in a way that accounts for market reflexivity and past interactions
of all agent-types. Additionally, the FIACD specification appears more computationally stable.

6When τ q=2 = 1 the hazard function is flat matching the time-invariant arrival rate of uninformed agents,
while when τ q=2 < 1 (τ q=2 > 1) the hazard function is decreasing (increasing) matching the characteristics
of informed (technical, e.g., [46]) traders.
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To articulate this more firmly, trading intensity, Ji, is employed as a classification variable,

different levels of which are associated with differently shaped hazard functions and thus,

with different agent-types. In line with previous literature (e.g., [25]) higher levels of trading

intensity, i.e., Jq=2
i > jq=2

m=2, are expected to be associated with decreasing hazard functions,

i.e., τ q=2
m=2 < 1, and therefore with a higher probability of this trade to have been initiated by

an informed agent, captured by a higher value of W q=2
m=2,i. Accordingly, W q=2

m=2,i is an estimate

of the probability of the existence of private information and W q=2
m=2,iλ

k=inf
0 (t, τ q=2

m=2) is the

conditional instantaneous probability of the arrival of an informed trader. Then, assuming

that τ q=1 → 1 in Eq.(14), iVPINi = iVPINi:ti→ti+∆t can be written as:

iVPINi:ti→ti+∆t =
W q=2
m:inf,i(Ai((ti +∆t)− ti))

τq=2
m:inf∑3

m=1W
q=2
m,i (Ai((ti +∆t)− ti))τ

q=2
m

4.2 Empirical Estimation and Performance

In order to get comparable estimates, for both intensity-based and interval measures, the

focus of the analysis is time, rather than volume. The objective is to create contemporaneous

estimates, comparable across both frameworks. This is not an issue for the intensity-based

iVPIN, but for the estimation of VPIN the time and length of interval are parameters of

choice. Although fixed-volume buckets might perform better (e.g., [59]), the empirical setup

here employs fixed-time buckets in order to create contemporaneous estimates. In particular,

the sample, e.g., simulated (Section 5.3) and real data, is split into fixed-time buckets of

different time lengths, bucketsize = (1′′, 5′′, 15′′, 30′′, 1′, 5′, 15′, 30′, 60′)′, and all measures are

estimated at the end of each bucket, at a time noted as tbucket. This approach is an indirect

way to provide robust estimates with respect to the length of the interval and the forecasting

horizon.7 Then VPIN and iVPIN are estimated using the same sampling frequency, over 10
7Previous literature (e.g., [59]) suggests that volume buckets might be more relevant in identifying private

information because they identify the same magnitude of information, captured by a unit of volume. Then
information is identified by the speed of volume accumulation. This approach would create timed buckets
of variant time intervals, which would undermine comparability with iRP. Instead, the comparison here
is based on fixed intervals for comparability reasons. The fixed-time intervals vary from 1” to 1h. The
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lags, following the principle that: E
(

αtbucket
µtbucket

(αtbucket
µtbucket+etbucket )

)
→ αµ

(αµ+e)
. The difference lies in

how each element is estimated. In particular:

VPIN. The benchmark metric for comparison is the conventional VPIN, which is es-

timated based on the principle ([20]) that E
(∥∥V B − V S

∥∥) → αµ and E
(∥∥V B + V S

∥∥) →

αµ + e. The aggregated buy V B → V B
tbucket

and sell V S → V S
tbucket

volumes are computed

over different time intervals, i.e., bucketsize, with tbucket marking the time at the end of

each bucket, acting as a time identification. Then, VPINtbucket is computed over a rolling

window of n = 10 lags as: VPINtbucket =
∑tbucket

tbucket−n

∣∣∣V B
tbucket

−V S
tbucket

∣∣∣∑tbucket
tbucket−n Vtbucket

.8 In this metric, the

most important element is the identification of trade initiation; a variable that is absent

in raw data. This, has been shown to be an important issue (e.g., [59]), affecting the

performance of VPIN, especially in combination with different sampling frequencies. The

trade classification rules that exhibit superior performance are the ”EMO” ([28]) trading

classification rule and the Bulk Volume (hereafter BV: [24]) classification. The EMO clas-

sifies trades according to whether they are taken from the ask (buy) or bid (sell) price,

while all other trades are classified according to the ”tick” rule (e.g., [36]). In a misuse

of the term, the estimate of VPIN using the EMO classification is called PIN, due to its

resemblance to the lower frequency estimate of PIN.9 In parallel, the BV classification de-

estimation of VPIN requires a rolling window of specific lag-structure and various studies suggest that the
optimal length is data-driven. In the analysis below the VPIN is estimated using n = 10 lags and according
to the bucketsize this might cover a period from 10” (still too long for algorithmic trading, but short enough
for noise in trade direction to have a substantial impact in trade initiation identification) to 10h (longer than
a day, which is long enough to reduce the impact of noise in trade initiation identification).

8The length of the rolling window of 10 is selected in order to facilitate the investigation of the performance
of intensity-based measures in HFT. when bucketsize = 1′′ the rolling window of 10 corresponds to 10”. This
interval is sufficiently short for algorithmic trading standards in order to evaluate whether the VPIN metric is
of relevance at this sampling frequency, while it is also sufficiently long enough to avoid missing observations
due to lack of data. On the opposite side, a rolling window of bucketsize = 60′ corresponds to a full trading
day. Previous literature (e.g., [59]) shows that this interval provides reasonable estimates for VPIN, while it
is still relevant to algorithmic trading, whose trading horizons rarely exceed one trading day.

9The original PIN employs a per trade classification rule and [22, 23] claim that one month worth of data
is sufficient to estimate PIN. However, this would be rather unrealistic in HFT. Instead, VPIN is a more
viable alternative, due to its HFT relevance (e.g., [27]). Following the idea of the ”volume clock”, unlike in
the original PIN, the high-frequency metric employed here, estimates the order imbalance based on the total
volume (rather than in the number of trades). This approach still considers the direction of trading derived
from trade classification algorithms (like in the original PIN), but combines it with trading volume (like in
VPIN). This provides a time variant estimate of PIN, which is preferred to other alternatives, such as the
duration weighted trade imbalances of [20], due to its flexible sampling frequency.
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rives trade initiation solely from price changes. In particular, using the notation in this

paper, V B
tbucket

and V S
tbucket

are defined as V B
tbucket

= VtbucketZ
(
Pricetbucket−Pricetbucket−1

σ∆Price

)
and

V B
tbucket

= Vtbucket

(
1− Z

(
Pricetbucket−Pricetbucket−1

σ∆Price

))
.

iVPIN. As an example of iRP, in Eq.(12), the conventional VPIN is compared to

an intensity-based alternative, coined iVPIN. In order to create a comparable estimate,

iVPIN is estimated on a per-trade basis, considering the inter-trade durations, i.e., χi+1 =

(ti+1 − ti) for trades or (t∗i+1 − t∗i ) for volume weighted durations, as the waiting time,

i.e.: iVPINi:χi+1
=

W q=2
m:inf,i(Aiχi+1)

τ
q=2
m:inf∑3

m=1W
q=2
m,i (Aiχi+1)τ

q=2
m

. This provides a rather granular estimate of the

expected level of VPIN, that can be, then, estimated at any desirable interval. VPIN

is estimated for each bucketsize = (1′′ to 60′)′ and then an average over a time interval

n = 10. The same approach is applied in the case of iVPINtbucket , which is estimated

as: iVPINtbucket =

∑tbucket
tbucket−n

∑#tradestbucket
i

iVPINi
#tradestbucket

n
. For reference, when χi+1 = (ti+1 − ti), the

intensity-based estimate is named iPIN, while, when χi+1 = (t∗i+1 − t∗i ), it is named iVPIN.

iVPIN vs VPIN.After computing VPIN and iVPIN their performance is evaluated based

on their forecasting ability on subsequent variance and the existence of UEE’s. Following [3]

this is evaluated based on the following regression:

Qtbucket = c0 + c1Metrictbucket−n + cCVtbucket−n + f.e.+ εtbucket (18)

where, Qtbucket = (RVtbucket , UEEtbucket)
′. The values are multiplied x100 in order to adjust

the decimal places of the estimated coefficients. Metric = (PIN, V PIN, iPIN, iV PIN)′.

RVtbucket is the average realized volatility of each bucket over the time interval n. UEEtbucket

is the average number of UEE’s: ([43]) of each bucket over the time interval n. 10 CV =

(RV, spread, orders, averageduration)′ is a collection of standard market microstructure

variables that are introduced to control for varying market conditions and the sensitivity

of VPIN to them (e.g., [14]). f.e. is company fixed effects.
10UEE’s are defined as periods that last less than 1,500ms, they follow a run (same trade direction) that

exceeds 10 trades, during which prices change by more than 0.8% of the price at the beginning of the run.
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4.3 Application: Real Data

The specification defined in Eq.(16) (as well as some extensions in Appendix B.2) is indica-

tively evaluated on a one-year, 2/1/2019-6/12/2019, sample of all constituents of Dow Jones

Industrial Average (aka DOW30). The primary objective is to evaluate the performance

of iRP against interval-based metrics, which would be better facilitated by a sample with

minimal market-specific stylized factors or other types of trading biases. DOW30 consists of

liquid, large-cap stocks and, from this perspective, is less likely to suffer from market specific

biases. In addition, the constituents do not change during the sample period and, therefore,

the trading activity is unlikely to be affected by portfolio rebalances. Also, the sample stops

prior to the COVID-19 news and, thus, it should not be affected by it.

Concerning the data collection and manipulation process; information on all transactions

is collected and for each transaction the associated date, time-stamp (millisecond), price ($)

and trading volume (number of stocks) are recorded. The trade direction is not included in

the source data and it is inferred by using the ”EMO” ([28]) trade classification rule. All

observations outside the “normal trading hours” as well as the first transaction of each day

(aggregated volume of the pre-opening session) have been omitted. According to [57] the

nature of trading and the market participants have changed drastically with the technological

advancements and this has direct implications on how information is diffused. The shift

from fundamental to ”trading” information, which might render intensity-based metrics more

adept, becomes increasingly relevant in the presence of algorithmic trading, which dominates

the trading during the opening hours. Consequently, focusing on normal trading hours

generates a less biased data sample. Furthermore, all trades with identical time stamp, price

and trade initiation are considered as one segmented trade with aggregated volume. This

accounts for passive splitting and mitigates the information loss of the trade classification

algorithm. In addition, it reduces the proportion of trades with zero duration or zero price

change, which, beyond the computational benefits, creates a sample that is focused on the

time evolution of volume and price (or price change) withouth thinning the data. Moreover,
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Table 2: Descriptive Statistics: Full Sample
Full Sample #230,084,293 Simulation 1 asset 100 days x #100,000

Avg. Min. Max. Std. Avg. Min. Max. Std.
Return 0 -9.76 9.77 0.04 0 -8.72 14.01 0.04
Volume 205.8 1 88,000 538.94 355.48 1 112,000 355.78

Duration 0.90 2.1E-5 4,500 2.34 0.85 0 3,856 1.99

Table 2 presents the descriptive statistics, i.e., the average (mean), the maximum (max), the
minimum (min) and the standard deviation (std) of duration (in seconds), trading volume
(in number of stocks) and price change (in $’s). The left panel presents the cross-sectional
estimates of the statistics for the full sample that consist of all constituents of DJ30 (full
table in Appendix). The left panel presents the cross-sectional estimates of the simulation
that generates a calendar quarter worth of data (100 days, assuming 100,000 observations
per day) the # sign is the count of observations per stock.

duration has been computed as the time between two consecutive trades, with one second

being added to all observations for computational reasons, excluding the overnight period

and has been diurnally adjusted (Engle and Russell, 1998). This results in a panel dataset

of all filtered transactions of 30 firms with 230,084,293 unique observations.

The basic statistics of the final sample are presented in Table 2 (a more extensive, per-

stock, presentation in Appendix A . The sample consists of rather liquid stocks like AAPL,

to relatively less liquid stocks, like AXP, with an average duration of less than 1 second;

around 0.9 seconds. The average volume per trade is just over 200 stocks; 205.8 and it is

over-dispersed, standard deviation is 538.94, indicating a wide range of values. In addition,

price changes exhibit some moderate variation at around 0, with a standard deviation of

0.04. These values are consistent with relevant literature, which shows that our sample

is relatively homogeneous, but with adequate variation, in order to provide a sample with

minimal trading biases or extreme events.

Table 3 presents the estimates of the parameters of the empirical specification in Table

1. The left panel reports the parameters of the conditional mean specification, i.e., Table

1, assumed to follow a fractionally integrated data generation process; ψi = ω + βψi−1 +

(χi − βχi−1)− (χ̃i − φχ̃i−1). χ̃i = (1− L)δ χi is a fractional difference (L is the lag operator)
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Table 3: Estimation Results

iPIN iVPIN iPIN iVPIN
low high low high

ω 0.6298 0.5305 q 1.3069 1.0144
(0.02) (0.01) (0.01) (0.02)

β 0.3073 0.5376 (τ |ti) 1.1480 0.6376 1.1853 0.5945
(0.03) (0.02) (0.02) (0.02) (0.02) (0.02)

φ 0.4898 0.3695 g(ti) 1.0077 0.9951
(0.01) (0.02) (0.00) (0.02)

δ 0.1565 0.2475 j(ti) 1.1388 1.0639
(0.02) (0.02) (0.03) (0.03)

The left panel of Table 3 presents the estimation results for the conditional mean specifica-
tion parameters, assuming a FI-ACD specification ω + βψi−1 + (χi − βχi−1)− (χ̃i − φχ̃i−1).
The right panel presents the distribution parameter estimates, assuming a q−Weibull

distribution for χ, i.e., f (χi|Fi−1) = (2 − τ q=1)
τq=2
i

χi

[
χi

Ai

]τq=2
i

eq

(
−
[
χi

Ai

]τq=2
i

)
, where

Ai =

[
Γ

(
1+ 1

τ
q=2
i

)−τ
q=2
i

/ψi

]
, τ q=2

i =
(
Gq=2
m=1,i −Gq=2

m=2,i

)
τ q=2
m=1 + Gq=2

m=2,iτ
q=2
m=2 and Gq=2

m=2,i =(
1 + e−g

q=2
m=2(Ji−j

q=2
m=2)

)−1

. The estimates are for the iPIN and iVPIN specifications in sec-
tion 4.1 All estimates are cross-sectional averages, with standard deviations in (:).

of χ with a decaying parameter δ. δ is the long memory parameter and is estimated in

advance using an ARFIMA(0, δ, 0) specification. χ̃i is the residuals of this specification. δ

takes the value of 0.1565 (0.2475 for VPIN), suggesting a long memory ([41]), but not a fully

integrated process. The values for β and φ indicate strong persistence, but at the same time

satisfy the positivity constraints β − δ ≤ φ ≤ 2−δ
3

and δ
(
φ− 1−δ

2

)
≤ β(δ − β + φ) of [13].

The right panel reports the estimates of the parameters of the distribution in Table 1,

i.e., f (χi|Fi−1) = (2 − τ q=1)
τq=2
i

χi

[
χi

Ai

]τq=2
i

eq

(
−
[
χi

Ai

]τq=2
i

)
, where Ai =

[
Γ

(
1+ 1

τ
q=2
i

)−τ
q=2
i

/ψi

]
,

τ q=2
i =

(
Gq=2
m=1,i −Gq=2

m=2,i

)
τ q=2
m=1 + Gq=2

m=2,iτ
q=2
m=2 and Gq=2

m=2,i =
(
1 + e−g

q=2
m=2(Ji−j

q=2
m=2)

)−1

. The

entropy parameter q is converging to 1 and this shows a convergence to a Weibull distribution.

The smoothness parameters, gq=2
m=2 noted as g(ti)’s, are very close to one, while the threshold

values, jq=2
m=2 noted as s(ti)’s, are very close to the unconditional means. This shows, a rather

smooth transition from one regime to the other. These, data identified, regimes exhibit
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two distinct trading groups, as they are captured by the shape parameters, τ q=2
m=1 and τ q=2

m=2,

noted as τti<j(ti) (low) and τti>j(ti) (high), respectively. τti<j(ti)’s are consistently higher

than 1 and τti>j(ti)’s are consistently less than 1. This is consistent with previous literature

(e.g., [46, 47, 48]) and indicates that higher trading intensity (i.e., ti > j(ti)) is associated

with an increasing probability of informed trading. According to the estimates, when the

threshold variable, Ji, takes values that are higher than 1.1388 (1.0639), the iPIN (iVPIN)

metric indicates that there is an increasing probability that this trade was instigated by

an informed trader. This is inferred by its sample-wide post trade impact that is reflected

on a decreasing hazard function. The higher Ji is, the closer the shape parameter is to

τ q=2
m=2 (0.6376 for PIN and 0.5945 for VPIN) and, thus, the sharper is the decreasing shape

of the hazard function (indicating an accelerating market and, thus, a trade with high(er)

post-trade impact), which is interpreted as more informative.11 Heuristically, this indicates

that higher trading intensity is associated with higher presence of private information. This

finding is consistent with seminal studies in the market microstructure literature, e.g., [25],

but the novelty in the metric proposed here is that it provides an empirical framework to

assess the exact probability. In addition, the smoothness parameter is an indirect measure of

how easy is to infer information from trading signals and, thus, it provides a direct estimate

of market opacity.12

Furthermore, in order to provide a direct comparison between the intensity-based versus

the interval-based metrics of PIN, their relative performance is tested in forecasting realized

volatility ([59]) and UEE’s ([43]). Table 4 presents the estimations results of Eq. (18) for

variance and Table 5 for UEE’s. In each table, the top panel presents the estimates of the

parameter c1, with t-statistics in () and it is followed by the R2 and (M)ean (S)quared (E)rror
11[57] claims that algorithms use trading information as a noisy proxy for fundamental information and

that speed is the new token of information. By extension, each trade is potentially informative and its
”information load” (e.g., [43]) can be assessed by its post-trade impact. This is the basic principle that
associates a decreasing hazard function (i.e., accelerating post-trade impact) with information.

12A sharper (smoother) transition, captured by a higher (lower) value of the smoothness parameter, gq=2
m=2,

would indicate a clearer (less clear) distinction between the two regimes. Considering that the presence of
different agent-types is latent information, a clearer (less clear) distinction would indicate greater (lower)
market opacity because it is easier (more difficult) to extract latent information from observable signals.
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Table 4: Real Data: Performance of metrics-Variance
1” 5” 15” 30” 1’ 5’ 15’ 30’ 60’

Estimates
PIN -0.0054 -0.0084 -0.0103 -0.0073 -0.0059 -0.0058 -0.0025 -0.0026 -0.0024
(t) (1.44) (74.27) (64.22) (56.63) (-37.03) (-34.24) (-20.36) (-3.63) (-2.29)
R2 0.6688 0.5749 0.5249 0.4951 0.3238 0.3220 0.2726 0.2581 0.2436

MSE 0.0198 0.0163 0.0154 0.0132 0.0128 0.0120 0.0088 0.0068 0.0065
iPIN 0.6816 0.4112 0.3926 0.3239 0.2722 0.2326 0.1950 0.1306 0.0933
(t) (124.44) (76.17) (66.62) (61.91) (40.64) (37.30) (22.01) (10.60) (8.51)
R2 0.6817 0.5819 0.5285 0.4980 0.3256 0.3229 0.2731 0.2646 0.2601

MSE 0.0160 0.0133 0.0130 0.0113 0.0111 0.0106 0.0080 0.0061 0.0052
VPIN -0.0017 -0.0077 -0.0093 -0.0053 -0.0051 -0.0498 -0.0036 -0.0032 -0.0032

(t) (-0.32) (-52.26) (-62.15) (-48.83) (-36.52) (-32.14) (-20.01) (-8.46) (-6.00)
R2 0.6683 0.5740 0.5231 0.4947 0.3233 0.3212 0.2721 0.2643 0.2587

MSE 0.0257 0.0187 0.0165 0.0147 0.0130 0.0121 0.0091 0.0068 0.0056
iVPIN 0.8395 0.7551 0.6949 0.4712 0.4216 0.3743 0.2758 0.2213 0.2105

(t) (133.90) (92.07) (55.75) (52.53) (50.47) (40.58) (26.93) (12.81) (9.21)
R2 0.6848 0.5849 0.5312 0.5007 0.3281 0.3252 0.2753 0.2668 0.2609

MSE 0.0158 0.0124 0.0123 0.0110 0.0102 0.0100 0.0074 0.0061 0.0051
MSE

PIN/iPIN 1.2377 1.2277 1.1863 1.1660 1.1466 1.1308 1.1017 1.1135 1.2512
VPIN/iVPIN 1.6330 1.5074 1.3401 1.3370 1.2710 1.2071 1.2295 1.1109 1.0951
iPIN/iVPIN 1.0138 1.0725 1.0549 1.0314 1.0907 1.0526 1.0782 1.0019 1.0239
PIN/VPIN 0.7684 0.8735 0.9339 0.8995 0.9839 0.9861 0.9662 1.0041 1.1699
PIN/iVPIN 1.2548 1.3167 1.2515 1.2026 1.2506 1.1903 1.1879 1.1155 1.2811

R2
PIN/iPIN 0.9810 0.9879 0.9933 0.9940 0.9945 0.9972 0.9981 0.9755 0.9368

VPIN/iVPIN 0.9760 0.9813 0.9847 0.9878 0.9854 0.9878 0.9883 0.9907 0.9918
iPIN/iVPIN 0.9955 0.9950 0.9947 0.9946 0.9924 0.9928 0.9919 0.9916 0.9969
PIN/VPIN 1.0007 1.0016 1.0035 1.0009 1.0016 1.0022 1.0017 0.9764 0.9417
PIN/iVPIN 0.9955 0.9950 0.9947 0.9946 0.9924 0.9928 0.9919 0.9916 0.9969

Table 4 presents the estimation results for Eq. (18), where the dependent variable is Realized
volatility. All estimations inclued the same control variables and company fixed effects. The
top panel presents the estimates of the coefficients with t-stats in (), as well as the adjusted
R2 and the (M)ean (S)quared (E)rror (MSE). The bottom two panels report the ratios of
MSE and R2 for the pairs indicated on the left.

(MSE). All estimations include asset fixed effects and a set of microstrure controlled variables,

the estimates of which are not reported for brevity. Each section named, PIN, iPIN, VPIN

and iVPIN are separate estimations with each metric being considered independently of the

others. The comparison is based on R2 and the MSE and the bottom panel presents the

ratios for direct commparison. Finally, both tables are organized into columns according to

the interval frequency, bucketsize = (1′′, 5′′, 15′′, 30′′, 1′, 5′, 15′, 30′, 60′)′.
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Table 5: Real Data: Performance of metrics-UEE’s
1” 5” 15” 30” 1’ 5’ 15’ 30’ 60’

Estimates
PIN 0.0352 0.0542 0.0666 0.0473 0.0381 0.0372 0.0159 0.0166 0.0158
(t) (4.84) (36.27) (31.36) (27.65) (18.08) (16.72) (9.94) (7.77) (4.90)
R2 0.0679 0.0576 0.0524 0.0496 0.0324 0.0324 0.0273 0.0258 0.0243

MSE 0.5025 0.4976 0.0492 0.4312 0.0321 0.0319 0.2834 0.0255 0.0268
iPIN 0.0573 0.0346 0.0330 0.0272 0.0229 0.0196 0.0164 0.0110 0.0079
(t) (49.45) (39.23) (34.31) (31.89) (20.93) (19.21) (14.34) (9.91) (7.96)
R2 0.0686 0.0586 0.0532 0.0501 0.0328 0.0325 0.0275 0.0266 0.0262

MSE 0.4944 0.4618 0.4516 0.3943 0.3865 0.3669 0.2764 0.2120 0.1792
VPIN 0.0367 0.1613 0.1955 0.1111 0.1075 1.0465 0.0761 0.0671 0.0664

(t) (3.39) (35.55) (42.28) (33.22) (24.84) (21.87) (13.61) (8.76) (6.21)
R2 0.0648 0.0573 0.0522 0.0493 0.0321 0.0322 0.0271 0.0263 0.0257

MSE 0.5763 0.0583 0.0527 0.0501 0.0326 0.0326 0.0276 0.0254 0.0229
iVPIN 0.0598 0.0433 0.0398 0.0270 0.0242 0.0215 0.0158 0.0127 0.0121

(t) (51.07) (41.29) (32.20) (27.17) (19.07) (16.55) (15.17) (13.84) (10.57)
R2 0.0696 0.0594 0.0540 0.0509 0.0333 0.0330 0.0280 0.0271 0.0265

MSE 0.4726 0.4314 0.4291 0.3828 0.3552 0.3498 0.2577 0.2125 0.1767
MSE

PIN/iPIN 1.0164 1.0766 0.1104 1.0955 0.0833 0.0871 1.0301 0.1208 0.1496
VPIN/iVPIN 1.2196 0.1347 0.1241 0.1303 0.0926 0.0927 0.1058 0.1202 0.1314
iPIN/iVPIN 1.0462 1.0714 1.0459 1.0281 1.0869 1.0479 1.0676 0.9954 1.0195
PIN/VPIN 0.8719 8.5642 0.9303 8.6444 0.9787 0.9843 10.3904 1.0003 1.1606
PIN/iVPIN 1.0634 1.1535 0.1155 1.1262 0.0906 0.0913 1.0997 0.1202 0.1526

R2
PIN/iPIN 0.9893 0.9813 0.9843 0.9843 0.9898 0.9897 0.9979 0.9660 0.9276

VPIN/iVPIN 0.9311 0.9591 0.9657 0.9629 0.9669 0.9683 0.9718 0.9693 0.9695
iPIN/iVPIN 0.9861 0.9856 0.9853 0.9852 0.9831 0.9834 0.9825 0.9822 0.9875
PIN/VPIN 1.0478 1.0084 1.0043 1.0071 1.0063 1.0051 1.0088 0.9789 0.9447
PIN/iVPIN 0.9861 0.9856 0.9853 0.9852 0.9831 0.9834 0.9825 0.9822 0.9875

Table 5 real presents the estimation results for Eq. (18), where the dependent variable is
UEE. All estimations inclued the same control variables and company fixed effects. The top
panel presents the estimates of the coefficients with t-stats in (), as well as the adjusted R2

and the (M)ean (S)quared (E)rror (MSE). The bottom two panels report the ratios of MSE
and R2 for the pairs indicated on the left.

The empirical findings using both metrics are rather consistent and provide evidence that

the intensity-based metrics perform notably better, especially in higher sampling frequencies.

The first observation is that iVPIN and iPIN exhibit a higher R2 and a lower MSE than

VPIN and PIN, in this order, in all sampling frequencies. This is more pronounced in higher

sampling frequencies, espcially when the interval is closer to 1” (more relevant for HFT). This

highlights that the initial motivation of this paper that interval-based measures might not be
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adequately adopted for HFT, even when the volume-clock is considered in VPIN. The ratios

reported at the bottom of the two tables show that in lower frequencies, e.g., 30’ or 60’, the

performance differences persist, but all the metrics seem to converge. In contrast, the biggest

differences are observed in higher sampling frequencies, e.g., 1” to 15”, highlighting that, in

HFT, the aggregation process itself, i.e., arrival rates and hazard functions, constitute a

stronger signal, compared to the aggregated values, e.g., aggregated trade direction or price

change. This finding is consistent cross-sectionally and provides a first evidence in favour

of the underlying concept in this study, that in HFT, where algorithms act in sub-human

attention speeds, interval estimates are inapt in capturing the properties of the data. Even

worse, these findings are a first evidence that the impact of the noisy signals is higher in higher

sampling frequencies and, thus, these metrics exhibit higher MSE’s. Instead, the modeling

of the arrival rates with conditional intensities (hazard functions) performs notably and

consistently better, because it focuses on the granular properties of the data. Conditional

intensities are a mathematical tool to model instantaneous probabilities, and for this reason,

they describe better the aggregation properties of the data.

In addition, trading volume enhances the performance of all metrics. In intensity-based

metrics the volume enhanced iVPIN outperforms consistently the iPIN that is based solely on

the arrival rate of trades, rather than of volume. In interval-based metrics, VPIN exhibits

some significant noise in high sampling frequencies, 1” to 1’, but it outperforms PIN in

intervals that exceed 15’. This highlights that the initial intuition behind VPIN that the

noise present in the trade direction might be mitigated by focusing on the volume-clock,

is toward the right direction. However, classification according to trade direction is still

noisy, independently on whether is based on trade direction (PIN) or price change (VPIN).

Instead, focusing on the aggregation properties of trading volume is an approach that exhibits

a consistently higher performance, that persist even at lower trading frequencies.
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5 Theoretical Properties of the Intensity-Based Esti-

mator

Section 4 provides some empirical evidence in favour of the intensity-based estimates, es-

pecially when they are volume enhanced. However, in order to verify that they are not

circumstantial due to sampling bias, Section 5 investigates the statistical theory of the plug-

in estimator for the iRP, through the limit theory of the maximum likelihood estimator

for the parameters that appear in the specification. Section 5.1 provides (pseudo-) consis-

tency considerations, showing the adequacy of the application (e.g., iPIN and iVPIN) of

iRP in capturing the true PIN. Section 5.2 discusses rates, asymptotic distributions and

subsequently issues of asymptotic inference and acts as a base for a comparison between the

interval-based and the intensity-based estimators. Finally, Section 5.3 discusses the impact

of mis-specification in the intensity-based metrics (iRP) through a Monte-Carlo simulation.

The discussion in Section 5 evolves around private information, but it is easily expandable

into other agent-types (e.g., Appendix C.2).

In more detail, the definition and the limit theory of the maximum likelihood estimator

(MLE) for the parameters of interest are presented and derived in this section. The statistical

model at hand is allowed to be misspecified. The point processes involved assume their

values in an interval of the form [0, T ]. The asymptotics operate as T → +∞.  denotes

convergence in distribution.

The latent conditional duration process (ψi)i∈Z is assumed to be a solution of a stochastic

recurrence equation (SRE) of the form ψi = Ψ(θ0, ψi−l, χi−j, l = 1, . . . , q, j = 1, . . . , p), where

Ψ is a real function, θ0 is an unknown value of a Euclidean parameter θ that belongs to some

known Θ ⊆ Rl, while p is allowed to assume the value +∞ to incorporate ARCH(∞)-type

of elements associated for example with the FIACD model used in the empirical section.

We also have that for each i ∈ Z, χi−l, εi−l, Ji−l, l ≥ 1, are measurable w.r.t. Fi−1. The

parameters of interest are collected in the Euclidean vector φ := (θT , τT )T , that assumes
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its values in a known to the researcher subset Φ of the Euclidean space Rl+3MQ, where

τ := vec(τ qm, gqm, jqm)
q=1,...,Q
m=1,...,M . The researcher has at her disposal the sample realizations of

the observable processes y := (χi, Ji)i=1,...T , with T ≥ max(p?, q), for p? a finite truncation

of any non trivial ARCH(∞) component, and selects a-potentially random-initialization

ψ̂0(θ), θ ∈ Θ, constructing a recurrent a filter of the latent conditional duration defined by:

ψ̂i(θ) :=


ψ̂0(θ), i = 0,

Ψ?((θ; ψ̂i−l, xi−j, l = 1, . . . ,min(i,max(p?, q)), j = 1, . . . ,min(i, p?)), 0 < i ≤ T,

where for the modified SRE that appears in the previous display we have that Ψ?((θ; ψ̂i−l, χi−j, l =

1, . . . ,max(p?, q), j = 1, . . . ,min(i, p?)) := Ψ((θ; ψ̂i−l, χi−j/ψ̂i−j, l = 1, . . . ,min(i, q), j =

1, . . . ,min(i, p?)). Then, the log-likelihood function is defined by `T (y;φ) := 1/T
∑T

i=1 `i(ψ̂i, τi;φ),

where the likelihood contributions are `i(ψ̂i, τi;φ) := ln f(χi; ψ̂i, τi;φ)). The MLE, say φT , is

defined via the variational problem

`T (y;φT ) ≤ inf
Φ
`T (y;φ) + εT ,

with εT almost surely non-negative that admits the role of optimization error. The specifi-

cation appearing in Table 1 is readily conformable to the above.

5.1 (Pseudo-)Consistency of the new estimator

The following assumption framework ensures existence of the estimator by standard argu-

ments. We skip the details and focus on the issue of (pseudo-)consistency. The framework

moreover ensures the existence of an approximating likelihood function with stationary and

ergodic contributions, so that locally uniform versions of the ergodic LLN are applicable (or

more generally the former almost surely approximates the latter w.r.t. hypo-convergence).

The assumptions also posit that the limiting likelihood is uniquely minimized at a parameter
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value φ? that implies the minimization of the KL divergence between the true conditional

(on the algebra Fi)i density of χi and f(χi;ψi, τi;φ
?). This allows for the consideration of

the limiting behavior of the MLE even in cases of model misspecification. To be precise we

consider the following assumptions:

A1: The joint process (χi, Ji)i∈Z is stationary and ergodic. The density of χi conditionally

on Fi−1 exists and has an integrable logarithm.

Remark 1. Stationarity and ergodicity for (χi)i∈Z would follow from stationarity and ergod-

icity of (εi)i∈Z and conditions that ensure existence and uniqueness (up to modification) of

a solution to the Ψ-SRE defined via an almost sure limit of backward substitutions (see for

example Ch.2 of [65]). If the specification appearing in Table 1 is correct, this would follow

as long as max(|β0|, |φ0|) < 1 and δ0 ∈ [0, 1/2), where β0, φ0, and δ0 denote the unique true

values for the auto-regressive and the fractional differencing parameters respectively-see the

assumption that follows (see for example [41]). If the remaining parts of the process satisfy

SREs analogous considerations would suffice. If the elements of the remaining parts are

fixed (w.r.t. i) measurable transformations of underlying stationary and ergodic processes,

stationarity and ergodicity would also be the case.

A2: There exists a φ? ∈ Φ such that E(`0(φ?)) > E(`0(φ)) for all Φ 3 φ 6= φ?.

Remark 2. This is an identification condition for the (pseudo-) true value of the parameter

involved. In the case of the specification in Table 1, and if the model is well-specified-this

follows from the fact that the conditional distribution of χi has a density (see for example

Par. 5.4.2 of [65]). In the case of misspecification, the previous would also suffice due to

Proposition 2.3 of [42].

In what follows, Θ? denotes an arbitrary compact subset of Θ.

A3: Suppose that: (i). E(supθ∈Θ? |Ψ?(·)|) < +∞. (ii). Ψ?(θ;ψi−l, xi−j, l = 1, . . . ,max(p, q), j =

1, . . . , p) is almost surely Lipschitz continuous in (ψi−l, l = 1, . . . ,max(p, q)), with Lipschitz

coefficient Λi(θ), and such that, (a). the map Θ? 3 θ → Λ0(θ) is almost surely continu-

ous and, (b). E(supθ∈Θ? log+ Λ0(θ)) < 0, where log+ is the positive part of the logarithmic
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function.

Remark 3. The assumption implies the continuous invertibility (see for example Par. 3 and

Prop. 3.1 of [9]) of the filter (ψ̂i(θ)); this is equivalent to the existence of a stationary and

ergodic process (say (fi(θ))i∈Z), that approximates appropriately fast, almost surely, and

(locally) uniformly over (δ, θ), the original filter as i → ∞. In the specification of Table 1,

it is ensured whenever max(|β0|, |φ0|) is bounded below 1. For more complicated filters this

may not be the case (see Par. 6 of [9]).

A4: Φ? denotes any compact subset of Φ such that if Φ? 3 φ = (θ, η), then θ ∈ Θ?. Suppose

that there exists a stationary non-negative process process (mi)i∈Z, with E(log+m0) < +∞,

such that almost surely supφ∈Φ |`i(ψ̂i, τi;φ)−`i(fi, τi;φ)| ≤ mi supθ∈Θ? |ψ̂i−ψi| for any i ∈ N,

where fi(θ) as in Remark 7.

Remark 4. Given the continuous invertibility, the assumption allows the approximation of

the likelihood function by a stationary and ergodic version that is constructed via the limiting

filtering process (fi)i∈Z. In the specification of Table 1 it holds when the elements of the

(τi) process are almost surely bounded from above and away from zero, x0 has a logarithmic

moment (see also 1), and fi is uniformly over θ bounded away from zero (see [41]).

A5: The elements of τ0 are almost surely continuous and bounded on Ψ, and

E(supΦ? max(`0(x0; f0, τ0;φ), 0)) < +∞.

Remark 5. Given the stationary and ergodic version of the likelihood function, the assump-

tion implies the applicability of the locally uniform version of Birkhoff’s LLN so that the

function converges almost surely to its expectation which is well defined. Similarly to the

previous remark, in the specification of Table 1, or more generally in models where the (q)-

Weibull density is used, it holds whenever the elements of the (τi) process are almost surely

bounded from above and away from zero, and x0 has enough moments; moment orders that

approximate from above the essential supremum of the τ0 suffice.

A1-A5 imply then pseudo consistency:
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Theorem 1. Suppose that A1-A5 hold, there exists a gamma > 1 such that γT |p?−p| → 0,

and εT → 0, P a.s. Then, (i). the expectation of the Kullback-Liebler divergence between

the density in A1 and f(xi;ψi, τi;φ) is well defined, and uniquely minimized at φ?. (ii).

φT → φ?, P a.s. for any ψ̂0.

The existence of a γ > 1 that validates the condition γT |p? − p| → 0 in the case of

the specification of Table 1 is ensured by the meromorphic continuation of the Barnes’ Zeta

function (see [61]) and the fact that that δ is not allowed to lie outside [0, 1/2).

The result along with the idenification Assumption A2 imply that the pseudo-true value

φ? has a variational characterization; it is the unique minimum of the expected Kullback-

Liebler divergence (see for example [2]) between the conditional distributions that appear in

the statistical moment at hand, and the DGP distribution of χi.

When the model {f(xi;ψi, τi;φ);φ ∈ Φ}, is well-specified, the previous imply that there

exists some φ0 ∈ Φ such that the density in A1 is f(xi;ψi, τi;φ0). Then necessarily φ? = φ0:

Corollary 1. If the model is well-specified then φT → φ0, P a.s. for any ψ̂0.

We complete this section with the issue of the strong approximation of the iPIN by its

estimator based on the MLE and the conditional duration filter. Specifically, given the the

cumulative hazard functions of the characteristics employed in the analysis, the iPIN at time

t, given Fs, say iPINt,s(φT ), can be extracted by evaluating eq.(16) at φT as well as at the

filter ψ̂s+1(φT ). The following result is easily established via the CMT and Corollary 1:

Proposition 1. Suppose that (i). assumptions A1-A5 hold and εT → 0,P a.s., (ii). each

element of τi is almost surely continuous in φ, (iii). the cumulative hazard functions employed

are continuous functions of the shape and scale parameters, (iv) E(log+ supθ f0(θ)) < +∞

and (v). the statistical model is well specified. Then as s+1 ≤ T → ∞, |iPINt,s(φT , ψ̂s+1)−

iPINt,s(φ0)| → 0, P a.s. conditionally on Fs.

The continuity properties for the conditional shape parameters as well as condition (iv) of

the proposition, hold trivially for the specification in Table 1. The compactness of Φ implies
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a uniform integrability argument that in turn implies that iPINt,s(φT , ψ̂s+1) converges to

iPINt,s(φ0) in the L2 mode, conditionally on Fs. An analogous result holds for iVPIN. The

same is true for the smoothed versions of both the PIN and VPIN estimators that appear in

the previous paragraph, for fixed n. All those results are useful in the following paragraph.

5.2 Rate of Convergence and Weak Gaussian Approximation

Given the (pseudo-)consistency results of Theorem 1 for the MLE, we complete the limit

theory by deriving its rate of convergence and a subsequent Gaussian approximation in

distribution. We proceed using the classical analysis; under adequate differentiability, the

asymptotics of the first order conditions for the optimization of the likelihood are derived.

Similarly to the case of consistency, issues of invertibility for the SREs formed via differen-

tiation of the filters that appear in the likelihood emerge. We deal with suchlike issues, by

completing our set of assumptions as follows:

B1: φ? lies in the interior of Φ.

Remark 6. This enables the w.h.p. use of f.o.c.s. for the analysis. It can be easily discarded

(see for example [4]) if-among others-the local parameter space has for example the structure

of a convex cone. Even though the assumption essentially precludes the weak dependence

case (δ0 = 0) in the model appearing in Table 1-if well specified, we do not pursue this

generalization to avoid clutter.

B2: There exists an open neighborhood, say Bφ?, of hi? such that: (i) Ψ? is twice con-

tinuously differentiable w.r.t. (θ, ψ) on Bφ? × Rp, for almost every value of its remain-

ing arguments. τ0 is twice continuously differentiable w.r.t. φ on Bφ? for almost every

value of its remaining arguments. (ii). Ψ?
∂θ denotes the SRE obtained by recursive dif-

ferentiation of Ψ? w.r.t. θ, partially via the chain rule through the derivatives of its ψ

arguments w.r.t. θ. Then E(supφ∈Bφ?
||Ψ?

∂θ(·)||) < +∞, where || · || denotes the Euclidean

norm. (A). Ψ?
∂θ is almost surely Lipschitz continuous in (∂θψi−l, l = 1, . . . ,max(p, q)),

with Lipschitz coefficient Λ
(∂θ)
i (θ), and such that, (B). the map Bφ? 3 θ → Λ

(∂θ)
0 (θ) is
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almost surely continuous and, (C). E(supθ∈Bφ?
log+ Λ

(∂θ)
0 (θ)) < 0. (iii). Analogously,

Ψ?
∂θ∂θT denotes the SRE obtained by recursive differentiation of Ψ?

∂θ w.r.t. θ, partially

via the chain rule through the derivatives of its ψ and ∂θψ arguments w.r.t. θ. Then

E(supφ∈Bφ?
||Ψ?

∂θ∂θT (·)||) < +∞, where || · || denotes the Frobenius norm. (A). Ψ?
∂θ∂θT is

almost surely Lipschitz continuous in (∂θ∂θ
Tψi−l, l = 1, . . . ,max(p, q)), with Lipschitz co-

efficient Λ
(∂θ∂θT )
i (θ), and such that, (B). the map Bφ? 3 θ → Λ

(∂θ∂θT )
0 (θ) is almost surely

continuous and, (C). E(supθ∈Bφ?
log+ Λ

(∂θ∂θT )
0 (θ)) < 0.

Remark 7. The assumption implies among others the continuous invertibility of the filter

((̂ψ)i(θ)) derivatives. In the specification of Table 1, it follows whenever max(|β0|, |φ0|) is

bounded below 1.

B4: There exists a stationary non-negative process process (m∂i)i∈Z, with E(log+m∂0) <

+∞, such that almost surely supφ∈BΦ?
||∂θ`i(ψ̂i, ∂θψ̂i, τi;φ) − ∂θ`i(ψθi, ∂θψθi, τi;φ)||

≤ mi supθ∈B(φ?)(|ψ̂i − ψi| + ||∂θψ̂i − ∂θψi||) for any i ∈ N, and,

supφ∈BΦ?
||∂θ∂θ∂T· `i(ψ̂i, ∂θψ̂i, ∂θ∂Tθ ψ̂i, τi, ∂ητi;φ) − ∂θ∂·`i(ψθi, ∂θψθi, ∂θ∂

T
θ ψ̂i, τi, ∂ητi;φ)||

≤ mi supθ∈B(φ?)(|ψ̂i − ψi|+ ||∂θψ̂i − ∂θψi||+ ||∂θ∂θT ψ̂i − ∂θ∂θTψi||) for any i ∈ N.

Remark 8. Again, given the continuous invertibility, the assumption allows the approxima-

tion of the score and the Hessian of the likelihood function by a stationary and ergodic

version that is constructed via the limiting filtering process and its derivatives. For the spec-

ification appearing in Table 1, it holds whenever the elements of the (τi) process are almost

surely bounded from above and away from zero, x0 has a logarithmic moment (see also 1),

and fi is uniformly over θ bounded away from zero-the latter holds trivially in the particular

example.

B5: E(supφ∈Bφ?
‖∂φ`0)‖ + E(supφ∈Bφ?

‖∂φ∂φT `0)‖) < +∞, and for some δ > 0,

E(‖∂φ`0(φ?)‖1+δ) < +∞, for the stationary and ergodic versions of the derivatives. Fur-

thermore, the elements of the stationary and ergodic version of the Hessian are linearly

algebraically independent.
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Remark 9. The assumption implies the applicability of the locally uniform version of Birkhoff’s

LLN on the stationary and ergodic version of the Hessian, the identification of the limiting

focs via dominated convergence, and-in conjunction with B1 and B3 the applicability of

the aforementioned CLT. Similarly to the previous remark, in the specification of Table 1,

it holds whenever the elements of the (τi) process are almost surely bounded from above

and away from zero, and x0 has enough moments; orders that approximate from above the

essential supremum of the τ0 on the power of 1 + δ suffice.

Utilizing the totality of our assumption framework along with some control of the rate

at which the optimization error converges to zero, we obtain the following result-there  

denotes convergence in distribution:

Theorem 2. Under the premises of Theorem 1, and if moreover B1-B5 hold and
√
TεT  0,

then
√
T (φT − φ?) N(0, (∂φ∂φT `0(φ?))−1(∂φ`0(φ

?)∂φ`
T
0 (φ

?))(∂φ∂φT `0(φ
?))−1),

for the stationary and ergodic versions of the associated derivatives.

Again the existence of a γ that ensures the exponentially fast approximation of the part

of the truncated filter that depends on the derivatives w.r.t. δ of the ARCH(∞) component

is ensured by the meromorphic continuation of the Barnes’ Zeta function (see [61]), the

fact that δ is not allowed to lie outside a compact subset of (0, 1/2), and the asymptotic

representation of the series’ coefficients as Cj1−δ for some C > 0 independent of j, δ.

The limit theory involves a standard rate and asymptotic normality with the usual sand-

wich form for the asymptotic variance. Consistent estimators of the terms that appear in

there can be easily obtained via the non-stationary versions of the derivatives evaluated

at the MLE, due to consistency and Assumptions B1, B3-B5. This can be useful for the

construction of Wald-type tests for parameters of interest. When the statistical model is well-

specified then due to B1-B5 and dominated convergence, the information matrix equality

yields-as expected:
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Corollary 2. Under the premises of Theorem 2 and if the statistical model is well specified,

then:
√
T (φT − φ0) N(0, (∂φ`0(φ0)∂φ`

T
0 (φ0))

−1).

We close this section with an application of the above and the Delta method to the

derivation of the limit theory of iPIN. In what follows dW denotes any metric that metrizes

weak convergence-see for example Par. 1.12 of [68]:

Proposition 2. Under the premises of Theorem 2 and if the cumulative hazard func-

tions employed are continuous functions of the shape and scale parameters, and the sta-

tistical model is well specified, then as s + 1 ≤ T → ∞, dW (|
√
T (iPINt,s(φT , ψ̂s+1(φT )) −

iPINt,s(φ0)), N(0, ∂φiPIN(φ0)
T (∂φ`0(φ0)∂φ`

T
0 (φ0))

−1∂φiPINt,s(φ0))| → 0, P a.s. conditionally

on Fs.

The latter can be useful for the construction of confidence sets. An analogous derivation

obviously holds for the estimated iVPIN.

The construction of confidence sets for the plug-in estimators of iPIN and iVPIN can

be also performed via Monte Carlo methods, due to the parametric nature of the statistical

model at hand-when this is well specified. Specifically, the limiting (unconditional) variance

of the estimators, can be consistently estimated via the MC empirical variance of the re-

sulting iPIN (or iVPIN) estimator, when the DGP is evaluated at the originally estimated

parameters. This is due to the CMT, the locally (w.r.t. φ) uniform convergencies mentioned

above, and the consistency of MLE. A similar (yet possibly less accurate) approximation can

be available from the cross sectional averaging of the iPIN (or iVPIN) estimators, when the

cross sectional DGPs are similar, and satisfy some form of exchangeability property, or more

generally invariance of the underlying joint distributions under groups of transformations

(see for example [6]).
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5.3 Misspecification and Trade Arrival Data Contamination: Some

Monte Carlo Evidence

The predictive regressions appearing in Section 4.3, are easily interpretable when both the

regression model and the specification appearing in Table 1 are well-specified. Then the

plug-in estimators for iPIN (resp. iVPIN) differ from the latent PIN due to the sample

variation of the estimated coefficients. The latter, due to Proposition 1 converges almost

surely (as well as in the L2 mode) to zero. Since the VPIN estimator is subject to noise

due to arrival data contamination, this when correlated with the regression error, implies

that the empirical MSEs of the predictions using the plug-in iPIN (resp. iVPIN) will be a.s.

lower than the ones based on the interval PIN (resp. VPIN) estimator for large enough T .

When the statistical model in Table 1 is misspecified, this comparison becomes a bit more

complicated, as it also depends on the (non-asymptotically vanishing) dependence between

the regression error, and the misspecification error provided by the difference between the

latent true iPIN (resp. iVPIN) and the model iPIN (resp. iVPIN) evaluated at the pseudo-

true value of the parameter.

In order however to disentangle the evaluation of the quality of the approximation of the

latent PIN (resp. VPIN) by the intensity-based procedures compared to the interval-based

ones, from the correct specification of a predictive regression, we perform a Monte Carlo

experiment that enables control of the latent PIN. We focus on the VPIN formulations

for simplicity. The volume ”clock” duration process (χi) is assumed to conform to the

specification of Table 1. The latent VPIN is thus explicitely known to the MC designer. We

construct a subordinated (see [34]) to (χi) stochastic volatility process for the logarithmic

returns of the underlying asset in the spirit of [31] as:

lnPi − lnPi−1 = α0 + a1χi + exp(ω0 + ω1χi + Vi)zi, (19)
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Vi = bVi−1 + ηi−1, (zi, ηi)
T ∼ N(0,

1 ρ

ρ 1

), |ρ| < 1, |b| < 1. (20)

The Gaussian random vector (zi, ηi)
T , is also considered independent of εi−j, for all i, j.

Given initial values P0, V0, and for realistic sample sizes T , and choice of parameter values,

artificial sample paths of (pi, χi) are available. Given such a path, and using the interval-

based methodology- as in Section 4.3- the interval-based VPIN estimator is producible by

the researcher. For the intensity-based methodology two routes are followed: (a) the re-

searcher correctly considers the specification of Table 1 as her underlying statistical model,

performs the ML estimation and constructs the plug-in iVPIN in this context of correct spec-

ification for the duration process. (b) The researcher makes a specification error regarding

ψ; she erroneously assumes that it conforms to an ACD(1,1) process instead of the correct

FIACD(1,1), estimates the corresponding MLE, and constructs the plug-in iVPIN in this

context of misspecification due to the presence of long memory. In all cases the estimated

VPIN paths are contrasted to the latent paths of VPIN, and the Monte Carlo MSE paths

between them are evaluated for comparison.

Specifically T is allowed to assume the values of 100,000 events (trades), which is the

equivalent of 1 day trading in the most liquid asset in the sample, i.e., AAPL. 100 paths are

considered, which is the equivalent of 100 trading days. In total, this resembles the trading

activity of a very liquid assed over a calendar quarter. This, according to previous literature,

is a reasonable time frame that does not introduce bias in the PIN or VPIN estimates.

Furthermore, the true underlying parameter values are chosen according to the estimates in

Table 3. For the price change and price change variance parameters, the following values are

assumed, α0 = −0.001, α1 = 0.9, ω0 = −3.5, ω1 = 0.05 and β = 0.98. 13

13The robustness of the findings are tested against different simulation setups and in particular in combi-
nations of the following scenarios. The threshold value for Ji in the main scenario is 1.2. Different values
that are considered are 1 and 1.9. The findings remain qualitatively the same, but are stronger when a higher
threshold is employed. In addition, different values for T are considered, as well as a different number of
sample paths. The number of sample paths does not change qualitatively the results, but a higher number
of observations exhibits slightly less significant differences. The main scenario considers a strong negative
correlation ρ = −0.8. Different values are tested and the results do not change significantly, but are relatively
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Table 6: Simulation: Performance of metrics-Probability of Informed Trading
1” 5” 15” 30” 1’ 5’ 15’ 30’ 60’

Average Estimates
TRUE 0.3065 0.3384 0.3453 0.3471 0.3480 0.3487 0.3489 0.3489 0.3488
PIN 0.2659 0.2108 0.2053 0.2056 0.2059 0.2062 0.2062 0.2062 0.2062
iPIN 0.2957 0.3262 0.3326 0.3343 0.3351 0.3357 0.3359 0.3358 0.3358
VPIN 0.2372 0.2285 0.2254 0.2249 0.2248 0.2282 0.2417 0.2640 0.2933
iVPIN 0.2633 0.2904 0.2962 0.2977 0.2985 0.2991 0.2992 0.2992 0.2991

MSE
PIN 0.0719 0.0658 0.0585 0.0576 0.0571 0.0567 0.0566 0.0566 0.0565
iPIN 0.0307 0.0288 0.0264 0.0261 0.0260 0.0259 0.0259 0.0258 0.0258
VPIN 0.1129 0.0983 0.0792 0.0779 0.0768 0.0742 0.0642 0.0518 0.0357
iVPIN 0.0207 0.0187 0.0161 0.0161 0.0157 0.0156 0.0156 0.0156 0.0156

MSE Ratios
PIN/iPIN 2.3413 2.2857 2.2142 2.2065 2.1988 2.1909 2.1898 2.1882 2.1855

VPIN/iVPIN 5.4629 5.2443 4.9083 4.8283 4.8986 4.7669 4.1276 3.3302 2.2906
iPIN/iVPIN 1.4869 1.5347 1.6363 1.6174 1.6554 1.6617 1.6608 1.6602 1.6588
PIN/VPIN 0.6373 0.6689 0.7381 0.7391 0.7431 0.7637 0.8811 1.0909 1.5826
PIN/iVPIN 3.4813 3.5078 3.6230 3.5687 3.6401 3.6405 3.6369 3.6327 3.6253

Table 6 presents the performance of PIN, VPIN, iPIN and iVPIN in capturing the real PIN,
estimated based on

Table 6 presents the results of the simulation, following the main scenario. The first

line of top panel of the table presents the on-average ”true” values of the (P)robability of

(IN)formed trading and it is organized in columns according to the sampling frequency that

varies from 1” to 60’. The following 4 lines present the average estimates of all the metrics

considered, following to empirical procedure described in Section 4.2, namely PIN, VPIN,

iPIN and iVPIN. The second (middle) panel presents the MSE for each on the metrics in each

sampling frequency. The bottom panel reports the ratios of MSE’s for visual reference. The

findings reported here are fully in line and confirm the basic findings of the empirical analysis

presented in Section 4.3. In summary, the intensity-based metrics outperform consistently

the interval-based metrics in accurately capturing the ”true” PIN, by a factor of at least

2. This is consistent in all sampling frequencies, and, although it shows a decreasing trend,

the intensity-based metrics are by far a better measure for private information comapared

to their interval-based counterparts. The second finding that is also confirmed here is that

weaker with lower correlation.
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volume does indeed contribute in capturing private information, but this is much stronger

when it is associated with its aggregation properties, captured by the arrival rate of trading

volume. iVPIN is consistently better than iPIN and the performance of VPIN increases

considerably past the 15’ sampling frequencies.

6 Conclusion

Financial markets are perceivable as the meeting place of various agent-types, who interact

with each other, resolving their information sets and moving a dynamic price equilibrium

([26]). The identification of the composition of these agent-types is an essential element in

describing the properties of this equilibrium, but this is a piece of latent information.

Trying to identify their existence, prior literature reaches a consensus that this might

be feasible by deciphering their material actions, as they become public information in a

collective manner. Each agent-type is understood to have an intrinsic motivation for trading,

such as access to information (e.g., [50]) prior to competing agents (e.g., [46]), learning from

it (e.g., [1]) or processing it (e.g., [57]), which is reflected on their interactions with the

market. This results in variations in observable trading characteristics that might not be

observable at an individual level, but, theory suggests, that their aggregated outcomes might

capture the emergence properties ([5]) of their interactions and thus, they might be reverse-

engineered to capture their existence. Naturally, previous approaches focus primarily on

liquidity variations (e.g., [25]) and complement it with other observable variables, such as

trade initiation (e.g., [21, 22, 23] or trading volume (e.g., [18, 24]), in order to identify their

presence.

These approaches, albeit insightful, they are subject to a rather restrictive trade-off

concerning the optimal time interval that captures the properties of the dynamic equilibrium

(e.g., [3]). A longer time interval could alleviate the distortion emanating from noisy signals,

such as trade initiation, while a shorter time interval would match better the needs of
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high frequency trading, where “to be uninformed is to be slow” ([35]). Considering that

algorithmic trading operates at trading frequencies shorter than the human attention span

of 650ms ([43]) a point, rather than an interval, estimate of the probability of the existence

of different agent-types would be more appropriate.

This is the primary objective of this study, which ventures the idea of detecting the

presence of different agent-types, not from the aggregated properties of the trading charac-

teristics, but from the aggregation process itself; captured by their arrival rates. Motivated

by relevant literature (e.g., [33, 38, 46, 48]), the actions of each agent-type is assumed to

exhibit a time-invariant arrival rate. However, unlike previous studies, a general approach,

with lower distributional (e.g., [33, 38]) or conditionality (e.g., [46, 47, 48] assumptions, is

proposed here. The only condition required is that the (time invariant) characteristics of

each agent-type should exhibit detectable patterns in any set of observable factors.

This enables the exact modelling of agent-specific arrival rates, which are then assumed

to interact conditionally on market conditions. The market is seen as an infinite mixture

of the agent-specific intensities and the conditional probabilities associated with each agent-

specific arrival rate can be interpreted as the instantaneous probability of an event to be

associated with each agent-type. Using both the instantaneous probabilities and the time-

invariant agent-specific arrival rates, the probability of the presence of each agent-type can

be estimated over any desirable time interval.

This shift from an interval (aggregated) to a granular (instantaneous) time frame is facil-

itated by the use of conditional intensities (hazard functions), and constitutes the main con-

tribution of this paper. The detection of a multitude of various agent-types using intensity-

based metrics, i.e., point estimates exhibits some notable advantages over previous studies.

First, it offers an instantaneous estimate of the relevant probabilities and thus, it is interval

free without suffering from sampling bias. Second, these instantaneous probabilities can be

integrated over any time interval and thus, they can be used in shorter investment horizons

(e.g., high-frequency trading). Third, the different agent-types are associated with a sta-
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tistical measure (i.e., conditional intensity), rather than with the magnitude of a particular

variable (e.g., trade or volume imbalance). Consequently, the new estimates are derived with

a lower set of assumptions. Finally, the new framework can be used to detect a multitude

of different agent-types, as long as their actions can be mapped into a specific shape of the

hazard function and be described by a/any set of observable variables.

Overall, the framework proposed here, exhibits superior empirical and theoretical proper-

ties, and highlights the importance of time in intraday price discovery. The focus on the time

dimension – how different events evolve over time – enables the development of instantaneous

indicators for the presence of different, otherwise hidden, agent-types.

Time will tell!…
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Appendix A Supplementary Tables

This appendix presents more information on the descriptive statistics of the dataset employed

in the empirical application of the iRP metric, as well as the estimation results for further

applications of the iRP, introduced in Appendix B.2.

• Table A.1 presents the descriptive statistics for the full sample period.

• Table A.2 presents the estimation results for two further applications of the iRP intro-

duced in sections B.2.1 and B.2.2.

The sample consists of rather liquid stocks like AAPL with average duration 0.21 sec

(1.21 minus 1 sec added for computational reasons) to relatively less liquid stocks, like AXP

with average duration of 1.41 sec (2.41 minus 1 sec). The average volume per trade also

varies from relatively low values, like in TRV with 115.7 stocks per trade, to almost triple

volume, like in PFE with 393.2 stocks per trade. In addition, price change variance exhibits

a wide range of values from 0.01 in KO or VZ to 0.12 in BA covering stocks with different

intensities of price discovery. Besides the relative variation that is to be expected due to the

presence of cross-sectional fixed effects, no major outliers are observed, while min and max

values are comparable across stocks. This implies that the sample is relatively homogeneous,

but with adequate variation, in order to provide a sample with minimal trading biases or

extreme events.
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Table A.2: Estimation Results

iPTT iPTT (wating)

low high low high
ω 0.6746 ω 0.6962

(0.01) (0.01)
β 0.4295 β 0.4183

(0.01) (0.01)
φ 0.4324 φ 0.4419

(0.01) (0.01)
δ 0.0656 δ 0.0811

(0.01) (0.01)
(q|E(rt)) 0.8503 1.0807 (q|E(rt)) 0.7242 1.4298

(0.03) (0.02) (0.02) (0.03)
(τ |ti) 1.1275 0.9522 (τ |ti)duration<jduration 1.0942 0.6065

(0.01) (0.05) (0.01) (0.06)
(τ |ti)duration<jduration 1.6323 0.9048

(0.02) (0.06)
gti 0.9999 gti 0.9958

(0.02) (0.02)
gduration 1.0001

(0.02)
gE(rt) 0.9665 gE(rt) 0.9950

(0.02) (0.03)
jti 1.0046 jti 1.0023

(0.03) (0.05)
jduration 0.9966

(0.04)
jE(rt) 1.0090 jE(rt) 1.1052

(0.04) (0.02)

The top panel of Table A.2 presents the estimation results for the conditional mean
specification parameters, assuming a FI-ACD specification ω + βψi−1 + (χi − βχi−1) −
(χ̃i − φχ̃i−1). The bottom panel presents the distribution parameter estimates, assuming

a q−Weibull distribution for χ, i.e., f (χi|Fi−1) = (2 − τ q=1)
τq=2
i

χi

[
χi

Ai

]τq=2
i

eq

(
−
[
χi

Ai

]τq=2
i

)
,

where Ai =

[
Γ

(
1+ 1

τ
q=2
i

)−τ
q=2
i

/ψi

]
, τ q=2

i =
(
Gq=2
m=1,i −Gq=2

m=2,i

)
τ q=2
m=1 +Gq=2

m=2,iτ
q=2
m=2 and Gq=2

m=2,i =(
1 + e−g

q=2
m=2(Ji−j

q=2
m=2)

)−1

. The collumns of Table A.2 present the estimates for the specifi-
cations of iPTT introduced in Section B.2. All estimates are cross-sectional averages, with
standard deviations in (:).
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Appendix B iRP and Further Applications

This appendix provides supplementary material that highlights the qualitative characteristics

of iRP, as well as it discusses further potential applications.

• Section B.1 discusses how the new metric is aligned with the attributes of the marked

viewed as a complex system.

• Section B.2 presents further ”indicative” applications of iRP. Section B.2.1 presents

an empirical specification that can identify the presence of technical trading alongside

information, while Section B.2.2 presents another customization that can identify a

finer (sub-)classification of technical trading that considers waiting costs.
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B.1 The market as a complex system

The formulation in Eq.(3) is also inspired and consistent with designing the market as a

complex system. [44] argue that financial markets are more than “complicated” systems.

They are “complex” systems, in the sense that the observable outputs of the interactions of

market participants (agent-types) are more than the sum of their actions; a concept known

as emergence properties. This becomes increasingly relevant at higher trading frequencies,

where trading is dominated by AI-agents. These agents observe the market continuously and

infer “fundamental” information from observable “trading” information, depending on their

processing capacity. In parallel, their actions also generate “trading” information (infor-

mation propagation) and the market is a dynamic equilibrium between information storage

and propagation ([53]). [64] suggests that there is an optimal balance between information

propagation and information storage capacity that maximizes reward per unit of effort, a

concept known as maximum informational entropy. [5] argues that this optimal level is an

emergence property, which should be modelled alongside the actions of individual agents.

This specific point is a major contribution over previous approaches of Eq.(3), which

indirectly addresses all the properties of a complex system (e.g., [44]):

Multiple interacting agents: Eq.(3) proposes a market design where multiple agents with

intensities λk0(t) interact and their actions collectively create the market wide intensity

λk(t|Fs). Consequently, the overall market activity is the output of the actions of all agents

present in the market, λk0(t), as well as their interactions, (pkt |Fs), which are conditional on

the market as a whole. This is because the information set that determines the overall market

activity does so through the conditional probabilities of each agent entering the market.

Adaptation: Adaptation refers to the ability of individual agents to adjust their behaviour

in order to improve their performance. This is directly modelled in Eq.(3) with the weighting

probabilities, (pkt |Fs). (pkt |Fs)’s are conditional on market conditions, (: |Fs), and define the

probability of a specific agent-type with intensity λk0(t) to enter the market. This is done in

a manner conditional on market activity and not independently of it and, therefore, different
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agent-types can adapt their behaviour, i.e., adjust the weight of λk0(t), according to market

conditions, (: |Fs), which include the actions of all agents.

Feedback: The adaptive learning described above is designed in way that also considers in-

formation propagation. (pkt |Fs)’s are conditional on observable information, which according

to Eq.(3) is necessarily the collective output of all interacting agents. This way, Eq.(3) es-

tablishes a feedback mechanism that considers learning and information processing through

the conditional set, (: Fs), as well as through the constraint that overall market activity,

λk(t|Fs), is necessarily the output of individual agent actions, λk0(t), i.e.,
∑K

k=1(p
k
t |Fs) = 1.

Evolution: The information set (: |Fs) does not necessarily contain only endogenous

information, i.e., λk(t|Fs), but it can also contain other exogenous variables. This way, ex-

ogenous, as well as endogenous, shocks can affect the probabilities of different agent-types to

enter the market, (pkt |Fs), without necessarily imposing a mean reversion property.14 Conse-

quently, the market activity, λ(t|Fs), can evolve, continuously searching for an equilibrium,

and can even exhibit ‘extreme behaviour’, such as crashes or bubbles. This would happen

when λk(t|Fs) takes extreme values, which would then be also fed back to the system through

(: |Fs)’s, potentially leading to market failures.

Non-stationarity: This evolution does not have to be stationary, i.e., system properties

observed in the past do not necessarily remain unchanged in the future. Eq.(3) operates

at a trade-off with respect to stationarity. The agent-specific characteristics λk0(t), i.e., the

way agent-types act given a specific attribute, such as learning, speed, processing capacity

etc., are assumed to be stationary. This is done for traceability reasons and not because it

represents better complex system properties. This is an explicit assumption, which implies

that an agent-type reacts to the same stimuli in a way that does not change over time.

According to the formulation in Eq.(3), this is what makes her actions distinguishable and
14[7] provides a martingale representation of Hawke’s processes, while [29] suggest a way to model the the

innovations of inter-event waiting times, i.e., durations. These two are the two most popular approaches
employed in finance to model time and both have an innovation component embedded. This way endogenous
or exogenous shocks can affect the arrival rate of either agent-specific or market-wide events. In this paper,
due to its empirical focus, the approach of [29] is preferred due to the explicit modelling of the innovations,
which will be the main tool to distinguish among different agent-types.

60



thus, traceable. This is definitely a constrain in the modelling, but Eq.(3) can accommodate

time variant agent-type characteristics, albeit in a rigid way. Assuming that the information

processing capacity of an agent-type changes due to a structural break, such as changes in

technology. This would necessarily imply a change of the baseline intensity, λkA0 (t) → λkB0 (t).

Eq.(3) would be able to identify λkB0 (t) (i.e., as a new intensity) and also (pkBt |Fs), making

at the same time (pkAt |Fs) = 0.

B.2 Further Applications: Beyond Information

The formulation of iRP in Eq.(12) is rather generic and it can cover a considerably wider

range of different agent-types beyond referring solely to information and information dif-

fusion. The underlying concept is that if the actions of a specific agent-type are reflected

on some observable factors of market activity (captured by the threshold variable(s), i.e.,

Ji), which in turn have an impact on an observable trading pattern (the impact of Ji on

the arrival rate, i.e., the hazard function, i.e., λk(t) of specific variable, i.e., the modelled

variable, i.e., χi); then Eq.(12) can estimate the instantaneous probability of their existence.

In order to ”reverse engineer” the probability of a specific agent-type to enter the market

from the observed trading activity, the building blocks of Eq.(12) are:

Economic Concept Statistical Variable Notation
Observable Factors Set of threshold variables Ji
The speed of events The modelled variable χi

The arrival rate of the events The Hazard Function λk(t)

Variations in observable factors Regimes of the
threshold variables

Jqi < jqm=2 …
jqm=M−1 ≤ Jqi < jqm=M

…Jqi ≥ jqm=M

Variations in the arrival rates Different distributions
defined by shape/scale parameters τ qm

This section presents an application of the iRP through various extensions of the frame-

work presented in Eqq.(4)-(11). More precisely, Section 3.2 employs a different modelled

variable, i.e., the speed of volume accumulation, in order to capture order flow toxicity, sim-

ilar to VPIN. Section B.2.1 expands the interpretation of iPIN by dissecting the shape and
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the scale parameter simultaneously in order to investigate technical trading. Finally, Section

B.2.2 dissects the shape parameter further, i.e., in two dimensions, in order to investigate

the behavioral bias of ”patient traders” (e.g., [32]). In brief, the following sections employ

different specifications of Eqq.(4)-(11) and link them indicatively to different agent-types, as

an illustration of the flexibility of the framework.

B.2.1 Information and Market-Wide Learning: Technical Trading

Access to private information might not be synchronous to all traders and, therefore, the

classification of informed versus uninformed (e.g., [50]) might be unrealistic. Previous lit-

erature recognizes the existences of other groups under the general notion of discretionary

liquidity traders (e.g., [1]), usually referred to as “technical” traders. Although there are

many sub-classifications according to their way/speed of learning or access to information

(e.g., [57]), they tend to exhibit some common characteristics. They are generally understood

as a challenge to weak-form market efficiency. They observe the market and “learn”, in the

sense of inferring exploitable patterns from trading history. They only enter the market when

they (believe they) extract price-relevant information, in a discretionary way by selecting

the timing and the volume of their trading. Unlike the uninformed agents, whose arrival rate

is time invariant, these partially uninformed agents try to become better informed (learn).

Consequently, their arrival rate depends on market conditions.

[46] suggest that technical traders, due to their learning time-related cost, react to in-

formation with a delay compared to better informed agents. Consequently, their probability

of entering the market, following an information signal increases with time, resulting in a

hazard function with an increasing shape. Other studies, however, focus on market signals

that might instigate technical trading, with expected return being probably the strongest

indicator. For example, [8] imply that the trading activity of technical traders increases after

large price changes are expected and therefore, their probability to enter the market is higher

closer to the events that result in higher expected price changes and, then, it decreases over

62



time. This implies that when Ji := E(Ri|Fi−1) > jtechnical, then the hazard function should

exhibit a decreasing shape. Both approaches imply a monotonic hazard function and are

constrained by the use of the distributions employed, as well as the observable threshold

variables.

Eq.(12) provides a versatile tool for identifying technical trading, using multiple observ-

able factors. Combining both approaches, technical traders are understood to observe past

price changes and formulate expectations about the presence of information signals that mo-

tivate their discretionary interaction with the market. Naturally, they should be expected

to act as soon as they can, before the informational advantage expires by becoming public

information. This should result in a hazard function with a decreasing shape. However,

they cannot enter the market immediately after the arrival of new information because they

do not possess it from the beginning. They have to extract it first and, therefore, their

probability of entering the market after the arrival of information should increase over time,

resulting in a hazard function with increasing shape. Consequently, the trading behaviour of

technical traders should be a combination of the two different shapes of the hazard function

– first increasing (enter the market with a delay) and then decreasing (act timely on newly

acquired information) until it reaches zero when information becomes public – implying a

unimodal shape.15

Eq.(13) is flexible enough to capture non-monotonic hazard functions and the one that

matches the unimodal shape is when τ q=1 ≥ 1 and τ q=2 ≥ 1. Following, the formulation of

iPIN and iVPIN, the actions of technical traders are assumed to be expressed primarily in

trading intensity, prior to any significant price change that would incorporate the new infor-

mation. They act on information with a delay, because they have to “learn” first, and there-
15In the absence of information, the probability of technical traders should be low or zero. In the presence

of ”extracted” information they should act within its ”life span”, implying a decreasing hazard function.
However, because they have to ”learn” first, they cannot act as fast as the informed agents and their actions
are expressed with a delay. This implies an increasing hazard function upon the arrival of information.
When inforamtion is price-resolved there is no monetary benefit and, therefore, their probability of entering
the market returns to zero. Collectively, the probability of technical traders follows a unimodal shape that
cannot be captured by single-shape parameter distributions.
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fore, their hazard function should exhibit mostly an increasing shape, at least during the “life

span” of the information. In line with the formulation of of iPIN and iVPIN, trading intensity

is assumed to be a primary characteristic that expresses the actions of different agent-types

and therefore, it is also used here as a major determinant of the shape of the hazard function,

i.e., flat/increasing/decreasing. Following the notation in Eq. (13) and the example in Table

1 the shape parameter ,i.e.,
(
τ q=2
i

∣∣Jq=2
v=1,i = tii

)
, is conditional on trading intensity. Consid-

ering that a decreasing hazard function is associated with informed trading (e.g., iPIN), a

milder or increasing (e.g., [46]) shape of the hazard function should be associated with less

informed trading that is more consistent with the presence of technical traders. This on its

own is not sufficient and a secondary signal is also considered. The magnitude of the reaction

of technical traders is proportional to the magnitude of the inferred information and this is

in lined with the impact (extensivity) of the entropy parameter on the shape of the hazard

function. The “informativeness” of the magnitude of an observation and its subsequent im-

pact on the shape of the hazard function is captured by the entropy parameter, τ q=1
i , which is

assumed to be conditional on the magnitude of the (information) signal, here assumed to be

only (but this is only indicative) expected returns, i.e.,
(
τ q=1
i

∣∣Jq=1
v=1,i = E(Ri|Fi−1)

)
. Higher

values should be associated with higher presence of technical trading. It follows that the

intensity-based probability of technical traders, i.e., iTT, can be defined following Eq.(12)

as: iTT =
(
iRPtechnical

t

∣∣Fs

)
=

E
(∫ t

s λ
Z=technical(u) du

∣∣∣Fs

)
∑K

k=1 E
(∫ t

s λ
k(u) du

∣∣∣Fs

) =
(
pZ=technical
t

∣∣Fs
)
HZ=technical(t|Fs∑K

k=1(
(
pkt
∣∣Fs
)
Hk(t|Fs)

, which can

then be expressed in terms of the regimes of shape parameters, τ qi , in Eq.(13) as:

iTTi =

∑
Q
⊗(

m
(
1<τq=1

m ≤2,τq=2
m >1

)
:k
){∏

Q
⊗
M W q

m,iH
Q
⊗(

m
(
1<τq=1

m ≤2,τq=2
m >1

)
:k
)
(t)

}
∑

Q
⊗
M

∏
Q
⊗
M W q

m,iH
Q
⊗
M(t)

(B.1)

In this formulation, the regimes, m of τ q=1 and τ q=2 that lead to a unimodal shape

of the hazard function, identify technical trading (k = technical). Then, the aggregated

number of technical traders is the sum of all the probabilities, i.e.,
∏

Q
⊗
M W q

m,i, of inter-

64



ψi = ω + βψi−1 + (χi − βχi−1)− (χ̃i − φχ̃i−1), where χi = ∆t∗i

f (χi|Fi−1) = (2− τ q=1
i )

τq=2
i

χi

[
χi

Ai

]τq=2
i

eq

(
−
[
χi

Ai

]τq=2
i

)
, where Ai =

[
Γ

(
1+ 1

τ
q=2
i

)−τ
q=2
i

/ψi

]
τ q=1
i =

(
1−Gq=1

m=2,i

)
τ q=1
m=1 +Gq=1

m=2,iτ
q=1
m=2 and τ q=2

i =
(
1−Gq=2

m=2,i

)
τ q=2
m=1 +Gq=2

m=2,iτ
q=2
m=2

for Gq=1
m=2,i =

(
1 + e−g

q=2
m=2(E(rt)i−jq=2

m=2)
)−1

, and Gq=2
m=2,i =

(
1 + e−g

q=2
m=2(tii−j

q=2
m=2)

)−1

sections Q
⊗

(m (1 < τ q=1
m ≤ 2, τ q=2

m > 1) : k) in the contingency table, where 1 < τ q=1
m ≤ 2

and τ q=2
m > 1, times the respective cumulative hazard functions of these intersections, i.e.,

H
Q
⊗(

m
(
1<τq=1

m ≤2,τq=2
m >1

)
:k
)
(t). This is then compared to the expected number of all trades.

Technical trading in Eq.(B.1) can be estimated in parallel with iPIN. Different regimes of

τ q=1
m and τ q=1

m that lead to a decreasing hazard function would identify informed trading.

The regimes that exhibit a unimodal shape would indicate the presence of technical trading.

Table A.2 reports the cross-sectional estimates of the specification in this table that

intends to identify technical trading. In particular, the interest lies in the middle panel under

iPTT, which reports the estimates for the distribution of χ with both the scale and the shape

parameter being an infinite mixture of two regimes. Focusing on the shape parameter τ q=2
i ,

noted as τti, it takes values higher than one when tii < jti (noted as ti < j(ti), while it

takes values less than 1 when tii > jti (noted as ti > j(ti). In consistence with the iPIN

and iVPIN estimations higher trading intensity is associated with higher presence of private

information (decreasing hazard function). However, lower trading intensity that leads to

τti > 1 and higher E(rt) that leads to τ q=1
i > 1 (noted as qE(rt)>j(E(rt))) make the hazard

function take a unimodal shape. This matches the characteristics of technical trading. At

the bottom panel, their cross-sectional average over the sample period is estimated around

30%.

The remaining regimes that exhibit differently shaped hazard functions could be asso-

ciated with different agent-types. As an indications, previous literature (e.g., [46]) suggest

that a flat hazard function can be associated with uninformed agents. Of course, there are

different shapes and/or different combinations. The next section (Section B.2.2) discusses
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indicatively a variation of the potential shapes the hazard function can take.

B.2.2 Information Diffusion and Learning: Waiting Costs

The discussion above is based on market-wide learning and uniform access to information.

However, technical traders are a diverse collection of agents (e.g., [57]) motivated by a variety

of factors, such as investment style and behavioural biases. These differences would insti-

gate different trading styles that thus, different accumulation rates (hazard functions). A

potential (indicative) factor is waiting costs (e.g., [32]). Lower-frequency traders (“patient”)

trade according to their portfolio-re-balancing needs (e.g., [49]). They are more likely to

wait until a sufficiently strong signal or submit a limit order trying to secure a better price

(e.g., [32]); actions that lead to delayed execution. In contrast, faster, e.g., algorithmic,

traders (“impatient”) profit from accessing and acting on information faster than the re-

maining uninformed agents. They are more likely to submit a market order as soon as it is

profitable. Both types can be considered uninformed and their actions are associated with a

unimodal hazard function. However, (im-)patient traders face a (higher) lower waiting cost

and therefore, the degree of the curvature of the hazard function should be (sharper) milder

(e.g., [32]), even monotonically (decreasing) increasing in the limit.

An extension of Eq.(B.1) can capture this dissection of technical traders. Consider the

setup, in Eq.(B.1), i.e.,
(
τ q=2
i

∣∣∣Jq=2
v=2,i =

volumei
durationi

)
and

(
τ q=1
i

∣∣Jq=1
v=1,i = E(Ri|Fi−1)

)
. Impatient

traders act faster than patient traders and this can be captured by distinguishing the trades

that result into τ q=2 > 1, i.e., technical trading, into relatively high or low duration. To

capture this, τ q=2 is dissected into levels of trading intensity, i.e., Jq=2
v=2,i, as well as of du-

ration, i.e., Jq=2
v=3,i = durationi. This conditions the shape parameter on two variables,(

τ q=2
i

∣∣Jq=2
v=2,i, J

q=2
v=3,i

)
, and dissects it into four cases; high (low) trading intensity and long

(short) durations.
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τ q=2
i =

(1−Gq=2
v=2,m=2,i

(
Jq=2
v=2,i

)) (
1−Gq=2

v=3,m=2,i

(
Jq=2
v=3,i

))︸ ︷︷ ︸
W

low J
q=2
v=2,i

, long J
q=2
v=3,i

,i

τ q=2

low Jq=2
v=2,i, long Jq=2

v=3,i

+Gq=2
v=2,m=2,i

(
Jq=2
v=2,i

) (
1−Gq=2

v=3,m=2,i

(
Jq=2
v=3,i

))︸ ︷︷ ︸
W

high J
q=2
v=2,i

, long J
q=2
v=3,i

,i

τ q=2

high Jq=2
v=2,i, long Jq=2

v=3,i



(1−Gq=2
v=2,m=2,i

(
Jq=2
v=2,i

))
Gq=2
v=3,m=2,i

(
Jq=2
v=3,i

)︸ ︷︷ ︸
W

low J
q=2
v=2,i

, short Jq=2
v=3,i

,i

τ q=2

low Jq=2
v=2,i, short Jq=2

v=3,i

+Gq=2
v=2,m=2,i

(
Jq=2
v=2,i

)
Gq=2
v=3,m=2,i

(
Jq=2
v=3,i

)︸ ︷︷ ︸
W

high J
q=2
v=2,i

, short Jq=2
v=3,i

,i

τ q=2

high Jq=2
v=2,i, short Jq=2

v=3,i

 (B.2)

The formulation above dissects the shape parameter, τ q=2
i , into four regimes. Different

combinations of trading intensity and duration will result in different levels of τ q=2
i and,

consequently, in different shapes of the hazard function. The shapes of interest are the

variations of a unimodal shape, i.e., τ q=2
i > 1, that might vary from a marginally decreasing

shape to a marginally increasing. In particular, when expected return is high, τ q=1
i is expected

to be 1 < τ q=1
i ≤ 2. In combination with a τ q=2

i > 1, this would lead to a unimodal shape.

The identification that is pursued here goes one step further and distinguishes different levels

of τ q=2
i according to different levels of duration. In particular, (shorter) longer duration

should be associated with (im-)patient trading, resulting in a hazard function that exhibits

a (sharper, i.e., τ q=2
i

+−→ 1) milder, i.e., τ q=2
i > 1, decrease, which in the limit could even

reach a (decreasing) increasing shape. This identifies impatient technical traders (iITT)

and patient technical traders (iPTT) (see e.g., [32]), with a relative proportion that can be
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defined as:

iITTi =

∑
Q
⊗(

m

(
1<τq=1

m ≤2,τq=2
m

+−→1

)
:k

)
{∏

Q
⊗
M W q

m,iH
Q
⊗(

m

(
1<τq=1

m ≤2,τq=2
m

+−→1

)
:k

)
(t)

}
∑

Q
⊗
M

∏
Q
⊗
M W q

m,iH
Q
⊗
M(t)

iPTTi =

∑
Q
⊗(

m
(
1<τq=1

m ≤2,τq=2
m >1

)
:k
){∏

Q
⊗
M W q

m,iH
Q
⊗(

m
(
1<τq=1

m ≤2,τq=2
m >1

)
:k
)
(t)

}
∑

Q
⊗
M

∏
Q
⊗
M W q

m,iH
Q
⊗
M(t)

(B.3)

The regimes, m of τ q=1 and τ q=2 that lead to a unimodal shape of the hazard func-

tion identify the technical trading, while the different degrees of curvature are associated

with the magnitude of waiting costs. The aggregated number of impatient (or patient in

(:)) technical traders, is the sum of all the probabilities, i.e.,
∏

Q
⊗
M W q

m,i, of intersections

Q
⊗(

m
(
1 < τ q=1

m ≤ 2, τ q=2
m

+−→ 1
)
: k
)

(or Q
⊗

(m (1 < τ q=1
m ≤ 2, τ q=2

m > 1) : k) for patient

traders) in the contingency table, where 1 < τ q=1
m ≤ 2 and τ q=2

m
+−→ 1 (or 1 < τ q=1

m ≤ 2 and

τ q=2
m > 1, times the respective cumulative hazard functions, H

Q
⊗(

m

(
1<τq=1

m ≤2,τq=2
m

+−→1

)
:k

)
(t)

(or HQ
⊗(

m
(
1<τq=1

m ≤2,τq=2
m >1

)
:k
)
(t)). This is then compared to the expected number of all

trades.

As a final example, the specification below follows the one in Section B.2.1 but with a

higher refinement of the shape parameter, which is now split across an additional dimension.

More specifically, consider the following model:

In this specification, the entropy parameter, q = τ q=1
i , is split into two regimes, m = 1, 2,

defined by the threshold variable, E(rt), as it is compared to the threshold, jq=1
m=2. The

shape parameter though is split into a 2x2 dimension matrix, defined by two variables,

Jq=2
v=2,i = durationi−1 and Jq=2

v=3,i = tii. The first one captures the market conditions that

might be associated with technical trading (trading intensity associated with an increasing

hazard function), while the second distinguishes this level of trading intensity into faster-
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ψi = ω + βψi−1 + (χi − βχi−1)− (χ̃i − φχ̃i−1), where χi = ∆t∗i

f (χi|Fi−1) = (2− τ q=1
i )

τq=2
i

χi

[
χi

Ai

]τq=2
i

eq

(
−
[
χi

Ai

]τq=2
i

)
, where Ai =

[
Γ

(
1+ 1

τ
q=2
i

)−τ
q=2
i

/ψi

]
τ q=1
i =

(
1−Gq=1

m=2,i

)
τ q=1
m=1 +Gq=1

m=2,iτ
q=1
m=2

τ q=2
i =

(
1−Gq=2,a

v=2,i

) (
1−Gq=2,b

v=3,i

)
τ q=2

Jq=2
v=2,m=1,iJ

q=2
v=3,m=1,i

+Gq=2,a
v=2,iG

q=2,b
v=3,iτ

q=2

Jq=2
v=2,m=2,i,J

q=2
v=3,m=2,i

+Gq=2,a
v=2,i

(
1−Gq=2,b

v=3,i

)
τ q=2

Jq=2,a
v=2,i ,J

q=2
v=3,m=1,i

+
(
1−Gq=2,b

v=2,i

)
Gq=2,a
v=3,i τ

q=2

Jq=2
v=2,m=1,i,J

q=2
v=3,m=2,i

for Gq=1
m=2,i =

(
1 + e−g

q=2
m=2(E(rt)i−jq=2

m=2)
)−1

,

Gq=2,a
m=2,i =

(
1 + e−g

q=2
v=2,m=2(tii−1−jq=2

v=2,m=2)
)−1

and Gq=2,b
m=2,i =

(
1 + e−g

q=2
v=3,m=2(durationi−jq=2

v=3,m=2)
)−1

bigger (shorter duration-higher volume) and slower-smaller (longer duration-lower volume)

trades, which is intended to capture the execution strategy (fast or slow). Each threshold

variable has its own threshold, jq=2
v=2,m=2 for Jq=2

v=2,i and . The magnitude of the threshold

variables, Jq=2
v=2,i = tii−1 and Jq=2

v=3,i = tii, relative to their thresholds, jq=2
v=2,m=2 and jq=2

v=3,m=2,

define four different combinations, with the shape of the hazard functions being defined by

the related shape parameters:

Jq=2
v=3,i ≤ jq=2

v=3,m=2 Jq=2
v=3,i > jq=2

v=3,m=2

Jq=2
v=2,i ≤ jq=2

v=2,m=2 τ q=2

Jq=2
v=2,m=1,iJ

q=2
v=3,m=1,i

τ q=2

Jq=2
v=2,m=1,i,J

q=2
v=3,m=2,i

Jq=2
v=2,i > jq=2

v=2,m=2 τ q=2

Jq=2,a
v=2,i ,J

q=2
v=3,m=1,i

τ q=2

Jq=2
v=2,m=2,i,J

q=2
v=3,m=2,i

These parameters have been indicatively been estimated in the left side of Table A.2,

in the right column under iPTT. The middle part of this column reports the estimates

of the parameters of the distribution, which are inline with expectations and previous es-

timations. More precisely, in accordance with Section B.2.1, the values of τ q=2 are be-

low 1 when Jq=2
v=2,m=2,i > jv=2,m2 (noted as ti > j(ti)), which indicates informed trading.

However, the shape parameter, τ q=2 takes values that are consistently higher than 1 when

Jq=2
v=2,m=2,i ≤ jv=2,m2 (noted as ti < j(ti)), which in combination with a scale parameter,

τ q=1 = q, that takes values higher than 1 when E(rt) > jv=3,m2 (noted as E(rt) > j(E(rt))),

imply a unimodal shape for the hazard function. This is consistent with technical trading.

On a deeper dissection, when duration is low (shaded areas) the shape parameter takes a
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value closer to 1, while longer durations are associated with higher values. This is consis-

tent with impatient and patient technical trading. These quantities can be then estimated

following Eq. (B.3) and they are reported in the bottom panel and take values aroung 15%.
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Appendix C Technical Appendix

C.1 Proofs

Proof of Theorem 1. The condition γT |p?−p| → 0 ensures the exponentially fast almost sure

approximation of the truncated at p? filter Ψ?(θ;ψi−l, xi−j, l = 1, . . . ,max(p, q), j = 1, . . . , p)

by Ψ?(θ;ψi−l, xi−j, l = 1, . . . ,max(p, q), j = 1, . . . , p) uniformly over Θ. The proof is then

identical to the proof of Theorem 4.3 of [9].

Proof of Proposition 1. Follows from the CMT, Corollary 1, and Proposition 3.2 of [9].

Proof of Theorem 2. As in Theorem 1, the condition γT |p? − p| → 0 ensures the exponen-

tially fast almost sure approximation of the first and second derivatives of the truncated

at p? filter Ψ?(θ;ψi−l, xi−j, l = 1, . . . ,max(p, q), j = 1, . . . , p) by the analogous derivatives

of Ψ?(θ;ψi−l, xi−j, l = 1, . . . ,max(p, q), j = 1, . . . , p) locally uniformly over Θ. Notice that

irrespective of the pseudo-true value of q, the first derivative of the likelihood contribu-

tions evaluated at φ? conditionally on the filtration, lies in the normal domain of attraction

of a zero mean Gaussian distribution (see Theorem 2.6.5 in Ibragimov and Linnik [39]).

Then stationarity and ergodicity and second order integrability of the limiting filter of the

first derivatives as well as the almost sure boundedness of the derivatives of the remaining

processes along with the principle of conditioning (see [40]), implies Op(
√
T ) asymptotic

tightness and limiting zero mean Gaussianity for the score. The locaally uniform version of

the ergodic theorem takes care the relevant a.s. convergence of the Hessian, and the result

follows from a Mean Value expansion of the f.o.c.s. of the optimization problem that defines

the estimator, which hold w.h.p. due to B1.

C.2 Convergence of Alternative Agent-Types

The CMT and the Delta method, along with the limit theory derivations for the estimated

parameters of interest, directly imply analogous results to Propositions 1, and 4 for the iTT
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and iPTT. Those are reported below for completeness of exposition:

Proposition 3 (C.2.1). Suppose that (i). assumptions A1-A5 hold and εT → 0,P a.s.,

(ii). each element of τi is almost surely continuous in φ, (iii). the cumulative haz-

ard functions employed are continuous functions of the shape and scale parameters, (iv)

E(log+ supθ f0(θ)) < +∞ and (v). the statistical model is well specified. Then as s + 1 ≤

T → ∞, |iTTt,s(φT , ψ̂s+1)− iTTt,s(φ0)|+ |iPTTt,s(φT , ψ̂s+1)− iPTTt,s(φ0)| → 0, P a.s. con-

ditionally on Fs.

Proposition 4 (C.2.2). Under the premises of Theorem 2 and if the cumulative hazard

functions employed are continuous functions of the shape and scale parameters, and the

statistical model is well specified, then as s + 1 ≤ T → ∞, we have for the iTT case that

dW (
√
T (iTTt,s(φT , ψ̂s+1(φT ))−iTTt,s(φ0)), N(0, ∂φiTT(φ0)

T (∂φ`0(φ0)∂φ`
T
0 (φ0))

−1∂φiTTt,s(φ0))) →

0, P a.s. conditionally on Fs, and furthermore likewise for the iPTT case we have that,

dW (
√
T (iPTTt,s(φT , ψ̂s+1(φT ))−iPTTt,s(φ0)), N(0, ∂φiPTT(φ0)

T (∂φ`0(φ0)∂φ`
T
0 (φ0))

−1∂φiPTTt,s(φ0)))

→ 0, P a.s. conditionally on Fs.

The proofs are essentially the same to the ones of Propositions 1, and 4 respectively.

The continuity of the hazard functions assumed holds for the specification used above. The

first proposition implies consistency for both the iTT and the iPTT under correct specifica-

tion. The second implies standard rates and asymptotic normality that could be useful for

statistical inference.
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