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Abstract

The theory of the indirect inference estimation of a conditionally Gaussian asymmetric SV
in mean model via the auxiliary use of Gaussian QML estimators based on misspecified
volatility filters is investigated. A general assumption framework is provided and it is
proven that the binding function between the associated models-the DGP and the one that
the filter is based upon-is a well defined injection. The derivation of this new result is
based on arguments related to ergodic optimization. The framework allows then for the
establishment of a strong consistency property for the indirect inference estimator based on
the uniform pseudo-consistency of the auxiliary one, and the derivation of a Gaussian limit
theory with standard rates. A consistent estimator of the limiting variance is also discussed
that allows for inference. A Monte Carlo simulation and an application on financial data,
employing competing EGARCH and GQARCH type filters provided with some initial
indication that favors the model defined by a recursion that ”bears stronger resemblance”
to the SV volatility recursion.
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1 Introduction

The paper investigates the theory of indirect inference estimation of a conditionally
Gaussian asymmetric stochastic volatility in mean model via the auxiliary use of
Gaussian QML estimators based on misspecified volatility filters. Stochastic volatility
models comprise a subclass of conditional heteroskedasticity that is characterized by
the fact that volatility is exogenous; the log-conditional variance process is driven by
innovations that are different processes from the innovations that drive the martingale
difference noise that appears in the specification of the conditional mean. The two
innovation processes need not however be independent. This volatility specification is
in sharp contrast to the ”endogenous” GARCH-type volatility models’ specification;
there the innovations in conditional variance recursions are measurable transformations
of the conditional mean noise.

Both endogenous and exogenous volatility specifications, are in several cases
tailored so that their probabilistic properties match several well documented statistical
regularities, the so-called stylized facts, that appear in financial data. Examples
of such empirical regularities include a. volatility clustering, i.e. that, on average,
periods of high (low) volatility are followed period with high (low) volatility, b.
dynamic asymmetry/leverage effects manifested in negative correlations between
current returns and future squared returns, c. indirect evidence a positive correlation
between the expected risk premium and ex ante volatility, d. small to insignificant
autocorrelations, e. leptokurtosis, i.e. significant empirical excess kurtosis. For a
relevant comprehensive introduction to the stylized facts and detailed literature see
for example Straumann (2006) (43) or Tsay (2005) (47).

Volatility processes are unobservable. Hence statistical inference on time series
models involving time varying conditional variance requires filtering of the latent
volatility via the sample of returns and the properties of the model at hand. Some
of the endogenous volatility models enjoy a property of invertibility, see Straumann
(2006) (43) or Wintenberger (2013) (48); volatility is a measurable function of past
observations. This property facilitates filtering which is then usually performed
without smoothing, something that is in sharp contrast with the exogenous volatility
models, making the endogenous invertible models more tractable w.r.t. inference.

The time series of asset returns was modeled using mainly endogenous volatility
in mean specifications-see indicatively, among many others, Gonzales-Rivera (1996)
(24), Choudhry (1996) (16), Dunne (1999) (21), Tai (2000) (44) and (2001) (45) ,
Ortiz and Arjona (2001) (38), Arvanitis and Demos (2004) (7) and (2004a) (8), and
Bali and Peng (2006) (10).

Stochastic volatility models can be customized to replicate the aforementioned
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stylized facts, making them competitive with their endogenous volatility counter-
parts. Furthermore, they naturally appear as representations of information flows in
financial markets (see, for example, Andersen (1996) (2)), and their continuous-time
versions serve as natural diffusion limits of GARCH-type models (see, for instance,
Nelson (1990) (37)). However, because they typically lack the property of invertibil-
ity, applying volatility filtering to these models often requires complex smoothing
techniques. This complexity can make parameter estimation cumbersome (see, for
example, Andersen and Benzoni 2009 (1), and Broto and Ruiz 2004 (14)), thereby
reducing their appeal. Thus, endogenous volatility processes can also serve as useful
statistical approximations for stochastic volatility models.

The direct likelihood-based estimation methods that have been proposed for
stochastic volatility models can be divided into two main groups; those that try
to reconstruct the full likelihood function and those that approximate it (see e.g.
Taylor 1986 (46), and Harvey et al. (1994) (26)). The estimation method based
on evaluating the full likelihood function can be found in, for example, Jacquier et
al. (1994) (27) et al. (1998) (30), Sandmann and Koopman (1998) (39), Fridman
and Harris (1998) (22), and Koopman and Uspensky (2002) (32). Several method of
moment approaches have also been employed to estimate the SV model parameters
such as the, so called, efficient method of moments (Gallant and Tauchen 1996 (23)),
the Indirect Inference (Smith (1993) (42) and Gourieroux et al. (1993) (25)), the
spectral method of moments (e.g. Knight et al. (2002) (31)), the simulated method of
moments (Duffie and Singleton (1993) (20)) and the generalized method of moments
(Andersen and Sorensen 1996 (3)).

This paper explores the estimation of a conditionally Gaussian asymmetric stochas-
tic volatility in mean model using an indirect inference methodology (see e.g. Gourier-
oux et al. (1993) (25), Andersen and Sorensen (1996) (3)); the likelihood is ap-
proximated by a Gaussian likelihood involving a misspecified filter for the volatility,
emerging from a general invertible endogenous volatility model. Hence in the spirit
of the aforementioned convenient statistical approximation, the DGP likelihood is
replaced by a misspecified one, the limiting properties of which establish a binding
function between the DGP endogenous model and the one producing the volatility
filter. The function essentially represents the pseudo-consistency behavior of the
auxiliary Gaussian QMLE for the parameters of the misspecified filter. Invertibility
of this so-called binding function, implies the possibility of estimating the DGP
parameters, via the auxiliary estimator of the parameters of the filter and the inver-
sion at it of the binding function, or some approximation of it. Invertibility of the
endogenous auxiliary volatility model associated with the misspecified filter, implies
that the Gaussian QMLE for the auxiliary parameters is not numerically cumbersome
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and is performable using standard smooth optimization numerical techniques; e.g.
Newton-Ralphson-type methods. Then an approximate inversion of the latent binding
function is provided by the Gallant and Tauchen (1996) (23) methodology, which is
connected to minimal computational burden for the inversion, as it involves Monte
Carlo integration of the auxiliary likelihood score, evaluated at the auxiliary estima-
tor based on the original sample. Hence it does not require the evaluation of the
auxiliary estimator at the Monte Carlo samples, while it enjoys first order asymptotic
equivalence with more computationally involved indirect inference estimators like the
ones introduced by Gourieroux et al. (1993) (25).

The fundamental idea of the indirect inference methodology is the binding function.
This latent function typically maps the parameters of the accurately specified statisti-
cal model to those of the possibly misspecified auxiliary model. It is crucial that the
binding function is well-defined, meaning it should not be multivalued. This ensures
the pseudo-consistency of the auxiliary estimator, allowing it to have a meaningful
and well-defined limit theory. The binding function should also be injective; this
is essentially a restriction of indirect identification for the underlying well specified
model from the auxiliary one. This implies that inverting any sufficiently close data
dependent approximation of the binding function evaluated at the auxiliary estimator
could result to a sufficiently close approximation of the DGP parameters, giving rise
to several indirect inference estimators that usually employ some sort of Monte Carlo
integration and potentially cumbersome optimization.

In this set up of the stochastic volatility in mean DGP, with a Gaussian likelihood
emerging from an auxiliary misspecified endogenous volatility filter, the binding
function is not only latent but also very difficult to approximate analytically. Hence
the required properties of it being a well-defined injective function are difficult to
establish analytically. The major contribution of the present paper, is that given an
assumption framework that is reminiscent of the stationary and ergodic framework
employed in the asymptotic analysis of the Gaussian QMLE in GARCH-type models
(see for example Straumann (2006) (43)), it is proven that the binding function
between the associated models-the DGP and the one that the filter is based upon-
has the aforementioned properties. The derivation of this new result is based on
arguments related to the concept of ergodic optimization Jenkinson (2019) (29)).
This mathematical formulation investigates the properties of the set of optimizing
measures of the integral of a given function w.r.t. to a collection of probability
measures that are invariant w.r.t. the lag-operator. The convexity properties of this
collection enable the establishment of the results about the binding function.

The assumption framework allows then for the establishment of a strong con-
sistency property for the indirect inference estimator based on the uniform pseudo-
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consistency of the auxiliary one, and the derivation of a Gaussian limit theory with
standard rates. A consistent estimator of the limiting variance is also discussed that
allows for inference based on the estimator. A Monte Carlo simulation and an applica-
tion on financial data, employing competing EGARCH(1,1) and GQARCH(1,1) type
filters, with parameter restrictions that verify the assumptions, provides with some
experimental indication that favors the filter emerging from the model defined by a
recursion that ”bears stronger resemblance” to the stochastic volatility recursion, in
terms of Monte Carlo bias and Mean Squared Error. These motivate the theoretical
consideration of the question of the optimal choice of a computationally convenient
endogenous misspecified filter as further research.

The rest of the paper proceeds as follows. Section 2 introduces the model, the
general form of the volatility filter and the subsequent auxiliary estimator. Section 3
provides with the limit theory of the auxiliary estimator under model misspecification
and among others introduces and derives the properties of the binding function.
Section 4 introduces the indirect inference estimator and derives its asymptotic
properties. Section 5 performs Monte Carlo experiments utilizing the competing
EGARCH and GQARCH volatility filters. Section 6 provides estimates on real
financial data. In section 7 we conclude. A Supplementary Appendix provides with
details concerning the construction of the indirect inference estimator for both the
aforementioned filters, along with further information regarding the Monte Carlo
experiments.

2 Framework

The following conditionally Gaussian SV(1,1)-M model is considered:
yt = mδ(exp(vt)) + exp(vt

2
)zt,

vt = ω + βvt−1 + σut−1, t ∈ Z,

(zt, ut)
T iid∼ N(0,

(
1 ρ
ρ 1

)
).

(1)

There, for the s-dimensional real vector δ, mδ : R → R is a measurable invertible
function, while zk is independent of ul, for all k, l ∈ Z. The vector θ := (δT , ω, β, σ, ρ)T,
organizes the parameters that appear in the model and assumes its’ values in some
compact set Θ ⊂ Rp, p = s+ 4.

For the filtration F (z,u), where the algebra F (z,u)
t represents the innovation history

σ(zt−j, ut−j, j ≥ 1), the process (mδ(exp(vt))) is the conditional mean process of
(yt). The process (vt) is the corresponding logarithm of the conditional variance;
the latter is hereafter denoted with (σ2

t ). The conditional mean thus depends on
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the variance, and the conditional variance is exogenous, as it is formulated without
explicit dependence on the noise process (zt). The error process (σtzt) is a martingale
transform w.r.t. the aforementioned filtration.

The processes (zt), (ut), (vt) as well as the true values of the parameters are latent.
The process (yt) is observable, in the sense that a sample (yt)t=1,...,T is available to the
analyst. The function mδ is known up to the true value of the associated parameter.
Thus there is no semi-parametric component in the DGP stochastic volatility model.

For reasons of inference, and via the sample above, the analyst uses the system{
yt = mδ(ht) +

√
htzt

ht = g⋆ϕ⋆ (yt−1, ht−1)
, t ∈ Z, (2)

as well as a -possibly stochastic- initial value h⋆0(ϕ
⋆) in order to construct a filter for the

latent volatility exp(vt). Here, for each value of the auxiliary parameter ϕ := (δT, ϕ⋆T)T

lying in some compact parameter space Φ ⊂ Rq, q = dim(δ) + dim(ϕ⋆). For brevity,
and in order to avoid issues involving inference on optimal weighting matrices for
the construction of indirect estimators, we assume that p = q, a condition that is
inline with our applications. The interested reader can use the relevant derivations
of Arvanitis and Demos (2018) (5) in order to see how the results that follow about
the indirect estimator can be generalized to the case q > p. Furthermore, g⋆ϕ⋆ is a
non-negative measurable function on R×R+. Specifically, the filter (h⋆t (ϕ

⋆))t=0,...,T is
constructed via the recursion:

h⋆t (ϕ
⋆) =

{
h⋆0(ϕ

⋆) t = 0

g⋆ϕ⋆
(
yt−1, h

⋆
t−1(ϕ

⋆)
)

t > 0.
(3)

The filter thus corresponds to an invertible volatility process, see Straumann
(2006) (43); this must be necessarily endogenous, meaning that the volatility dynamics
directly depend on the noise and the conditional variance history. Hence the filter is
misspecified, in the sense that it is a process with positive probability distinguishable
from the DGP volatility process in (1). It is used for inference on ϕ; specifically,

under the marginal Gaussianity of z0; for ℓt(ϕ) := ln(h⋆(ϕ⋆)) + (yt−mδ(h
⋆(ϕ⋆)))2

h⋆(ϕ⋆)
, an

auxiliary estimator for ϕ is definable via:

ϕT ∈ argmin
ϕ∈Φ

1/T

T∑
t=1

ℓt(ϕ).

If g⋆ϕ⋆ and the initial value h⋆0(ϕ
⋆) are continuous w.r.t. ϕ, then standard arguments

along with the Theorem of Measurable Projections (see Par. 1.7 of van der Vaart and
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Wellner (1996) (49)), ensure the existence of ϕT . The estimator ϕT can be regarded as
a Gaussian QMLE based on a misspecified filter. As mentioned above, the derivation
of the estimator usually incorporates a mild computational burden since it is not
associated with costly smoothing and can be performed via Newton-Ralphson type
optimization procedures.

The above are extendable to models of higher orders. Furthermore, they are
easily extendable to cases where the auxiliary estimator is defined as an approximate
minimizer.

In our Monte Carlo experiments and the application the conditional mean func-
tion is mδ(h) := δ1 + δ2

√
h. Two alternative misspecified filters are considered:

(i) g⋆ϕ⋆(y, h) := exp(ω⋆ + (α⋆|y| + γ⋆y)h−1/2 + β⋆ log(h)), that corresponds to the
EGARCH(1,1) endogenous volatility specification of Nelson (1991) (37), and (ii)
g⋆ϕ⋆(y, h) := ω⋆ + α⋆y2 + γ⋆y + β⋆h, that in turn corresponds to the GQARCH(1,1)
endogenous volatility specification of Sentana (1991) (41). The auxiliary parameter
vector is ϕ := (δ, ϕ⋆T), where ϕ⋆ := (ω⋆, α⋆, γ⋆, β⋆)T, which however satisfies different
restrictions in each case.

Due to the specific structure of the auxiliary likelihood function, choosing an
endogenous volatility filter is crucial for both the implementability of indirect infer-
ence estimation and the properties of the resulting estimator. In the following, a
comprehensive assumption framework is outlined which ensures that the asymptotic
properties of the auxiliary estimator ϕT enable indirect identification. This means
that the estimator converges to a distinct value of ϕ for each given θ, and the mapping
between their respective parameter spaces is injective. Moreover, the framework
ensures a conventional Gaussian limit theory for the auxiliary estimator, which is
subsequently converted into a corresponding limit theory for its indirect inference
version, facilitating inference.

3 Limit theory for the QMLE under filter misspecification

We are thus interested in studying the asymptotic properties of ϕT as T → ∞. Under
conditions specified below, the QMLE converges to an invertible function of the SV
parameter θ. It is called binding function and will be denoted by ϕ(θ) : Θ → Φ. The
limit theory sought can be used in order to construct an indirect estimator of θ by
inverting an implicit approximation of ϕ(θ), as well as to establish the limit theory of
the subsequent estimator.

We operate within a framework where the original process exhibits stationarity and
ergodicity, while both stationarity, ergodicity, and uniform invertibility are applicable
to the filters used. Extending these results to non-stationary contexts presents an
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interesting path for future study.

3.1 Pseudo-consistency and the binding function

In order to establish convergence of ϕT , along with the existence of ϕ(θ) as a well
defined singleton-valued function and its invertibility, we work with the following set
of assumptions:

A1: |β| < 1 and mδ is Borel measurable.

This along with Theorem 3.1 of Bougerol and Picard (1992) (13) and Proposition 2.1.1
of Straumann (2006) (43) directly imply stationarity and ergodicity for the process
(yt, exp(ut))t∈Z, thus providing an ergodic framework for the stochastic recurrence
equations that define the filter in 2-3. Borel measurability for mδ(h) = δ1 + δ2

√
h is

readily the case.
In what follows let ψ := (θT, ϕT)T and Ψ := Θ× Φ.

A2: Suppose that: (i). E(log+ supψ∈Ψ |g⋆ϕ⋆(y0, h)|) < +∞. (ii). g⋆ϕ⋆(y, h) is almost
surely Lipschitz continuous in h, with Lipschitz coefficient Λi(ψ, y), and such that, (a).
the map Ψ ∋ θ → δ2(ψ, y0) is almost surely continuous, (b). E(supψ∈Ψ log+ δ2(ψ, y0)) <
0, where log+ is the positive part of the logarithmic function. (iii) g⋆ϕ⋆(y0, h) is almost
surely continuous in ψ.

Given A1, and the compactness of Ψ, the (i)-(ii) parts of the assumption imply
the continuous invertibility (see for example Par. 3 and Prop. 3.1 of Blasques et al.
(2018) (11)) of the filter (h⋆t (ϕ

⋆)). In the GQARCH specification it suffices β⋆ < 1.
For the EGARCH specification the results of Wintenberger (2013) (48) readily im-
ply that it is ensured whenever α⋆ > |γ⋆|, and E(log(supθ∈Θmax(β⋆, 2−1(α⋆|y0| +
γ⋆y0) exp(

ω⋆

2(1−β⋆)
− β⋆)))) < 0 along with A3 below. The latter is not trivial to verify,

however a uniform integrability argument enabled by the compactness of Φ and the
fact that y0 follows a mixture of log-normal distributions imply that the expectation
of the rhs of the previous inequality is continuous w.r.t. (θ, ϕ), and thereby for any
θ0 ∈ Θ there exists a Φ such that for any θ in a neighborhood of θ0, the condition
holds for any ϕ ∈ Φ. Prop. 3.1 of Blasques et al. (2018) (11) imply the existence
of a unique stationary and ergodic solution (ht(ϕ))t∈Z of 2, the existence of which is
ensured by the basic framework and Assumptions A.1-A.2; this is the exponentially
fast almost sure approximator of the filter defined in 3 uniformly in θ. A2.(iii) implies
then that h0(ϕ

⋆) is almost surely continuous in ϕ. The assumption obviously holds



3 Limit theory for the QMLE under filter misspecification 9

for both the specifications considered given the SV specification.

A3: There exists some C > 0 such that infψ∈Ψ h0 > C.

A3 along with the form of ℓt and A1-A2 imply Assumption C4 of Blasques et
al. (11) and thus enables the exponentially fast almost sure approximation of the
likelihood contributions by stationary and ergodic analogues uniformly over Ψ. For
the GQARCH it follows when γ⋆ ≤ 0 and β⋆ < 1 due to Lemma 2.1 of Arvanitis
and Louka (2015) (6). For the EGARCH specification, it follows from A2 due to the
results of Wintenberger (2013) (48).

A1-A3 and the form of the likelihood function then imply that E(supϕ∈Φ |ℓ0(ϕ))| <
+∞. Given this, and using the arguments in the proof of Theorem 4.1 of Blasques
et al. (2018) (11), and Theorem 3.4 (Ch. 5) of Molchanov (2005) (34) we have that

almost surely lim supT→∞ ϕT ⊂ ϕ(θ) := argminϕ∈Φ E( (y0(θ)−mδ(h0(ϕ
⋆)))2

h0(ϕ⋆)
−ln( exp(v0(θ))

h0(ϕ⋆)
))-

actually this holds uniformly in Θ. Even though ϕ(θ) is a well defined upper semi-
continuous correspondence due to Th. 3.4 of Molchanov (2005) (34), as pointed out
in a more general context by Blasques et al. (2018) (11) it may not be single-valued
for some values of θ. The following assumption, is a usual identification condition
in the relevant literature-see for example condition C.5 in Chapter 5 of Straumann
(2006) (43)-that it is surprisingly sufficient for ϕ(θ) to be single-valued and 1-1.

A4: Φ ∋ ψ1 ̸= ψ2 ⇒ h0(ψ1) ̸= h0(ψ2) almost surely, and δ → mδ(h) is 1-1 in
for all h.

The first part of A4 holds for both the GQARCH and EGARCH specifications
since h′0, the gradient of the ergodic form of the filter w.r.t ψ, exists and it is com-
prised of linearly independent random variables due to the Gaussian part of the
specification of the SV process. The second part readily holds for mδ(h) = δ1 + δ2

√
h.

A4 then implies that the auxiliary estimator is pseudo-consistent in an injective
manner: ϕθ is not only a well defined function but also 1-1. This is described in
the following result, which to the best of our knowledge is the first for models of
such complexity, and it utilizes the notion of ergodic optimization (see for example
Jenkinson (2019) (29)); the general structure of this mathematical formulation is
the study of the set of optimizing measures of the integral of a given function w.r.t.
to a collection of probability measures that are invariant w.r.t. the lag-operator. A
crucial general result is that the set of optimizers is convex with extreme points the
set of the ergodic measures in the collection. This can be utilized in order to create a
contradiction that leads to:
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Proposition 1. Under A1-A4 the binding correspondence

ϕ(θ) := argmin
ϕ∈Φ

E(
(y0(θ)−mδ(h0(ϕ

⋆)))2

h0(ϕ⋆)
− ln(

exp(v0(θ))

h0(ϕ⋆)
),

is single valued and 1-1.

Proof. Suppose that the result does not hold. Then the ergodic optimization problem

maxµ
∫
( (y0(θ)−mδ(h0(ϕ

⋆)))2

h0(ϕ⋆)
− ln( exp(v0(θ))

h0(ϕ⋆)
))dµ where µ denotes the joint distribution of

(y0(θ), h0(ϕ
⋆),mδ(h0(ϕ

⋆))) (see Relation (1) in Jenkinson (2019) (29)), would have at
least two ergodic solutions, say µ, µ⋆ due to Proposition 2.3 of Jenkinson (2019) (29))
which is valid since Θ and Φ are compact and the parameterizations are continuous in
the topology of weak convergence. This-due to the linearity of the integral in µ- would
in turn imply that any mixture λµ+ (1− λµ⋆) would also solve the problem above.
Let A denote an invariant set of the underlying dynamical system w.r.t. the lag
operator. We have that due to ergodicity µ(A) = 0, 1, µ⋆(A) = 0, 1. It must be that
µ(A) = µ⋆(A), for if it were not, then the support of one of those measure, would be a
negligible set for the other. This cannot be the case due to the conditional Gaussianity
assumption in the definition of the SV process, A4 and the non degeneracy of the
limiting filters. Hence (λµ + (1 − λµ⋆))(A) = 0, 1 which means that the mixture
measure is also ergodic. But this is impossible due to Proposition 2.3 of Jenkinson
(2019) (29).

In both the GQARCH and the EGARCH specifications the binding functions seem
analytically intractable. To our knowledge, Proposition 1 is the initial finding that
identifies it as a well-defined function. Typically, similar outcomes are presented as
assumptions in the field of misspecified models’ estimation, as illustrated by Blasques
et al. (2018) (11).

The proposition then directly implies uniform in θ pseudo-consistency for ϕT ; in
what follows ∥ · ∥ denotes any norm on Ψ:

Theorem 1. Under A1-A4, for any ε > 0, supθ∈Θ P(∥ϕT − ϕ(θ)∥ > ε) → 0.

Proof. Follows from Theorem 4.3 of Blasques et al. (2018) (11), Fatou’s Lemma,
Lemma AL.1 of Arvanitis and Demos (2018) (5), and Proposition 1.

The pseudo-consistency of the QMLE does not rely on bijectivity. The one-to-
one property will later serve as an indirect identification attribute for ensuring the
consistency of indirect estimators.
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3.2 Rate and limiting Gaussianity

The following additional framework facilitates the derivation of the rate and limiting
distribution of the QMLE based on the misspecified volatility filter. This is important
because, combined with the injectivity of the binding function and arguments related
to uniform integrability and the inverse function theorem, it supports a comparable
limit theory for the indirect inference estimator, mainly through the Delta method.
Now, ∥ · ∥ denotes the Euclidean or the Frobenius norm depending on the context.

B1: For any θ ∈ Θ, there exists an open neighborhood, say Bϕ⋆, of ϕ⋆(θ) :=
(ϕ(θ))i=s,...q such that: (i) gϕ⋆ is twice continuously differentiable w.r.t. (ψ⋆, h)
on Bϕ⋆(θ) × R+, for almost every value of its remaining arguments. (ii). For
g∂ϕ⋆ denoting the SRE obtained by recursive differentiation of gϕ⋆ w.r.t. ϕ⋆, we
have that E(log+ supϕ⋆∈Bϕ⋆

∥g∂ϕ⋆0(·)∥) < +∞. (A). g∂ϕ⋆,t is almost surely Lip-

schitz continuous w.r.t. g∂ϕ⋆,t−1, with Lipschitz coefficient Λ
(∂ϕ⋆)
t (ψ), and such

that, (B). the map Bϕ⋆(θ) ∋ ϕ → Λ
(∂ϕ⋆)
0 (ψ) is almost surely continuous and, (C).

E(supϕ⋆∈Bϕ⋆ (θ)
log+ Λ

(∂ϕ⋆)
0 (ψ)) < 0. (iii). Furthermore, let g∂ϕ⋆∂ϕ⋆T denote the

SRE obtained by recursive differentiation of g∂ϕ⋆ w.r.t. ϕ⋆. Then, suppose anal-
ogously that E(log+ supϕ∈Bϕ⋆(θ)

∥g∂ϕ⋆∂ϕ⋆T(·)∥) < +∞. (A). g∂ϕ⋆∂ϕ⋆T,t is almost surely

Lipschitz continuous in g∂ϕ⋆∂ϕ⋆T,t−1, with Lipschitz coefficient Λ
(∂ϕ⋆∂ϕ⋆T)
t (ψ), and

such that, (B). the map Bϕ⋆(θ) ∋ ϕ⋆ → Λ(∂ϕ⋆∂ϕ⋆T) is almost surely continuous

and, (C). E(supϕ⋆∈Bϕ⋆ (θ)
log+ Λ

(∂ϕ⋆∂ϕ⋆T)
0 (ψ)) < 0. Finally, (iv), mδ is three times

differentiable in (δT, h)T, and there exists some neighborhood of ϕ(θ) for which
E log+(supδ,h(∥m′

δ(h)∥ + ∥m′′
δ(h)∥) < +∞, where m′

δ and m′′
δ denote the gradient

and the Hessian respectively of mδ(h) w.r.t. (δT, h)T.

The first three parts of the assumption facilitate among others the continuous
invertibility of the filter derivatives. In the GQARCH specification, those parts
follow directly from the parameter restriction conditions that ensure A2-A3 due
to the relevant derivations in the Appendix of Arvanitis and Louka (2015) (6)
and the Gaussian part of the SV specification. The derivations in Lemma 1 of
Wintenberger (2013) (48) imply that for the EGARCH specification they hold if

E(log+ supϕ⋆∈Bϕ⋆(θ)
(β⋆ − 1

2
(a⋆|z0|+ γ⋆z0)

exp(
v0(θ)

2
)√

h0(ϕ⋆)
)) < 0. For the aforementioned spec-

ifications, the final part holds for the case mδ(h) = δ1 + δ2
√
h due the previous, and

Lemma 2.5.3 of Straumann (2006) (43).
In what follows h⋆

′
and h⋆

′′
(respectively h′ and h′′) denote the gradient and the
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Hessian of the filter w.r.t. ϕ⋆ (respectively of their ergodic approximators).

B3: For Bϕ⋆(θ) as above and for some ϵ > 0, E(supϕ∈Bϕ⋆(θ)
∥h

′
0

h0
∥2+ϵ)+E(supϕ∈Bϕ⋆(θ)

m4+ϵ
δ (h0)

h2+ϵ
0

)

+E(supϕ∈Bϕ⋆(θ)
m

′4+ϵ
δ (h0)∥h′0∥2+ϵ)+E(supϕ∈Bϕ⋆(θ)

(mδ(h0)∥m′
δ(h0)∥)2+ϵ)+E(supϕ∈Bϕ⋆(θ)

∥h
′′
0

h0
∥1+ϵ)

+E(supϕ∈Bϕ⋆(θ)
∥m

′′
δ (h0)

h20
∥1+ϵ)+E(supϕ∈Bϕ⋆(θ)

∥m
′
δ(h0)

h20
∥1+ϵ) < +∞. Furthermore, E(∥h

′
0

h0
∥4)+

E(m
8
δ(h0)

h40
) + E((mδ(h0)∥m′

δ(h0)∥)4) < +∞.

Given the derivations in the Appendix of Arvanitis and Louka (2015) (6) and the
Gaussianity involved in the definition of the SV process, the required moments’
existence for the GQARCH specification follows when β is bounded below one. For
the EGARCH specification, the derivations in Lemma 1 of Wintenberger (2013) (48)
as well as the derivations in the Appendix of Demos and Kyriakopoulou (2009) (17),
and the aforementioned Gaussianity imply that the required conditions hold as long

as E(supϕ⋆∈Bϕ⋆(θ)
(β⋆ − 1

2
(a⋆|z0|+ γ⋆z0)

exp(
v0(θ)

2
)√

h0(ϕ⋆)
)4+δ) < 1, a condition that is stronger

compared to the analogous logarithmic moment existence that appeared above. The
conditions involving mδ follow easily for the specification δ1 + δ2

√
h due to the above

and A3.

B4: For any θ ∈ Θ, and ϕ1 ̸= ϕ2,
∂ℓ0(h0(ϕ1))

∂ϕ
̸= ∂ℓ0(h0(ϕ2))

∂ϕ
almost surely.

Again, the derivations in the Appendix of Arvanitis and Louka (2015) (6), the
derivations in Lemma 1 of Wintenberger (2013) (48) as well as the derivations in the
Appendix of Demos and Kyriakopoulou (2009) (17), and the Gaussianity involved
in the definition of the SV process imply that B3 follows for the GQARCH and
EGARCH filter specifications.

Utilizing the totality of our assumption framework, we obtain the following limit
theory for the QMLE-there ⇝ denotes convergence in distribution:

Theorem 2. Under the premises of Theorem 1, if moreover B1-B5 hold and θ ∈
Int(Θ), then √

T (ϕT − ϕ(θ))⇝ N(0, Vϕ(θ)),

where Vϕ(θ) := (∂ϕ∂ϕTE(ℓ0(ϕ(θ))))−1E(∂ϕℓ0(ϕ(θ))∂ϕℓT0 (ϕ(θ)))(∂ϕ∂ϕTE(ℓ0(ϕ(θ))))−1, for
the stationary and ergodic versions of the associated derivatives.

Proof. First notice that the first part of B3, along with differentiability of the SV
model w.r.t. θ, the interior condition and uniform integrability imply commuta-
tivity between the integral and all the employed derivative operators. This along
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with Proposition 1 and the indirect information equality (see the preparation before
Proposition 5 of Gourieroux et al. (1993) (25)) implies that ϕ(θ) is continuously
differentiable on the interior of Θ with a full rank gradient, hence a homeomorphism
Int(Θ) → Int(Φ). B4 and mean value expansion of the first order derivative im-
ply full rank for ∂ϕ∂ϕTE(ℓ0(ϕ(θ))) and via the aforementioned equality it implies
algebraic linear independence for the elements of ∂ϕℓ0(ϕ(θ)), and thereby full rank
for E(∂ϕℓ0(ϕ(θ))∂ϕℓT0 (ϕ(θ))). B1 implies exponentially fast almost sure convergence
of the filter derivatives to their ergodic analogues locally uniformly in ϕ(θ), and
combined with B3 it implies almost sure approximation of the first and second order
derivatives of the likelihood by their ergodic analogues locally uniformly in ϕ(θ). The
first part of B3 implies convergence of the ergodic version of the empirical Hessian
to its population analogue due to Birkhoff’s LLN locally uniformly in ϕ(θ). This
and Theorem 1 imply almost sure convergence of the empirical Hessian evaluated
anywhere on the line connecting ϕT and ϕ(θ) to the population Hessian at ϕ(θ).
Furthermore, the first derivative of the likelihood contributions evaluated at ϕ(θ))
conditionally on the information at t − 1, lies in the normal domain of attraction
of a zero mean Gaussian distribution (see Theorem 2.6.5 in Ibragimov and Linnik
(1975) (33)). Then stationarity and ergodicity and second order integrability of the
limiting filter of the first derivatives as well as the almost sure boundedness of the
derivatives of the remaining processes along with the principle of conditioning (see
Jakubowski (1986) (28)), implies Op(

√
T ) asymptotic tightness and limiting zero

mean Gaussianity for the empirical average of the score. The result then follows from
a Mean Value expansion of the f.o.c.s. of the optimization problem that defines the
estimator, which holds w.h.p. due to that ϕ(θ) is open.

A consistent estimator for the asymptotic variance that appears in the limit the-
ory is VT := (∂ϕ∂ϕTET (ℓt(ϕT )))−1ET (∂ϕℓt(ϕT )∂ϕℓTt (ϕT ))(∂ϕ∂ϕTET (ℓt(ϕT )))−1, where
ET denotes integration via the empirical measure. This directly follows from the
assumption framework above, Theorem 1 and the Continuous Mapping Theorem
(CMT). Notice that the derivatives involved in the construction of the Hessian in VT
can be evaluated via numerical differentiation. It is easy to see that the above imply
that when this is the case and the evaluation of the forward differences occurs at a
parameter value, say ϕ⋆, such that ∥ϕ⋆ − ϕT∥ almost surely converges to zero, while
T∥ϕ⋆ − ϕT∥ almost surely diverges to infinity, then this version of VT also converges
to Vϕ(θ) almost surely.
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4 The indirect estimator based on the score

The assumption framework above produces interior openess for the binding function
and locally uniform convergence for the score. Those along with the properties of
the limiting version of the likelihood imply that the inverse of the binding function,
when restricted to the interior of Θ, can be recovered via the variational problem
minθ∈Int(Θ) ∥E(∂ϕℓ0(ϕ(θ)))∥2. An empirical approximation of the latent expectation of
the score, can be obtained via Monte Carlo integration. Thus, an indirect estimator
for θ, termed the Gallant and Tauchen indirect inference estimator (see Gallant and
Tauchen(1996) (23) and Gourieroux et al. (1996) (25)), θT , can be defined by

θT ∈ argmin
θ∈Θ

∥ES,θET (∂ϕℓ0(ϕT ))∥2,

where ES,θ denotes integration w.r.t. the empirical Monte Carlo distribution of
S independent samples of (yt,s(θ))t=1,...,T,s=1,...,S from model (1). The particular
estimator is connected to minimal computational burden among competing indirect
inference estimators (see again Gourieroux et al. (1996) (25)), as it does not require
the derivation of the auxiliary estimate at each Monte Carlo sample, while being
asymptotically equivalent to them. It may possess, however, poorer properties in
terms of higher-order asymptotics, see Arvanitis and Demos (2018) (5).

The above results on the asymptotic behavior of the auxiliary likelihood and
estimator, and the properties of the binding function, directly provide the limit theory
of θT . The derivation essentially works via the Delta method and the inverse function
theorem:

Theorem 3. Under the premises of Theorem 2, for any S, and as T → ∞, a. θT is
strongly consistent for any θ ∈ Int(Θ), and b. for any such θ,

√
T (θT − θ)⇝ N(0, (1 + 1/S)(∂θϕ(θ))

−1Vϕ(θ))(∂θϕ(θ))
−1T),

where ∂θϕ := ∂ϕ
∂θT

.

Proof. a. follows from that due to B1-B3 and Birkhoff’s LLN ∥ES,θET (∂ϕℓ0(ϕ(θ)))∥
converges locally uniformly almost surely to ∥E(∂ϕℓ0(ϕ(θ)))∥ and Proposition 1. b.
then follows from the Theorem 2 and its proof and Appendix 1 of Gourieroux et al.
(1996) (25).

If S is allowed to diverge to infinity, the result predicted for the general first
order theory for the GT estimators established in Arvanitis and Demos (2018) (5) is
recovered. If the boundary of Φ is representable by restrictions amenable to Kuhn-
Tucker optimization conditions, the above definition and results can be extended
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to the case where θ ∈ Bd(Θ) via the Lagrange multiplier technology developed in
Calzolari et al. (2004) (15).

The uniform consistency result for the auxiliary estimator in Theorem 1 and the
first result of the previous theorem, imply that a consistent estimator of the Jacobian
of the binding function, say ∂θϕT is obtainable via numerical differentiation of ϕT (θT ),
as long as the evaluation of the forward differences occurs at a parameter value, say θ⋆,
such that ∥θ⋆ − θT∥ converges almost surely to zero, while T∥θ⋆ − θT∥ almost surely
diverges to infinity. The CMT and the discussion in the previous section then imply
that (1+1/S)(∂θϕT )

−1VT (∂θϕT )
−1T is a strongly consistent estimator of the asymptotic

variance of θT . This allows inferential tasks such as constructing confidence regions
or performing Wald-type tests using θT to be practically implementable.

5 Monte Carlo Simulations

We employ Monte Carlo simulations to assess the small sample bias and Mean
Squared Error properties of indirect inference estimators that utilize EGARCH(1,1)
and GQARCH(1,1) models. Both auxiliary volatility models are endogenous and align
with the theory mentioned above given the specified parameter constraints. They
also agree with the volatility stylized facts highlighted in the Introduction, which
informed the customization of the stochastic volatility model. The first auxiliary
filter-corresponding to the EGARCH model-is defined by a recursive equation that
bears a stronger resemblance to the stochastic volatility recursion than the second
filter, especially when the absolute value of ρ assumes high positive values.

The following Monte Carlo simulations might offer insights into whether a heuristic
approach to selecting a volatility filter correlates with improved performance in small
samples. This is evidently related to the broader issue of choosing a computationally
efficient volatility filter that is optimal, at least in an asymptotic sense. The theoretical
aspects of this issue appear to be an intriguing subject for future research. The Monte
Carlo simulations also offer some insight into the computational effort required to
obtain the estimates, as well as issues related to occasional process failures.

The results in Jacquier et al. (1994) (27) and in Calzolari et al. (2004) (15) imply
that an important determinant of the performance of the different estimators is the
unconditional coefficient of variation of the unobserved volatility level σ2

t := exp(vt),
say CV, where

CV2 =
Var (σ2

0)

E2 (σ2
0)

= exp

(
σ2

1− β2

)
− 1.

When CV is low, the observed process is close to Gaussian white noise, and conse-
quently estimating the stochastic volatility parameters is difficult. Furthermore, CV
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is independent of ρ.
The simulated paths were generated employing 3 sets of parameter values. For

the the first one we set ω = −0.1, β = 0.9, ρ = −0.8, and σ = 0.3629 getting
CV 2 = 1.0, for the second one we chose ω = 0.0, β = 0.9, ρ = −0.95 and σ = 0.31623
with CV2 = 0.693 as in Monfardini (1998) (35), and for the third one we chose
ω = −0.736, β = 0.9, ρ = −0.95 and σ = 0.363 with CV2 = 1.0 as in Jacquier et
al. (1994) (27). Notice that the third set of parameters values has been employed
by among others Andersen and Sorensen (1996) (3), as well. However, the previous
articles are dealing with symmetric SV models; ρ = 0. For the mean specifications,
we set (δ1, δ2) = (0.0, 0.111) for the first set, (δ1, δ2) = (0, 0.111) for the second one,
and (δ1, δ2) = (0.07, 0.08) for the third one. In the Supplement we also present Monte
Carlo results for the zero mean asymmetric SV models and compare our results with
those of previous research.

In all simulations we choose S = 200 for T = 1000, 2000 and 3000, and S = 150
for T = 5000, 7500 and 10000, and perform 500 Monte Carlo simulations for each
score generator. The choice of S is based mainly in computational time considerations,
as higher value of S results in smaller asymptotic variance of the estimators and
consequently increases the stability of the estimation (see below on this) but increases
the time needed for the program to converge. These values of S are far smaller than
the ones employed in the application with real data section.

In the first parameter scenario is obtained that E (yt) = 0.074 giving an Annualized
Rate of Return of 3.89%, and Var (yt) = 0.520. In Figure 1 the Bias and Root MSE
of the indirect inference estimators are presented for the first set of parameters values.
Notice that only for T=1000 the GQARCH-M score generator has smaller Bias and
Root MSE.

Place Figure 1 about here

For the second set of parameter values we have that E (yt) = 0.043, with Annualized
Rate of Return 2.45%, and Var (yt) = 1.301. For this set it is obvious that the Biases
of the EGARCH-M score generator are much smaller of the respective GQARCH-M
ones (see Figure 2). In terms Root MSEs, the ones of the GQARCH-M generator are
smaller for T=2000 and T=5000.

Place Figure 2 about here

Finally, for the third set of parameters we get E (yt) = 0.123, Annualized Rate
of Return 6.59%, and Var (yt) = 0.521. Here, the Biases and Root MSEs of the
E-GARCH-M score generator are smaller as compared to the GQARCH-M ones, for
all the examined values of T .
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Place Figure 3 about here

In the supplement all biases and root MSEs are presented for all three parameter
values’ sets. In terms of estimated biases, in almost all cases, the auxiliary EGARCH
estimates are closer to the true ones. Further, the estimated root MSE of the auxiliary
EGARCH estimation procedure is by far smaller than the equivalent of GQARCH
estimation procedure.

In simulation exercises concerning stochastic volatility models, it has been observed
that a portion of the draws does not lead to convergence of the optimization algorithms,
regardless of whether the Generalized Method of Moments (3), the Efficient Method
of Moments (4), or the Quasi-Maximum Likelihood (27) techniques are applied for
estimation. This issue is evident in our study as well, particularly when using the
GQARCH-M filter.

In particular, concerning the specifics of the numerical methods utilized, we observe
the following: our approach consists of a two-stage optimization process. Initially,
we maximize the quasi-likelihood function of the auxiliary model by minimizing the
gradient norm concerning the auxiliary parameters. Subsequently, we minimize the
norm of the estimated expected gradient of the auxiliary quasi-likelihood, calculated
at the derived auxiliary parameters, focusing on the model parameters. Either of these
numerical optimizations might not succeed. We utilized the E04JBF minimization
routine from the NAG library for both stages of optimization. In the second step, the
initial values were set to the true values across all replications and parameter sets. In
contrast, the initial values for the auxiliary parameters were chosen to be realistic,
approximately aligning with the theoretical values of various moments for both the
auxiliary and the true model, using the formulas from Demos (2023) (18).

In case that in the first step optimization we got a failure, IFAIL=2 (the routine
has not found the minimum but the maximum number of iterations, set to 320, has
been reached) or IFAIL=3 (the conditions for termination have all been met, but
a lower point could not be found) we leave the program to proceed to the second
step and obtain the estimates of the parameters of the true model. On the other
hand, if we get a failure on the second step we consider that the program failed at
this replication. We could deal with the failures in a number of different ways. First,
we could increase S, and/or increase the number of iterations, and/or change the
initial values of the parameters. However, the first two solutions would increase the
time needed for the program to converge, which is extremely time consuming for a
simulation exercise with three different parameter sets and six different sample sizes.
We set aside the third option because our aim is to handle each simulation path
uniformly. Consequently, we opted to ignore the failed simulation paths and select
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alternative ones. This approach necessitates careful interpretation of comparisons
among auxiliary models, particularly concerning root MSEs.

The following table presents the number of program failures for the considered
two auxiliary models, 3 set of parameters and all the considered sample sizes.
For all the considered cases the number of failures with the EGARCH-M auxiliary is

Tab. 1: Optimization Routine Failures

Number of Failures

1st Parameter Set 2nd Parameter Set 3rd Parameter Set
EGARCH-M GQARCH-M EGARCH-M GQARCH-M EGARCH-M GQARCH-M

T=1000 1 117 27 88 19 116
T=2000 3 59 5 58 0 55
T=3000 0 70 0 53 0 57
T=5000 0 82 0 14 0 59
T=7500 0 34 0 28 0 70
T=10000 8 38 0 18 0 69

by far less the failure cases with the GQARCH-M one. It seems that the EGARCH-M
auxiliary is a better choice not only in terms of bias and root MSE but also in
terms of facilitation of routine convergence and computational easiness. These are
an indications of validity of the heuristic mentioned in the beginning of the present
paragraph and could be related to geometrical/probabilistic aspects of the relations
between the statistical models employed.

6 An application to International Markets.

The aforementioned methods of estimation are employed on samples of weekly excess
returns of four indices of international markets, i.e. the S&P, the FTSE, the DAX
and the Nikkey. The motivation is similar to the Monte Carlo exercises above; in
the context of the question of the optimal selection of a volatility filters, we want to
explore whether the indirect inference estimator based on the EGARCH(1,1) filter
is able to better reproduce the empirical characteristics of the aforementioned data
compared to the one based on the GQARCH(1,1) filter. In this context and in the the
following Table we present some descriptive statistics for the 4 indices, along with the
period of estimation and the number of observations. It is obvious that the standard
deviation of returns is almost 22 times higher than the average return. Further, in all
markets the skewness and kurtosis coefficients are far from the corresponding of the
normal distribution ones. The asymptotic confidence interval for the autocorrelations
is (−0.041, 0.041) for the 3 markets and (−0.049, 0.049) for FTSE, indicating that,
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apart from Nikkey, either the 1st or the second order autocorrelations are significant.
However, it is known that in the presents of GARCH-type effects the asymptotic
distribution of the correlation coefficients are affected (see e.g. Diebold (1986) (19)).
Q(4) is the fourth order Ljng-Box statistic, asymptotically distributed as χ2

4 under
the null of zero autocorrelation up to order 4.

Tab. 2: Statistics Weekly Excess Returns

Index S&P FTSE DAX Nikkey
Period 1973− 2017 1987− 2017 1973− 2017 1973− 2017

No. of Obs. 2299 1621 2300 2299
Average 0.103 0.104 0.134 0.037
St.Dev.. 2.299 2.299 2.767 2.485
Skewness −0.542 −0.541 −0.592 −0.614
Kurtosis 8.309 8.304 8.003 7.578

Jarque− Bera 2811.4 2807.5 2533.9 2151.9
ρ̂ (yt, yt−1) −0.063 −0.064 −0.005 0.000
ρ̂ (yt, yt−2) 0.038 0.037 0.058 0.038
Q(4) 15.359 15.408 13.635 4.220

ρ̂
(
y2t , y

2
t−1

)
0.267 0.267 0.203 0.217

ρ̂
(
y2t , y

2
t−2

)
0.168 0.168 0.252 0.143

Q(2 (4) 363.53 363.78 425.78 201.19
Dyn. Asym.(1) −0.198 −0.198 −0.176 −0.137

The first and second order autocorrelation of the squared returns is significant
indicating strong volatility clustering effects. This is justified by the fourth Ljung-
Box statistic for the squared returns Q(2 (4). The estimated Dynamic Asymmetry,
ρ̂ (y2t , yt−1), is negative and significant in all cases. Notice that the theoretical dynamic
asymmetry depends on the leverage effect parameter ρ as well as the parameter λ
(see Demos 2023 (18) and Bollerslev and Zhou (2006) (12)).

The estimates along with their z-type statistics for significance (in parentheses)
appear in Table 3. The estimation in all cases is carried out under the restriction
that δ1 = 0 due to that initial estimation results-available upon request-showed
insignificance of the particular parameter in all cases. To avoid inflating the estimator
variances we have chosen S = 90000.
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Tab. 3: Constrained Estimation

S&P
EGARCH−M GQARCH−M

Parameter
δ2 0.053 0.051

(2.630) (0.208)
ω 0.079 0.109

(1.103) (0.502)
β 0.939 0.916

(5.953) (2.958)
ρ −0.591 −0.538

(−2.178) (−0.341)
σ 0.254 0.308

(2.654) (0.489)

FTSE
EGARCH−M GQARCH−M

0.023 0.302
(0.986) (0.123)
0.086 0.088

(0.0891) (0.481)
0.945 0.944
(5.243) (3.877)
−0.672 −0.559
(−2.129) (−0.341)
0.243 0.260
(1.998) (0.498)

DAX
EGARCH−M GQARCH−M

Parameter
δ2 0.070 0.030

(2.751) (0.123)
ω 0.077 0.088

(0.891) (0.481)
β 0.952 0.944

(5.308) (3.878)
ρ −0.435 −0.560

(−1.369) (−0.341)
σ 0.235 0.260

(2.141) (0.498)

Nikkey
EGARCH−M GQARCH−M

0.015 0.030
(0.713) (0.123)
0.067 0.088
(0.725) (0.481)
0.957 0.944
(4.886) (3.877)
−0.358 −0.559
(−1.008) (−0.341)
0.233 0.260
(2.058) (0.498)

It is worth noticing that, with the exemption of Nikkey, the price of risk, δ2, is
significant under the EGARCH-M auxiliary, whereas it is insignificant for all markets
employing GQARCH-M auxiliary. In fact, in almost all cases, it seems that the
EGQARCH-M auxiliary estimates the parameters with greater precision than the
ones of the GQARCH-M auxiliary.



7 Conclusions 21

7 Conclusions

We investigated the theory of the estimation of a conditionally Gaussian asymmetric
SV model with possibly time varying risk premia, via the auxiliary use of Gaussian
QML estimators based on misspecified volatility filters and the subsequent employment
of an indirect inference estimation procedure based on the simulated score.

We have developed a general assumption framework and demonstrated that it
ensures the binding function between the associated models—the DGP and the
model upon which the filter is based—is well defined and injective. This new
result is derived using arguments related to ergodic optimization. Consequently,
this framework facilitates establishing a strong consistency property for the indirect
inference estimator, grounded in the uniform pseudo-consistency of the auxiliary
estimator, leading to the derivation of a standard rate Gaussian limit theory. A
consistent estimator of the limiting variance is also discussed, allowing for inference.

The critical issue of selecting a computationally affordable auxiliary volatility
filter that has at least optimal asymptotic properties is an interesting path for further
research. A Monte Carlo simulation and an application on data from international
financial markets, employing competing EGARCH(1,1) and GQARCH(1,1) type
filters provided with some initial indication that favors the model defined by a
recursion that ”bears stronger resemblance” to the SV volatility recursion. The
theoretical underpinning of such like heuristics, as well as issues related with the
computational burden associated with the derivation of the estimation procedures
involved, could be benefited from geometrical/probabilistic aspects of the relations
between the statistical models at hand as exemplified by fields like Information
Geometry (see Ay et al. (2017) (9)). Similar considerations could be also helpful in
determining the optimal selection of filters when the underlying stochastic volatility
model is itself misspecified due to misspecification of the conditional distribution,
and potentially facilitate parametric model selection in semi-parametric stochastic
volatility frameworks. These considerations are delegated to further research.
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Figures

Fig. 1: Param. Set 1; δ1 = 0, δ2 = 0.11, ω = −0.1, β = 0.9, ρ = −0.8, and σ = 0.36.

Fig. 2: Param. Set 2; δ1 = 0, δ2 = 0.04, ω = 0.0, β = 0.9, ρ = −0.95 and σ = 0.31.

Fig. 3: Param. Set 3; δ1 = 0.07, δ2 = 0.08, ω = −0.1, β = 0.9, ρ = −0.9 and σ = 0.36.
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1 The SVM Model
The normal Autoregressive Stochastic Volatility in Mean models are given
by:

yt = δ1 + δ2σt + zt exp
(vt
2

)
where, (1.1)

vt = ω + β lnσ2
t−1 + σut−1 and (1.2)(

εt
ηt

)
iid∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
.

Let us call θ = (δ1, δ2, ω, β, σ, ρ)
T the vector of the true parameters, and

concentrate now to the estimation procedure.

2 Estimation
The Gallant and Tauchen (1996) estimator is defined as, for the vector of
parameters θ,

θ̂ = argmin
θ

 S∑
s=1

T∑
t=1

∂lt

(
yst (θ) , ϕ̂

)
∂ϕ

T

Σ

 S∑
s=1

T∑
t=1

∂lt

(
yst (θ) , ϕ̂

)
∂ϕ

 ,

1



where {yst (θ)}
T
t=1 are the simulated paths of yt (θ) via the simulated val-

ues of (zst , ust)
′, and ϕ̂ =

(
δ̂1, δ̂2, ω̂, α̂, γ̂, β̂

)T
is the first step estimator, i.e.

the maximiser of the approximate conditional Gaussian quasi log-likelihood
function

lT (ϕ) = −T
2
ln 2π − 1

2

T∑
t=1

(
lnht +

(
yt − δ1 − δ2

√
ht
)2

ht

)
=

T∑
t=1

lt (ϕ) (2.1)

where

lt (ϕ) = −1

2
ln 2π − 1

2

(
lnht + ε2t

)
, and εt =

yt − δ1 − δ2
√
ht√

ht
.

Now for ◦ = {δ1, δ2, ω, α, γ, β} we have that (see Demos and Kyriakopoulou
(2013) for the EGARCH model) :

l◦ =
∂lT (ϕ)

∂◦
= −1

2

T∑
t=1

∂ lnht
∂◦

− 1

2

T∑
t=1

∂ε2t
∂◦

= −1

2

T∑
t=1

ht;◦ −
T∑
t=1

εt
∂εt
∂◦

,

where ht;◦ =
∂ lnht
∂◦

.

Now, we assume that the process ht is given by either

lnht = ω + γεt−1 + α |εt−1|+ β lnht−1,

εt−1 =
yt−1 − δ1 − δ2

√
ht−1√

ht−1

for the EGARCH-M auxiliary or

ht = ω + αε2t−1ht−1 + γεt−1

√
ht−1 + βht−1

for GQARCH-M one. ht;◦ = ∂ lnht

∂◦ and ∂εt
∂◦ can be found in the following

subsections.
Notice that as the number of auxiliary parameters is the same as the

number of parameters, six, Σ is irrelevant, at least asymptotically, and con-
sequently it is set to the Identity matrix (see e.g. Gourieroux and Monfort
(1996)). Consequently, θ̂ is given as

θ̂ = argmin
θ

 S∑
s=1

T∑
t=1

∂lt

(
yst (θ) , ϕ̂

)
∂ϕ

T  S∑
s=1

T∑
t=1

∂lt

(
yst (θ) , ϕ̂

)
∂ϕ

 .
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2.1 EGARCH(1,1)-M Auxiliary

The EGARCH(1,1)-M class of models of Nelson (1991)) is given by:

yt = δ1 + δ2
√
ht + εt

√
ht, t = 1, . . . , n, where εt

iid∼ (0, 1) and

lnht = ω + γεt−1 + α |εt−1|+ β lnht−1

with
lnh0 = E (lnht) =

ω + αE |ϵ|
1− β

,

for |β| < 1, and

lnh1 = ω + γε0 + α |ε0|+ β lnh0 = ω + β lnh0 =
ω + βαE |ε|

1− β

assuming that ε0 = 0.
The Quasi normal log-likelihood is given by:

l (ϕ) = −T
2
ln 2π−1

2

T∑
t=1

(
lnht +

(
yt − δ1 − δ2

√
ht
)2

ht

)
= −T

2
ln 2π−1

2

T∑
t=1

(
lnht + ε2t

)
.

Now for ◦ = {δ1, δ2, ω, α, γ, β} we have that (see Demos and Kyriakopoulou
(2013) for the EGARCH model) :

l◦ =
∂l

∂◦
= −1

2

T∑
t=1

∂ lnht
∂◦

− 1

2

T∑
t=1

∂ε2t
∂◦

= −1

2

T∑
t=1

ht;◦ −
T∑
t=1

εt
∂εt
∂◦

,

where ht;◦ =
∂ lnht
∂◦

where

∂εt
∂δ1

=
∂
(
yt − δ1 − δ2e

1
2
lnht

)
e−

1
2
lnht

∂δ1
= −1

2
εtht;δ1 −

1

2
δ2ht;δ1 − e−

1
2
lnht = −1

2
(εt + δ2)ht;δ1 −

1√
ht
,

∂εt
∂δ2

=
∂
(
yt − δ1 − δ2e

1
2
lnht

)
e−

1
2
lnht

∂δ2
= −1

2

(
yt − δ1 − δ2e

1
2
lnht

)
e−

1
2
lnhtht;δ2 −

1

2
δ2ht;δ2 − 1

= −1

2
(εt + δ2)ht;δ2 − 1,
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and for @ = {ω, α, γ, β}, the conditional variance parameters

∂εt
∂@

=
∂
(
yt − δ1 − δ2e

1
2
lnht

)
e−

1
2
lnht

∂@
=
∂ (yt − δ1) e

− 1
2
lnht − δ2

∂@

= −1

2
(yt − δ1) e

− 1
2
lnhtht;@ = −1

2
(εt + δ2)ht;@.

Now the derivative of the conditional variance with respect to the param-
eters are given:

ht;δ1 =
∂ (ω + γεt−1 + α |εt−1|+ β lnht−1)

∂δ1

=
∂ (γεt−1 + α (I (εt−1 ≥ 0)− I (εt−1 < 0)) εt−1 + β lnht−1)

∂δ1

= (γ + α (I (εt−1 ≥ 0)− I (εt−1 < 0)))
∂ (εt−1)

∂δ1
+ βht−1;δ1 =

= (γ + α (I (εt−1 ≥ 0)− I (εt−1 < 0)))

(
−1

2
(εt−1 + δ2)ht−1;δ1 −

1√
ht−1

)
+ βht−1;δ1

= −{γ + α [I (εt−1 ≥ 0)− I (εt−1 < 0)]} 1√
ht−1

+

[
β − 1

2
(γεt−1 + α |εt−1|)−

1

2
δ2 [γ + α (I (εt−1 ≥ 0)− I (εt−1 < 0))]

]
ht−1;δ1

with

h1;δ1 = 0,

as

lnh1 =
ω + βαE |ε|

1− β
.
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Now

ht;δ2 =
∂ (ω + γεt−1 + α |εt−1|+ β lnht−1)

∂δ2

= θ
∂εt−1

∂δ2
+ α [I (εt−1 ≥ 0)− I (εt−1 < 0)]

∂εt−1

∂δ2
+ βht−1;δ2

= {γ + α [I (εt−1 ≥ 0)− I (εt−1 < 0)]}
(
−1

2
(εt−1 + δ2)ht−1;φ − 1

)
+ βht−1;δ2

= − [γ + αI (εt−1 ≥ 0)− αI (εt−1 < 0)]

+

[
β − 1

2
γεt−1 −

1

2
α |εt−1| −

1

2
δ2 [γ + αI (εt−1 ≥ 0)− αI (εt−1 < 0)]

]
ht−1;δ2

with

h1;δ2 = 0.

ht;ω = 1 + γ
∂εt−1

∂ω
+ α

∂εt−1

∂ω
[I (εt−1 ≥ 0)− I (εt−1 < 0)] + βht−1;ω

= 1 + γ

(
−1

2
(εt−1 + δ2)ht−1;ω

)
+ [αI (εt−1 ≥ 0)− αI (εt−1 < 0)]

(
−1

2
(εt−1 + δ2)ht−1;ω

)
+ βht−1;ω

= 1 +

(
β − 1

2
γεt−1 −

1

2
α |εt−1| −

1

2
δ2 [γ + αI (εt−1 ≥ 0)− αI (εt−1 < 0)]

)
ht−1;ω

h1;ω =
1

1− β
.

as
lnh1 =

ω + βαE |ε|
1− β

.
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Now for ◦ = {α} the derivatives are:

ht;α =
∂ (ω + γεt−1 + α |εt−1|+ β lnht−1)

∂α

= |εt−1|+ [γ + αI (εt−1 ≥ 0)− αI (εt−1 < 0)]
∂ (εt−1)

∂α
+ βht−1;α

= |εt−1|+ [γ + αI (εt−1 ≥ 0)− αI (εt−1 < 0)]

(
−1

2
(εt−1 + δ2)ht−1;α

)
+ βht−1;α

= |εt−1|+
{
β − 1

2
γεt−1 −

1

2
α |εt−1| −

1

2
δ2 [γ + αI (εt−1 ≥ 0)− αI (εt−1 < 0)]

}
ht−1;α

with

h1;α =
βE |ε|
1− β

.

Now for ◦ = {γ} the derivatives are:

ht;γ =
∂ (ω + γεt−1 + α |εt−1|+ β lnht−1)

∂θ

= εt−1 + [γ + α (I (εt−1 ≥ 0)− I (εt−1 < 0))]
∂ (εt−1)

∂γ
+ βht−1;γ

= εt−1 −
1

2
(εt−1 + δ2)ht−1;γ [γ + α (I (εt−1 ≥ 0)− I (εt−1 < 0))] + βht−1;γ

= εt−1 +

{
β − 1

2
(γεt−1 + α |εt−1|)−

1

2
δ2 [γ + αI (εt−1 ≥ 0)− αI (εt−1 < 0)]

}
ht−1;γ

with

h1;γ = 0.

Now for ◦ = {β} the derivatives are:
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ht;β =
∂ (ω + γεt−1 + α |εt−1|+ β lnht−1)

∂β

= θ
∂ (εt−1)

∂β
+ (αI (εt−1 ≥ 0)− αI (εt−1 < 0))

∂ (εt−1)

∂β
+ lnht−1 + βht−1;β

= lnht−1 + γ

(
−1

2
(εt−1 + δ2)ht−1;β

)
+(αI (εt−1 ≥ 0)− αI (εt−1 < 0))

(
−1

2
(εt−1 + δ2)ht−1;β

)
+ βht−1;β

= lnht−1 +

[
β − 1

2
γεt−1 −

1

2
α |εt−1| −

1

2
δ2 (γ + αI (εt−1 ≥ 0)− αI (εt−1 < 0))

]
ht−1;β

with

h1;β =
ω + αE |ε|
(1− β)2

.

2.2 The GQARCH(1,1)-M Auxiliary

The GQARCH(1,1) process of Sentana (1995) is given by:

yt = δ1 + δ2
√
ht +

√
htεt, εt

iid∼ N(0, 1)

ht = ω + αε2t−1ht−1 + γεt−1

√
ht−1 + βht−1

with

h0 =
ω

1− (α + β)
and h1 =

ω (1− α)

1− (α + β)
.

Then for ◦ = {δ1, δ2, ω, γ, α, β} we have that :

l◦ =
∂l

∂◦
= −1

2

T∑
t=1

∂ lnht
∂◦

− 1

2

T∑
t=1

∂ε2t
∂◦

= −1

2

T∑
t=1

ht;◦ −
T∑
t=1

εt
∂εt
∂◦

,
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as with the EGARCH-M auxiliary, where

∂εt
∂δ1

=
∂
(
yt − δ1 − δ2

√
ht
) (√

ht
)−1

∂δ1
= yt

∂
(
e−

1
2
lnht

)
∂δ1

−
∂
(
δ1e

− 1
2
lnht

)
∂δ1

= −1

2
yte

− 1
2
lnhtht;δ1 − e−

1
2
lnht +

1

2
δ1e

− 1
2
lnhtht;δ1 = −1

2
(yt − δ1)

1√
ht
ht;δ1 −

1√
ht

= −1

2
(εt + δ2)ht;δ1 −

1√
ht
,

∂εt
∂δ2

=
∂
(
yt − δ1 − δ2

√
ht
) (√

ht
)−1

∂δ2
=
∂ (yt − δ1) e

− 1
2
lnht − δ2

∂δ2

= −1

2
(yt − δ1)

1√
ht
ht;δ2 − 1 = −1

2
(εt + δ2)ht;δ2 − 1,

and for ◦ = {ω, γ, α, β} we have that :

∂εt
∂◦

=
∂
(
yt − δ1 − δ2

√
ht
) (√

ht
)−1

∂◦
=
∂ (yt − δ1)

(√
ht
)−1

∂◦
= −1

2
(yt − δ1)

1√
ht
ht;◦ = −1

2
(εt + δ2)ht;◦. OK

The conditional variance derivatives, for ◦ = {δ1, δ2, ω, γ, α, β} , are:

ht;◦ =
∂ lnht
∂◦

=
1

ht

∂ht
∂◦

=
1

ht

∂
(
ω + αε2t−1h

2
t−1 + γεt−1

√
ht−1 + βh2t−1

)
∂◦

=
1

ht

[
∂ω

∂◦
+
∂α

∂◦
ε2t−1h

2
t−1 + 2αεt−1

∂ (εt−1)

∂◦
ht−1 + αε2t−1

∂ht−1

∂◦

]
+

1

ht

[
γ
∂ (εt−1)

∂◦
√
ht−1 + γεt−1

∂
√
ht−1

∂◦
+
∂γ

∂◦
εt−1

√
ht−1 + β

∂ht−1

∂◦
+
∂β

∂◦
h2t−1

]

=
1

ht

[
∂ω

∂◦
+
∂α

∂◦
ε2t−1h

2
t−1 + 2αεt−1

∂ (εt−1)

∂◦
ht−1 + αε2t−1ht−1ht−1;◦

]
+

1

ht

[
γ
∂ (εt−1)

∂◦
√
ht−1 +

1

2
γεt−1

√
ht−1ht−1;◦ +

∂γ

∂◦
εt−1

√
ht−1 + βht−1ht−1;◦ +

∂β

∂◦
h2t−1

]
It follows that for ◦ = δ1 we get

ht;δ1 =
1

ht

[
βht−1ht−1;δ1 −

(
2αεt−1

√
ht−1 + γ

)(1

2
δ2
√
ht−1ht−1;δ1 + 1

)]
,
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with

h1;δ1 = 0.

For ◦ = δ2

ht;δ2 =
1

ht

[
βht−1ht−1;δ2 −

(
2αεt−1ht−1 + γ

√
ht−1

)(1

2
δ2ht−1;δ2 + 1

)]
with

h1;δ2 = 0.

Now for ◦ = ω the derivatives are:

ht;ω =
1

ht

{
1 +

[
βht−1 −

1

2
δ2

(
2αεt−1ht−1 + γ

√
ht−1

)]
ht−1;ω

}
with

h1;ω =
1

ω
.

For ◦ = α the derivative is:

ht;α =
1

ht

[
ε2t−1h

2
t−1 +

(
βht−1 − αεt−1δ2ht−1 −

1

2
γδ2
√
ht−1

)
ht−1;α

]
with

h1;α =
β

(1− (α + β)) (1− α)
.

For ◦ = γ the derivatives are:

ht;γ =
1

ht

[
εt−1

√
ht−1 +

(
βht−1 − αεt−1δ2ht−1 −

1

2
γδ2
√
ht−1

)
ht−1;γ

]
with

h1;γ = 0,

and for ◦ = β the derivatives are:

ht;β =
1

ht

[
h2t−1 +

(
βht−1 − αεt−1δ2ht−1 −

1

2
γδ2
√
ht−1

)
ht−1;β

]
with

h1;β ==
1

1− (α + β)
.
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3 Monte Carlo Simulations
To compare the properties in terms of bias and Mean Squared Error for
the two estimators we perform two Monte Carlo exercises. One where the
mean parameters are set to zero and not estimated, where the EGARCH and
GQARCH processes are employed as auxiliary ones, and one where the full
model SV(1)-M model is simulated.

3.1 EGARCH and GQARCH

The results in Jacquier, Polson and Rossi (1994) and in Calzolari, Fiorentini
and Sentana (2004) imply that the most important determinant of the perfor-
mance of the different estimators is the unconditional coefficient of variation
of the unobserved volatility level σ2

t , say CV , where

CV 2 =
V ar (σ2

t )

E2 (σ2
t )

= exp

(
σ2
η

1− ψ2

)
− 1.

Notice, that when CV 2 is low, the observed process is close to Gaussian white
noise, and consequently the estimation of the stochastic volatility parameters
is difficult. Furthermore, CV is independent of ρ.

The simulated paths were generated employing 3 sets of parameter values.
For the the first one we set ω = −0.1,β = 0.9,ρ = −0.8 andσ = 0.3629
getting CV 2 = 1, for the second one we chose ω = 0.0, β = 0.9 ,ρ = −0.95
and σ = 0.31623 with CV 2 = 0.693 as in Monfardini (1998), and for the third
one we chose ω = −0.736, β = 0.9,ρ = −0.95 and σ = 0.363 with CV 2 = 1.0
as in Jacquier et al. (1994). Notice that the third set of parameters values
has been employed by among others Andersen and Sorensen (1996), as well.
However, the previous articles are dealing with symmetric SV models, i.e.
ρ = 0.

In all simulations we choose S = 200 for T = 1000, 2000 and 3000,
and S = 150 for T = 5000, 7500 and 10000, and perform 500 Monte Carlo
simulations for each score generator. The choice of S is based mainly in time
considerations, as higher value of S results in smaller asymptotic variance
of the estimators and consequently increases the stability of the estimation
but increases the time needed for the program to converge. These values
of S are far smaller than the ones employed in the application with real
data section. The norm of the estimated biases of the 3 parameters sets and
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Figure 3.1: ω0 = −0.1, β = 0.9, ρ = −0.8 and ση = 0.3629.

the root MSEs (the Frobenius norm of the MSE matrix) are presented and
discussed in the main article, where we also discuss the convergence failures
of the optimization procedure.

In the following Figure we present the bias and root MSE for the first
set of parameters. The norm bias of the GQARCH auxiliary estimator is
smaller for T=1000, T=2000 and T=3000, whereas the EGARCH auxiliary
has smaller bias for T=5000, T=7500 and T=10000. The root MSE of the
EGARCH auxiliary is smaller for all Ts.

Monfardini (1998) employed an Indirect Inference estimator using as first
step estimators AR and ARMA models, capitalizing the autocorrelation func-
tion of the squared residuals of a symmetric SV(1) model. In Tables 1 and 2
we present the biases and the root MSE’s of the two estimators of Monfardini
(1998) together with ours. Of course in our case we estimate, apart from the
presented parameters, the dynamic asymmetry parameter ρ, as well. For
the two sample sizes considered in that Monfardini (1998), T = 1000 and
T = 2000 it is obvious that the EGARCH score generator is less biased and
has smaller root MSE.

The bias and root MSE for the second set of parameters are presented in
the following Figure. Either in terms of bias or of root MSE the EGARCH
auxiliary has better properties than the GQARCH one.

Let us turn our attention to the third parameter set. From the following
Figure it is obvious that the EGARCH score generator is uniformly, over all
examined sample sizes, superior to the GQARCH one in terms of bias and
root MSE.

For this parameter set it is fruitful to compare our results with the ones
in articles where symmetric SV(1) models have been estimated. In Table 3

11



Figure 3.2: ω0 = 0.0, β = 0.9, ρ = −0.95 and ση = 0.31623.

Figure 3.3: ω = −0.736, β = 0.9, ρ = −0.95 and ση = 0.363.

12



Table 1: Biases and Root MSE’s (in parenthesis) of the two II Estimators in
Monfardini (1998), and EGARCH and GQARCH score generators T=1000

Method/param. ω0 = 0.0 ψ0 = 0.9 ση0 = 0.31623
Ind. Inf. 1− AR 0.0014 (0.0197) −0.0314 (0.1036) 0.0170 (0.1557)

Ind. Inf. 2− ARMA −0.0055 (0.0239) −0.0363 (0.1013) 0.0496 (0.160)
QML − −0.0327 (0.1047) 0.0319 (0.1577)
BAY ES − −0.0213 (0.0540) 0.0194 (0.0941)
SEM − −0.0010 (0.0400) −0.0129 (0.0570)

GQARCH 0.0351 (0.12098) 0.0185 (0.0518) −0.0289 (0.1116)
EGARCH 0.0002 (0.0063) 0.0010 (0.0143) −0.0004 (0.0357)

Monfardini (1998)

Table 2: Biases and Root MSE’s (in parenthesis) of the 2 II Estimators in
Monfardini (1998), and EGARCH and GQARCH score generators T=2000

Method/param. ω0 = 0.0 ψ0 = 0.9 ση0 = 0.31623
Ind. Inf. 1− AR 0.0006 (0.0108) −0.0124 (0.0598) 0.0029 (0.1090)

Ind. Inf. 2− ARMA 0.0021 (0.0112) −0.0133 (0.0600) 0.0194 (0.1104)
SEM − −0.0009 (0.02407) −0.0168 (0.0438)

GQARCH 0.0133 (0.0712) 0.0027 (0.0415) −0.0241 (0.1059)
EGARCH 0.0003 (0.0042) 0.0002 (0.0103) 0.0012 (0.0243)

we compare, in terms of bias and root MSE, various estimators for only the
three parameters, i.e. ω, β and ση.

It seems that the EGARCH auxiliary II estimation is performing quite
well, at least for the β and ση parameters. Notice that in our case the
estimated biases and root MSEs are the ones when at the same time we
estimated the ρ parameter, i.e. our third parameter set.

To further check our routines we repeated the Monte Carlo experiment
of Harvey and Shephard (1996), and Yu (2005). For T=1000 and T=3000
the two Indirect estimators we consider are performing quite well, whereas
for T=6000 the EGARCH auxiliary outperforms the other two estimators.

Finally, we repeat the simulations in Jacquier, Polson and Rossi (2004)
(JPR04). However, notice that in JPR04 a fat tailed distribution is chosen,
and the tail thickness is estimated, as opposed to our normal one. Again the
two considered II estimators are performing quite well.
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Table 3: Bias and Root MSE (in parenthesis) of MM, QML, Bayes, GQARCH
and EGARCH score Generators, T=2000
Method/param. ω = −0.736 β = 0.9 ση = 0.363

MM1) 0.124 (0.420) 0.020 (0.060) 0.053 (0.100)
QML1) 0.117 (0.460) 0.020 (0.060) −0.020 (0.110)
Bayes1) −0.026 (0.150) −0.004 (0.020) −0.004 (0.034)
QML2) 0.000 (0.010) −0.012 (0.050) 0.018 (0.100)
MCL2) −0.009 (0.010) 0.013 (0.020) −0.046 (0.030)
GMM3) 0.151 (0.311) 0.020 (0.043) −0.086 (0.117)
EMM4) −0.057 (0.224) −0.007 (0.030) −0.004 (0.049)
GQARCH 0.003 (0.110) −0.033 (0.057) −0.026 (0.191)
EGARCH −0.001 (0.038) 0.000 (0.005) −0.003 (0.022)

1) Jacquier, Polson and Rossi (1994) Table 9; 2) Sandmann and Koopman
(1998) Table 3; 3) Andersen and Sorensen (1996) Table 5; 4) Andersen,
Chung and Sorensen (1999) Table 5

Table 4: Bias and Root MSE (in parenthesis) of QML, GQARCH and
EGARCH score Generators
Method/param. β = 0.975 ρ = −0.9 ln

(
σ2
η

)
= −4.605

T = 1000
QML∗ −0.007 (0.034) −0.009 (0.132) 0.045 (0.708)

GQARCH −0.006 (0.000) 0.024 (0.022) 0.135 (0.783)
EGARCH −0.002 (0.009) −0.029 (0.075) −0.025 (0.390)

T = 3000
QML∗ −0.001 (0.007) −0.011 (0.079) −0.012 (0.353)

MCMC∗∗ 0.002 (0.005) 0.019 (0.045) −0.010 (0.209)
GQARCH 0.000 (0.005) −0.010 (0.480) −0.048 (0.280)
EGARCH 0.000 (0.004) −0.009 (0.046) −0.010 (0.223)

T = 6000
QML∗ 0.000 (0.005) −0.007 (0.058) −0.007 (0.249)

GQARCH −0.001 (0.004) 0.010 (0.033) 0.051 (0.233)
EGARCH 0.000 (0.003) −0.004 (0.032) −0.002 (0.153)

* Harvey and Shephard (1996) Table 1; ** Yu (2005) Table 5
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Table 5: Bias and Root MSE (in parenthesis) of Bayes, GQARCH and
EGARCH score Generators
Method/param. β = 0.95 ρ = −0.6 ση = 0.26

T = 1000
Bayes∗ 0.010 (0.025) −0.180 (0.190) −0.010 (0.039)

GQARCH 0.000 (0.002) −0.034 (0.122) −0.040 (0.092)
EGARCH 0.001 (0.012) 0.024 (0.107) 0.002 (0.048)

* JPR04 Table 1

3.2 EGARCH-M and GQARCH-M

For the mean specifications, we set (δ1, δ2) = (0.0, 0.111) for the first set,
(δ1, δ2) = (0, 0.044) for the second one, and (δ1, δ2) = (0.07, 0.08) for the
third one. The norm of the estimated biases of the 3 parameters sets and
the root MSEs (the Frobenius norm of the MSE matrix) are presented and
discussed in the main article, where we also discuss the convergence failures
of the optimization procedure.

In Appendix we present all biases and root MSEs of all parameters, for
all three parameter sets. In terms of estimated biases, in almost all cases, the
auxiliary EGARCH estimates are closer to the true ones. The same applies
for the root MSEs, i.e. in almost all cases the ones of the EHARCH-M
auxiliary model are smaller than the equivalent for the GQARCH ones.

4 Application to International Markets.
We apply the developed methods of estimation to weekly excess returns of
four Indecies of International Markets, i.e. the S&P, the FTSE, the DAX and
the Nikkey. In this way we estimate two aglosaxon markets, a European and
an Asian one. In the following Table we present some descriptive statistics
for the 4 indecies, along with the period of estimation and the number of
observations. It is obvious that the standard deviation of returns is almost
22 times higher than the average return. Further, in all markets the skewness
and kurtosis coefficients are far from the corresponding of the normal distri-
bution ones. The asymptotic confidence interval for the autocorrelations is
(−0.041, 0.041) for the 3 markets and (−0.049, 0.049) for FTSE, indicating
that, apart from Nikkey, either the 1st or the second order autocorrelations
are significant. However, it is known that in the presents of GARCH-type
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effects the asymptotic distribution of the correlation coefficients are affected
(see e.g. Diebold (1986), Weiss (1984), and Milhοj (1985)). Q(4) is the 4th or-
der Ljng-Box statistic, distributed as χ2

4 under the null of no-autocorrelation
up to order 4.

Table 6: Statistics Weekly Excess Returns
Index S&P FTSE DAX Nikkey
Period 1973− 2017 1987− 2017 1973− 2017 1973− 2017

No. of Obs. 2299 1621 2300 2299
Average 0.103 0.104 0.134 0.037

Stand.Dev. 2.299 2.299 2.767 2.485
Skewness −0.542 −0.541 −0.592 −0.614
Kurtosis 8.309 8.304 8.003 7.578

Jarque−Bera 2811.4 2807.5 2533.9 2151.9
ρ̂ (yt, yt−1) −0.063 −0.064 −0.005 0.000
ρ̂ (yt, yt−2) 0.038 0.037 0.058 0.038
Q(4) 15.359 15.408 13.635 4.220

ρ̂
(
y2t , y

2
t−1

)
0.267 0.267 0.203 0.217

ρ̂
(
y2t , y

2
t−2

)
0.168 0.168 0.252 0.143

Q(2 (4) 363.53 363.78 425.78 201.19
Dyn.Asym.(1) −0.198 −0.198 −0.176 −0.137

The 1st and 2nd order autocorrelation of the squared returns is significant
indicating strong volatility clustering effects. This is justified by the 4th
Ljung-Box statistic for the squared returns Q(2 (4). The estimated Dynamic
Asymmetry, ρ̂ (y2t , yt−1), is negative and significant in all cases. Notice that
the theoretical dynamic asymmetry depends on the leverage effect parameter
ρ as well as the parameter δ2 (see Demos 2023 and Bollerslev and Zhou
(2006)).

Let us turn our attention to the estimation of the model. First, the
asymptotic variance-covariance matrix is evaluated employing the formulae
in Gourieroux, Monfort, and Renault (1993). The asymptotic distribution of
the II estimator of θ, θ̂ is given

√
T
(
θ̂ − θ

)
d−→

T→∞
N (0,W ) ,

where

W =

(
1 +

1

S

)(
∂2l∞
∂θ∂φ′ I

−1
0

∂2l∞
∂φ∂θ′

)−1

.
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As the objective functions of the auxiliary estimator, either for the EGARCH-
M or GQARCH-M, is the sum of individual observations of the quasi-normal
log-likelihood function (see equation 2.1) and there are not exogenous vari-
ables we have that

I0 = lim
T→∞

V0

[
1√
T

T∑
t=1

∂lt (φ)

∂φ

]

where V0 [•] is the variance under the assumed true model. Employing Newey
and West (1987) I0 can be consistently estimated by

Γ̂ = Γ̂0 +
K∑
k=1

(
1− k

K + 1

)(
Γ̂k + Γ̂′

k

)
where

Γ̂k =
1

T

T∑
t=k=1

∂lt−k

∂φ
(φ̂)

∂lt
∂φ′ (φ̂) .

Further, ∂2l∞
∂θ∂φ′ can be evaluated numerically at θ̂, i.e. by

∂2lT (θ̂)
∂θ∂φ′ . Addi-

tionally, as dim (θ) = dim (φ) = 6,
∂2lT (θ̂)
∂θ∂φ′ is a square non-singular matrix

and it follows that the estimated asymptotic variance matrix is given by:

W =

(
1 +

1

S

)∂2lT
(
θ̂
)

∂φ∂θ′

−1

Γ̂

∂2lT
(
θ̂
)

∂θ∂φ′

−1

.

In the main paper we present the estimated values of the model in equa-
tions 1.1 and 1.2 together with the asymptotic z-statistics (in parentheses).
To avoid inflating the estimator variances we have chosen S = 99000.
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Table 7: Estimation
S&P

EGARCH −M GQARCH −M
Parameter

c −0.125 −0.145
(−0.678) (−0.601)

λ 0.119 0.128
(1.249) (0.954)

ω 0.084 0.115
(1.156) (1.222)

ψ 0.934 0.911
(6.000) (4.872)

ρ −0.606 −0.558
(−2.484) (−2.513)

ση 0.259 0.315
(2.700) (2.688)

FTSE
EGARCH −M GQARCH −M

−0.176 −0.205
(−0.424) (−0.807)
0.110 0.134
(0.584) (1.058)
0.095 0.100
(0.863) (1.077)
0.937 0.935
(4.756) (5.353)
−0.695 −0.600
(0.279) (−2.340)
0.249 0.276
(2.052) (2.346)

DAX
EGARCH −M GQARCH −M

−0.021 0.010
(−0.087) (0.047)
0.079 0.068
(0.804) (0.651)
0.077 0.102
(0.844) (1.152)
0.951 0.937
(5.087) (5.593)
−0.438 −0.367
(−1.395) (−1.465)
0.235 0.284
(2.103) (2.577)

NIKKEY
EGARCH −M GQARCH −M

0.056 0.101
(0.239) (0.773)
−0.014 −0.019
(−0.142) (0.279)
0.066 0.038
(0.830) (0.893)
0.958 0.980
(5.692) (8.007)
−0.348 −0.251
(−1.112) (−0.726)
0.231 0.215
(2.175) (2.917)

It is obvious that the mean constant c is highly insignificant in all cases.
Consequently, we estimated the SV-M model with EGARCH-M as an auxil-
iary imposing the constraint that c = 0, but we have chosen S = 90000, to
conserve time. The results are presented in the main paper.
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APPENDIX

Figure 4.1: Biases Parameter δ1.

Figure 4.2: Root MSE Parameter δ1.

Figure 4.3: Biases Parameter δ2.
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Figure 4.4: Root MSE Parameter δ2.

Figure 4.5: Biases Parameter ω.

Figure 4.6: Root MSE Parameter ω.

μσεὂμ–01.θπγ

Figure 4.7: Biases Parameter β.
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Figure 4.8: Root MSE Parameter β.

Figure 4.9: Bias Parameter ρ.

Figure 4.10: Root MSE Parameter ρ.

Figure 4.11: Bias Parameter σ.
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Figure 4.12: Root MSE Parameter ση.

22



References
[1] Andersen, T.G. H-J. Chung and B. E. Sorensen (1999) Efficient method

of moments estimation of a stochastic volatility model: A Monte Carlo
study, Journal of Econometrics 91, 61-87.

[2] Andersen, T.G. and B.E. Sorensen (1996), GMM Estimation of a
Stochastic Volatility Model: a Monte Carlo Study, Journal of Business
and Economic Statistics 14, 328–352.

[3] Arvanitis, S. and A. Demos (2004), Time Dependence and Moments of
a family of Time-Varying parameter GARCH in Mean Models, Journal
of Time Series Analysis 25, 1-25.

[4] Bollerslev, T. and H. Zhou (2006), Volatility puzzles: a simple frame-
work for gauging return-volatility regressions, Journal of Econometrics
131, 123–150.

[5] Calzolari, G., G. Fiorentini and E. Sentana (2004), Constraint Indirect
Estimation, Review of Economic Studies 71, 945-973.

[6] Demos, A. (2023), Statistical Properties of Two Asymmetric Stochastic
Volatility in Mean Models, DP 23-03, Dpt. IEES, AUEB

[7] Demos, A. and D. Kyriakopoulou (2013), Edgeworth and moment ap-
proximations: The case of MM and QML estimators for the MA(1)
models, Communications in Statistics-Theory and Methods 42, 1713-
1747.

[8] Diebold, F.X. (1986), Testing for Serial Correlation in the Presence of
ARCH, in Proceedings of the American Statistical Association, Business
and Economics Statistics Section, 323–328.

[9] Gallant, R. A. and G. Tauchen (1996), Which Moments to Match,
Econometric Theory 12, 657-81.

[10] Gourieroux, C. and A. Monfort (1996), Simulation-Based Econometric
Methods, Oxford University Press.

[11] Gourieroux, C., A. Monfort, and E. Renault (1993), Indirect Inference,
Journal of Applied Econometrics 8 , S85-S118.

23



[12] Harvey, A. and N. Shephard (1996), Estimation of an Asymmetric
Stochastic Volatility Model for asset Returns, Journal of Business and
Economic Statistics 14, 429-434.

[13] Jacquier, E., N.G. Polson and P.E. Rossi (1994), Bayesian Analysis of
Stochastic Volatility Models, Journal of Business and Economic Statis-
tics 12, 371-417.

[14] Jacquier, E., N.G. Polson and P.E. Rossi (2004), Bayesian Analysis of
Stochastic Volatility Models with Fat-tails and Correlated Errors, Jour-
nal of Econometrics 122, 185-212.

[15] Milhοj, Α. (1985), The Moment Structure of ARCH Processes, Scandi-
navian Journal of Statistics 12, 281-292.

[16] Monfardini, C. (1998), Estimating Stochastic Volatility Models through
Indirect Inference, Econometrics Journal 1, 113-128.

[17] Nelson, D.B. (1991), Conditional Heteroskedasticity in Asset Returns:
A New Approach, Econometrica 59, 347-370.

[18] Newey, W.K. and K.D. West (1987), A Simple Positive Semi-Definite
Heteroskedasticity and Autocorrelation-Consistent Covariance Matrix,
Econometrica 55, 703-708.

[19] Sandmann, G. and S. J. Koopman (1998), Estimation of stochastic
volatility models via Monte Carlo maximum likelihood, Journal of
Econometrics 87, 271-301.

[20] Sentana, E. (1995), Quadratic ARCH Models, Review of Economic Stud-
ies 62, 639-661.

[21] Tai, C.S. (2000), Time Varying Market, Interest Rates and Exchange
Rates Risk Premia in the US Commercial Bank Stock Returns, Journal
of Multinational Financial Management 10 , 397-420.

[22] Weiss, A.A. (1984), ARMA Models with ARCH Errors, Journal of Time
Series Analysis 5, 129-43.

[23] Yu, J. (2002), MCMC Methods for Estimating Stochastic Volatility
Models with Leverage Effects: comments on Jacquier, Polson and Rossi
(2002), discussion paper University of Auckland.

24



[24] Yu, J. (2002), On Leverage in a Stochastic Volatility Model, Journal of
Econometrics 127, 165-178.

25



 

 
 

Department of Economics 
Athens University of Economics and Business 

 
List of Recent Working Papers 

 
2022 
 
01-22 Is Ireland the most intangible intensive economy in Europe? A growth accounting 

perspective, Ilias Kostarakos, KieranMcQuinn and Petros Varthalitis  
02-22 Common bank supervision and profitability convergence in the EU, Ioanna Avgeri, Yiannis 

Dendramis and Helen Louri 
03-22 Missing Values in Panel Data Unit Root Tests, Yiannis Karavias, Elias Tzavalis and  

Haotian Zhang 
04-22 Ordering Arbitrage Portfolios and Finding Arbitrage Opportunities, Stelios Arvanitis and 

Thierry Post 
05-22 Concentration Inequalities for Kernel Density Estimators under Uniform Mixing,  

Stelios Arvanitis 
06-22 Public Sector Corruption and the Valuation of Systemically Important Banks, Georgios 

Bertsatos, Spyros Pagratis, Plutarchos Sakellaris 
07-22 Finance or Demand: What drives the Responses of Young and Small Firms to Financial 

Crises?  Stelios Giannoulakis and  Plutarchos Sakellaris 
08-22 Production function estimation controlling for endogenous productivity disruptions, 

Plutarchos Sakellaris and Dimitris Zaverdas 
09-22 A panel bounds testing procedure, Georgios Bertsatos, Plutarchos Sakellaris, Mike G. 

Tsionas 
10-22 Social policy gone bad educationally: Unintended peer effects from transferred students,  

Christos Genakos and Eleni Kyrkopoulou 
11-22 Inconsistency for the Gaussian QMLE in GARCH-type models with infinite variance, 

Stelios Arvanitis and Alexandros Louka 
12-22 Time to question the wisdom of active monetary policies, George C. Bitros 
13-22 Investors’ Behavior in Cryptocurrency Market, Stelios Arvanitis, Nikolas Topaloglou and 

Georgios Tsomidis 
14-22 On the asking price for selling Chelsea FC, Georgios Bertsatos  and  Gerassimos 

Sapountzoglou 
15-22 Hysteresis, Financial Frictions and Monetary Policy, Konstantinos Giakas 
16-22 Delay in Childbearing and the Evolution of Fertility Rates, Evangelos Dioikitopoulos and 

Dimitrios Varvarigos 
17-22 Human capital threshold effects in economic development: A panel data approach with 

endogenous threshold, Dimitris Christopoulos, Dimitris Smyrnakis and  Elias Tzavalis 
18-22 Distributional aspects of rent seeking activities in a Real Business Cycle model, Tryfonas 

Christou, Apostolis Philippopoulos and Vanghelis Vassilatos 

Πατησίων 76, 104 34 Αθήνα. Tηλ.: 210 8203303-5. E-mail: econ@aueb.gr / www.aueb.gr 
76, Patission Street, Athens 104 34 Greece. Tel.: (+30) 210 8203303-5 



 
 
 
 
2023 
 
01-23 Real interest rate and monetary policy in the post Bretton Woods United States, George C. 

Bitros and Mara Vidali 
02-23 Debt targets and fiscal consolidation in a two-country HANK model: the case of Euro Area, 

Xiaoshan Chen, Spyridon Lazarakis and Petros Varthalitis 
03-23 Central bank digital currencies: Foundational issues and prospects looking forward, George 

C. Bitros and  Anastasios G. Malliaris 
04-23 The State and the Economy of Modern Greece. Key Drivers from 1821 to the Present,  

George Alogoskoufis 
05-23 Sparse spanning portfolios and under-diversification with second-order stochastic 

dominance, Stelios Arvanitis, Olivier Scaillet, Nikolas Topaloglou 
06-23 What makes for survival? Key characteristics of Greek incubated early-stage startup(per)s 

during the Crisis: a multivariate and machine learning approach,  
Ioannis Besis, Ioanna Sapfo Pepelasis and Spiros Paraskevas  

07-23 The Twin Deficits, Monetary Instability and Debt Crises in the History of Modern Greece, 
George Alogoskoufis  

08-23 Dealing with endogenous regressors using copulas; on the problem of near multicollinearity, 
Dimitris Christopoulos, Dimitris Smyrnakis and Elias Tzavalis 

09-23 A machine learning approach to construct quarterly data on intangible investment for 
Eurozone, Angelos Alexopoulos and Petros Varthalitis 

10-23 Asymmetries in Post-War Monetary Arrangements in Europe: From Bretton Woods to the 
Euro Area, George Alogoskoufis, Konstantinos Gravas  and  Laurent Jacque 

11-23 Unanticipated Inflation, Unemployment Persistence and the New Keynesian Phillips Curve, 
George Alogoskoufis and Stelios Giannoulakis 

12-23 Threshold Endogeneity in Threshold VARs: An Application to Monetary State Dependence, 
Dimitris Christopoulos, Peter McAdam and Elias Tzavalis 

13-23 A DSGE Model for the European Unemployment Persistence, Konstantinos Giakas 
14-23 Binary public decisions with a status quo: undominated mechanisms without coercion, 

Efthymios Athanasiou and Giacomo Valletta 
15-23 Does Agents’ learning explain deviations in the Euro Area between the Core and the 

Periphery? George Economides, Konstantinos Mavrigiannakis and Vanghelis Vassilatos 
16-23 Mild Explocivity,  Persistent Homology and  Cryptocurrencies’ Bubbles: An Empirical 

Exercise,  Stelios Arvanitis and  Michalis Detsis 
17-23 A network and machine learning approach to detect Value Added Tax fraud, Angelos 

Alexopoulos, Petros Dellaportas, Stanley Gyoshev, Christos Kotsogiannis, Sofia C. Olhede, 
Trifon Pavkov 

18-23 Time Varying Three Pass Regression Filter, Yiannis Dendramis, George Kapetanios, 
Massimiliano Marcellino 

19-23 From debt arithmetic to fiscal sustainability and fiscal rules: Taking stock, George 
Economides, Natasha Miouli and Apostolis Philippopoulos 

20-23 Stochastic Arbitrage Opportunities: Set Estimation and Statistical Testing, Stelios Arvanitis 
and Thierry Post 

21-23 Behavioral Personae, Stochastic Dominance, and the Cryptocurrency Market, Stelios 
Arvanitis, Nikolas Topaloglou, and Georgios Tsomidis 

22-23 Block Empirical Likelihood Inference for Stochastic Bounding: Large Deviations 
Asymptotics Under m-Dependence, Stelios Arvanitis and Nikolas Topaloglou 

Πατησίων 76, 104 34 Αθήνα. Tηλ.: 210 8203303-5. E-mail: econ@aueb.gr / www.aueb.gr 
76, Patission Street, Athens 104 34 Greece. Tel.: (+30) 210 8203303-5 



23-23 A Consolidation of the Neoclassical Macroeconomic Competitive General Equilibrium 
Theory via Keynesianism (Part 1 and Part 2), Angelos Angelopoulos 

24-23 Limit Theory for Martingale Transforms with Heavy-Tailed Noise, Stelios Arvanitis and 
Alexandros Louka 

 
 
 
 
2024 
 
01-24 Market Timing & Predictive Complexity, Stelios Arvanitis, Foteini Kyriazi, Dimitrios 

Thomakos 
02-24 Multi-Objective Frequentistic Model Averaging with an Application to Economic Growth,  

Stelios Arvanitis, Mehmet Pinar, Thanasis Stengos, Nikolas Topaloglou  
03-24 State dependent fiscal multipliers in a Small Open Economy, Xiaoshan Chen, Jilei Huang, 

Petros Varthalitis 
04-24 Public debt consolidation: Aggregate and distributional implications in a small open 

economy of the Euro Area, Eleftherios-Theodoros Roumpanis 
05-24 Intangible investment during the Global Financial Crisis in the EU, Vassiliki 

Dimakopoulou, Stelios Sakkas and Petros Varthalitis 
06-24 Time will tell! Towards the construction of instantaneous indicators of different agent-

types, Iordanis Kalaitzoglou, Stelios Arvanitis 
07-24 Norm Constrained Empirical Portfolio Optimization with Stochastic Dominance: Robust 

Optimization Non-Asymptotics, Stelios Arvanitis 
08-24 Asymptotics of a QLR-type test for optimal predictive ability, Stelios Arvanitis 
09-24 Strongly Equitable General Equilibrium Allocations, Angelos Angelopoulos 
10-24 The Greek macroeconomy: A note on the current situation and future outlook, Apostolis  

Philippopoulos 
11-24 Evolution of Greek Tax System, A Survey of Legislated Tax Changes from 1974 to 2018, 
  Panagiotis Asimakopoulos 
12-24 Macroeconomic Impact of Tax Changes, The case of Greece from 1974 to 2018,  

Panagiotis Asimakopoulos 
13-24 `Pareto, Edgeworth, Walras, Shapley' Equivalence in a Small Economy, Angelos  

Angelopoulos 
14-24 Stimulating long-term growth and welfare in the U.S, James Malley and Apostolis  

Philippopoulos 
15-24 Distributionally Conservative Stochastic Dominance via Subsampling, Stelios Arvanitis 
16-24 Before and After the Political Transition of 1974. Institutions, Politics, and the Economy  

of Post-War Greece, George Alogoskoufis 
17-24 Gaussian Stochastic Volatility, Misspecified Volatility Filters and Indirect Inference  

Estimation, Stelios Arvanitis, Antonis Demos 

 
 
 

 
 

Πατησίων 76, 104 34 Αθήνα. Tηλ.: 210 8203303-5. E-mail: econ@aueb.gr / www.aueb.gr 
76, Patission Street, Athens 104 34 Greece. Tel.: (+30) 210 8203303-5 



 
 
 

Department of Economics 
Athens University of Economics and Business 

 
The Department is the oldest Department of Economics in Greece with a 
pioneering role in organising postgraduate studies in Economics since 1978. Its 
priority has always been to bring together highly qualified academics and top 
quality students. Faculty members specialize in a wide range of topics in 
economics, with teaching and research experience in world-class universities and 
publications in top academic journals.  
 
The Department constantly strives to maintain its high level of research and 
teaching standards. It covers a wide range of economic studies in micro-and 
macroeconomic analysis, banking and finance, public and monetary economics, 
international and rural economics, labour economics, industrial organization and 
strategy, economics of the environment and natural resources, economic history 
and relevant quantitative tools of mathematics, statistics and econometrics.  
 
Its undergraduate program attracts high quality students who, after successful 
completion of their studies, have excellent prospects for employment in the private 
and public sector, including areas such as business, banking, finance and advisory 
services. Also, graduates of the program have solid foundations in economics and 
related tools and are regularly admitted to top graduate programs 
internationally. Three specializations are offered:1. Economic Theory and Policy, 
2. Business Economics and Finance and 3. International and European Economics. 
The postgraduate programs of the Department (M.Sc and Ph.D) are highly 
regarded and attract a large number of quality candidates every year. 
 
For more information: 
 
https://www.dept.aueb.gr/en/econ/  
 
 

Πατησίων 76, 104 34 Αθήνα. Tηλ.: 210 8203303-5.  E-mail: econ@aueb.gr / www.aueb.gr    
76, Patission Street, Athens 104 34 Greece. Tel.: (+30) 210 8203303-5  


	Introduction
	Framework
	Limit theory for the QMLE under filter misspecification
	Pseudo-consistency and the binding function
	Rate and limiting Gaussianity

	The indirect estimator based on the score
	Monte Carlo Simulations
	An application to International Markets.
	Conclusions

