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Norm Constrained Empirical Portfolio

Optimization with Stochastic Dominance:

Robust Optimization Non-Asymptotics

Stelios Arvanitis∗

Abstract

The present note provides an initial theoretical explanation of the way norm regularizations

may provide a means of controlling the non-asymptotic probability of False Dominance

classification for empirically optimal portfolios satisfying empirical Stochastic Dominance

restrictions in an iid setting. It does so via a dual characterization of the norm-constrained

problem, as a problem of Distributional Robust Optimization. This enables the use of

concentration inequalities involving the Wasserstein distance from the empirical distribu-

tion, to obtain an upper bound for the non-asymptotic probability of False Dominance

classification. This leads to information about the minimal sample size required for this

probability to be dominated by a predetermined significance level.
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Keywords: Portfolio optimization, Stochastic dominance, ℓp norm regularization, Convex

Duality, Wasserstein Distance, Distributionally robust optimization, Concentration inequal-
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1 Introduction

Portfolio optimization based on stochastic dominance (SD) restrictions is a non-
parametric generalization of the standard mean-variance approach, for optimal port-
folio weights’ selection regarding investment strategies outside the realm of satiation
and/or elliptical returns’ distributions.
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A recent literature in operations research and econometrics have addressed the
analytical challenges for numerical optimization and statistical inference, largely
making SD portfolio optimization empirically applicable. Indicative such applica-
tions include Hodder et al. (2015) (10); Constantinides et al. (2020) (8); Post and
Rodriguez-Longarela (2018) (16), Arvanitis and Post (2024) (1). There portfolio se-
lection is usually performed via the optimization of an empirical criterion under the
constraint that the choice set is comprised by portfolios that empirically dominate a
benchmark portfolio. The empirically optimal portfolio by construction dominates
the benchmark in the sample, it is however susceptible to the decision error of False
Dominance (FD) classification in the population.

Under general sampling schemes this decision error becomes asymptotically neg-
ligible. Controlling the probability of this error for fixed sample size is however
important in applications, especially when the sample size is not particularly large
compared to the dimensionality of the portfolios considered. In some of the appli-
cations mentioned above, a heuristic used in the underlying empirical optimization
seems to improve the out-of-sample properties of the optimal portfolio. The optimiza-
tion problem is augmented by a restriction on the distance of the portfolio sought
compared to the benchmark.

The present note provides an initial theoretical explanation of the way suchlike
restrictions may provide a means of controlling the fixed sample size probability of
FD classification in an iid setting. It does so first, via the conditional on particular
events characterization of the norm-constrained problem, as a problem of Distribu-
tional Robust Optimization (DRO). There strong convex duality results (see Gao,
Chen, and Kleywegt (2017) (9)) enable the representation of the original problem
as a problem of conservative optimization over a Wasserstein ball centered at the
empirical distribution, as long as the criterion has a Lipschitz continuity property.
Second, using this characterization along with concentration inequalities involving
the Wasserstein distance from the empirical distribution, an upper bound for the
non-asymptotic probability of FD classification is obtained, leading among others
to considerations about the minimal sample size required for this probability to be
dominated by a predetermined significance level.

The structure of the note is the following: the second section analyzes the SD
framework for portfolio optimization and its’ regularized formulation. The third sec-
tion derives the DRO characterization, the non-asymptotic bounds for the probability
of FD, and briefly discusses some paths for future research.
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2 Stochastic dominance and portfolio optimization framework

(Xt)t∈Z is a stationary process with values in some subset of Rd. The random vector
Xt represents the one period stationary returns of d financial assets, and X ⊂ Rd is
the pointwise bounded from below support of its’ latent joint distribution. Bound-
edness from above is considered plausible for moderate observation frequencies. The
researcher has at her disposal an observable sample from the process, (Xt)t=1,··· ,T ;
PT denotes the empirical distribution of the sample.

A portfolio on X0 is any real linear function on Rd; the elements of its repre-
senting vector are the portfolio weights. Alternative portfolios are evaluated inside
the expected utility paradigm, using utility functions u : X → R that are increasing,
continuous, and concave. These populate the closed (in the topology of uniform con-
vergence on compacta), convex set U2 while U⋆

2 denotes the set of Russell-Seo utilities-
see Russell and Seo (1989) (18), i.e. the utilities of the form u(x) = −(z−x)+, z ∈ X ,
those constitute the extreme points of U2; U⋆

2 − {0} does not contain the constant
utility at zero-corresponding to the threshold that equals the pointwise infimum of
X . U2 − U=

2 analogously denotes U2 without constant utilities.
The analysis involves a set of portfolios Λ ⊆ Rd. It is considered convex and

compact. In what follows λ, τ denote respectively a typical element of Λ and a
distinguished benchmark portfolio inside Λ.

The above enable the definition of a stochastic dominance relation on the sets of
prospects, via U2: in the stationary framework considered, λ is said to dominate τ

w.r.t. the utility class U2 iff D(u, τ ,λ,P) := EP(u(λ
′X0))−EP(u(τ

′X0)) ≥, ∀u ∈ U2-
here EP denotes integration w.r.t. P. Thus, λ is preferred over τ by every utility
in the considered class, this is what is known in the literature as the second order
stochastic dominance of λ over the benchmark τ ; λ �

P,2
τ . The definition remains

invariant if U2 is replaced by U⋆
2 -see Russell and Seo (1989) (18). Furthermore,

Λ
�
P :=

{

λ ∈ Λ;λ �
P,2

τ

}

is the non-empty convex set of portfolios that dominate

the benchmark in the population. Non-emptyness holds due to reflexivity of the
dominance relation, and convexity follows from the concavity of the utility functions
at hand, the linearity of the portfolio formation and the monotonicity of the integral.
Substituting the latent P with PT in �

P,2
, the empirical analogue Λ

�
PT

is obtained.

Consider a choice λPT
∈ Λ

�
PT
. Controlling the probability of FD for λPT

, i.e.
P(λ �

PT ,2
τ ) � λ 6�

P,2
τ ), can be of particular empirical interest, as FD can lead to

suboptimal portfolio choices. This can asymptotically-as T → ∞-vanish as long
as the probabilistic properties of the sampling scheme ensure that PT  P where
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 denotes convergence in distribution and the existence of some ǫ > 0 such that
supT EPT

(‖X0‖1+ǫ
2 ) < +∞, where ‖ · ‖2 denotes the Euclidean norm. This is due

to that U⋆
2 is uniformly Lipschitz, and due to uniform integrability. The weak con-

vergence is easily establishable in contexts of stationarity and ergodicity for (Xt)t∈Z;
boundedness for the 1 + ǫ moments of the normed process would follow in this
stationary and ergodic context along which a financially plausible assumption of
EP(‖X0‖1+ǫ

2 ) < +∞. The question of controlling this probability is also of interest
for fixed-and potentially realistically large enough T . This is what is investigated in
the subsequent analysis.

Every choice λP ∈ Λ
�
P can be represented as a solution-albeit in some cases trivial-

of the optimization problem max
λ∈Λ�

P

EP(u(λ
′X0)) for some u ∈ U2. More impor-

tantly for a given non-constant u ∈ U2 any solution, say λ(u,P), to the optimization
problem max

λ∈Λ�
P

EP(u(λ
′X0)) can be of economic interest; any such latent portfolio

is perceivable as the best a risk averter investor with preferences represented by the
particular u can achieve in terms of expected utility, if she insists on working with
portfolios that would be weakly preferred by every risk averter to the benchmark.
This is a problem of portfolio optimization augmented with stochastic dominance
(second order) SD conditions.

Latency of P implies generally latency of λ(u,P). The latter can be statistically
approximated by its empirical analogue; λ(u,PT ), i.e. the solution to the empirical
portfolio optimization augmented with empirical stochastic dominance conditions
max

λ∈Λ�
PT

EPT
(u(λ′x)). Hence the analysis that follows considers an arbitrary yet

fixed u and asks whether there is a modification of the optimization problem that
enables the non-asymptotic investigation of the probability of FD for its solutions.

2.1 Regularized formulation of portfolio optimization

A modification used in practice augments the expected utility criterion with an ad-
ditive regularization term that depends on the ℓp distance between the portfolio
sought and the benchmark. The intuition is that when the (Lagrange) multiplier of
the aforementioned distance is chosen optimally, then in order for a portfolio that
lies ”away” from the benchmark to solve the optimization problem, it would have to
”strongly” satisfy the empirical dominance conditions at least in some neighborhood
of u.

As mentioned above, the ℓp-distance from the benchmark portfolio weights is

considered here, ‖λ− τ‖p := (
∑d

i=1 |λi − τi|p)1/p, for the case where p ≥ 1, and
maxi=1,...,d |λi − τi| for p = +∞. The regularized optimization portfolio is then de-
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fined by:
λ(u,PT , p, ξT ) ∈ argmax

Λ
P
�
T

(EPT
(u(λ′x))− ξT ‖λ− τ‖p), (1)

where the random variable ξT ≥ 0 assumes the role of the regularization multiplier.
Its optimal selection is expected to influence the non-asymptotic properties of the
probability of FD. The modified problem additionally thus depends on both the
choice of the multiplier ξT and the norm order p.

It is possible that Λ already includes (explicit or implicit) pre-existing norm
constraints; then the analysis studies the effect on the probability of FD of tightening
of the existing norm constraints.

3 Results

The issue of the derivation of non-asymptotic properties for the portfolio solutions of
the empirical regularized problem is considered here, with a view towards the fixed
T properties of the probability of FD.

In the first part of this section the regularized problem is translated to a problem
of distributionally robust optimization (DRO) using a dual formulation of regular-
ized problems involving Lipschitz criteria to problems of conservative optimization
in Wasserstein neighborhoods of PT . There, the Lagrange multiplier ξT plays an im-
portant role in the DRO formulation below, as it determines the radius of pessimism
and at least locally the slacks for the dominance constraints.

In the second part this conservative representation is exploited in order to non-
asymptotically bound the probability of FD characterization via concentration in-
equalities.

Some further notation will be also useful: for Q an arbitrary distribution on Rd,
and q(p) such that 1

p
+ 1

q
= 1, the first Wasserstein distance between Q and the empiri-

cal distribution PT is defined byW(PT ,Q; p) := minγ∈Γ(PT ,Q)

∫

Rd×Rd ‖z − z⋆‖q dγ(z, z⋆),
where Γ(PT ,Q) denotes the set of Borel probability distributions on Rd×Rd that have
respective ”marginals” PT , P, and also have finite first moment (see Gao, Chen, and
Kleywegt (2017) (9)). W metrizes weak convergence (see Rahimian and Mehrota
(2019) (17)). For ǫ > 0, Mp(PT , ǫ) := {P : W(PT ,Q; p) ≤ ǫ} is the Wasserstein
closed ball centered at PT with radius ǫ. Also, d(p) := dl, l := max(1

2
− 1

p
, 1
p
− 1

2
) =

{

1
p
− 1

2
, p ≤ 2

1
2
− 1

p
, p > 2.
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3.1 DRO formulation

A characterization of the regularized problem in (1) as a distributionally robust
optimization (DRO) problem is obtained here. It is based on strong convex duality
results for robust optimization (see for example Lemma 1 of Gao, Chen, and Kleywegt
(2017) (9)).

The event E1 :=
{

∃λ(u,PT , p, ξT ) : infQ∈Mp(PT ,ξT )D(u, τ ,λ(u,PT , ξT ),Q) > 0
}

characterizes the samples for which the empirical regularized program has non triv-
ial solutions. Furthermore, for every sample realization inside the event defined as
E2 :=

{

∀v ∈ U⋆
2 − {0} , ∀λ(v,PT , p, ξT ) : infQ∈Mp(PT ,ξT )D(v, τ ,λ(v,PT , ξT ),Q) > 0

}

,
every choice of the objective utility results to non-trivial empirical solutions. It is
noted that E2 is a subset of E1 due to the Russell-Seo utility representation-see Russell
and Seo (1989) (18). Then:

Proposition 1. (Distributional Robustness). Suppose that u has a unital Lipschitz
coefficient. Then:

1. Conditional on E1, there exists some non-empty open subset U2(u) of U2, for
which Problem (1) is equivalent to:

max
Λ

�
PT

∩Λ�
u

inf
Q∈Mp(PT ,ξT )

EQ(u(λ
′x)); (2)

Λ�
u :=

{

λ ∈ Λ : inf
Q∈Mp(PT ,ξT )

D(v, τ ,λ,Q) > 0, ∀v ∈ U2(v)

}

. (3)

2. Conditional on E2, Problem (1) is equivalent to:

sup
Λ

�

ξT

inf
Q∈Mp(PT ,ξT )

EQ(u(λ
′x)); (4)

where Λ
�
ξT

:=

{

λ ∈ Λ : inf
Q∈Mp(PT ,ξT )

D(v, τ ,λ,Q) > 0, ∀v ∈ U⋆
2 − {0}

}

. (5)

Proof. Theorem 1 of Gao, Chen, and Kleywegt (2017) (9) implies that

GPT
(τ + (λ− τ ))− ξT (c) ‖λ− τ‖p = infQ∈Mp(PT ,ξT )GQ(τ + (λ− τ ))

D(u, τ , τ + (λ− τ ),PT ) = infQ∈Mp(PT ,ξT )D(u, τ , τ + (λ− τ ),Q) + ξT ‖λ− τ‖p
,

for GP(λ) := EP(u(λ
′X)). This and translation in Rd by τ , directly imply that Prob-

lem (1) is equivalent to maxΛ infQ∈Mp(PT ,ξT )GQ(λ). Using a scaling and translation
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argument that is allowed for von Neyman-Morgenstern preferences, U2 can be chosen
uniformly bounded due to the uniform Lipschitz property of U⋆

2 and the Russell-Seo
representation-see Russell and Seo (1989) (18). This and Lemma 2.7.5 of van der
Vaart and Wellner (1996) (21) along with the compactness of the support, imply
that U2 is totally bounded, and thereby equicontinuous. This and uniform integrabil-
ity then imply that D(u, τ ,λ,P)− ξT ‖λ− τ‖p is jointly continuous in (u,λ). Since
there exists a non trivial solution to (1), it must satisfy D(u, τ ,λ,PT ) ≥ ξT ‖λ− τ‖p.
This then implies the existence of U2(v). U2(v) is open as a union of open sets; it
is obtained as the inverse image of (0,+∞) w.r.t. the regularized criterion eval-
uated at the solution, on U2. Finally, similarly to Theorem 1 of Arvanitis and
Post (2024) (2), for the portfolio defined as γ = γ(U ,τ )((1 − δ⋆)wu + δ⋆w), with
γ(U ,τ )(w) :=

∫

U⋆
2
−{0} λ(u,PT , p, ξT )dw(v), where w lies in the set of non-degenerate

Borel measures on U2, and wu the degenerate measure at u, δ⋆ ∈ (0, 1), we have that
γ ∈ Λ

�
ξT

due to the concavity of the utilities involved; then by the definition of the
portfolios involved, and due the Lipschitz continuity of D(u, τ , ·,PT ) and of the ℓp
norm, setting λT := λ(u,PT , p, ξT ) it is obtained that

0 ≤ EPT
(u(λ′

T − ξT ‖λT − τ‖p − EPT
(u(γ ′X)) + ξT ‖γ − τ‖p

≤ δ⋆(supQ∈Mp(PT ,ξT ) EQ(‖x‖2) + ξTd
1

p
− 1

2 )diam(Λ),

and (4) holds since δ⋆ can be chosen arbitrarily small.

Lipschitz coefficient unitarity holds for example in the case of portfolio choice via
maximization of expected return; then u is the identity. More generally, given that
utility rescaling does not affect preferences and optimal choice, if u is non-trivial and
has a bounded derivative, then the Lipschitz coefficient can be always be equal to
one. The regularized version of the objective function is equal, due to duality, to a
robust expected value of u(·′x); actually this is the most conservative expectation
over the Wasserstein ball centered at the ecdf, with radius formed by the Lagrange
multiplier. The dual representation of W (see Kantorovich (1958) (11)) implies that
Mp(PT , ξT ) is convex; then Sion’s Minimax Theorem-see Sion (1958) (19)-implies
that max

Λ
�
PT

infQ∈Mp
EQ(u(λ

′X)) = infQ∈Mp
max

Λ
�
PT

EQ(u(λ
′X)). This conforms to

the solution characterization as the most conservative (over the aforementioned ball)
maximizer of expected utility that stochastically dominates the benchmark.

Due to the equi-continuity properties of U2, and if there exists an empirically
optimal portfolio that strictly dominates the benchmark, i.e. E1 holds, the empirical
problem has a representation where the regularization term, permeates as a positive
slack to a neighborhood of SD conditions around D(u, τ ,λ,PT ); each of these condi-
tions then, by the same duality property, has a conservative characterization given in
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(3). Hence, regularizing the objective implies a local regularization for the dominance
conditions. Under the stronger E2, the representation uses the regularization term as
a positive slack on the totality of non-trivial SD conditions. This implies that there
exist elements of λ(u,PT , p, ξT ) that satisfy enhanced versions of the SD inequalities,
resulting into strong properties regarding the probability of FD classifications, as the
following result reveals. It is noted that due to the Russell-Seo representation-see
Russell and Seo (1989) (18), the linearity of D w.r.t. u and the properties of the
infimum:

Λ
�
ξT

:=

{

λ ∈ Λ : inf
Q∈Mp(PT ,ξT )

D(v, τ ,λ,Q) > 0, ∀v ∈ U2 − U=
2

}

.

Under E2 the regularization permeates every SD condition involving a non-constant
utility.

3.2 Non-asymptotic bounds for the False Dominance probability

In order to derive non asymptotic bounds for the probability of selecting a portfolio
that does not dominate the benchmark in the population (FD), the event E3 :=
{

∃λ ∈ Λ�
PT

: D(u, τ ,λ,P) < 0
}

is also utilized: it corresponds to the samples for
which FD classifications actually occurs, when regularization does not permeate SD

inequalities. Furthermore, for τ > 0 let h(τ) :=
1+lnEP[exp(τ‖x‖22)]

τ
, and for m > 2 let

C(d) := 2×3d−log3(d)I(d−log3(d) <
log3(T )

2
)+4EP[‖x‖m2 ]I(d−log3(d) ≥ log3(T )

2
), where

I denotes the indicator function. Then the following result is obtained via the use
of concentration inequalities involving the Wasserstein distance from the empirical
distribution:

Proposition 2 (False Dominance Classification and Opportunity Loss). Suppose
that (Xt)t∈Z is iid, that d > 2, that for some τ > 0, EP(exp

(

τ ‖x‖22
)

) < +∞, and
that u has unital Lipschitz coefficient. Then,

1. for any T ≥ 1, and if ξT > 2C(d)d(p) sup
Λ
‖λ‖2 T− 1

d

P(Λ�
ξT

−Λ
�
P 6= ∅� E2) ≤ exp






−

(

1− C(d)T− d+1

d

)2

Tξ2T

8d2 (p) infτ>0 h2(τ) sup
Λ
‖λ‖22






. (6)

Consequently, if the event E2 holds w.h.p. and Tξ2T → ∞, then the probability
of FD classification for the elements of Λ�

ξT
converges to zero.
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2. There exists some T0 ≥ 1 such that for any T ≥ T0, if

ξT > 2d(p) sup
Λ
‖λ‖2 max

{

C(d)T− 1

d ,
√
2 infτ>0 h(τ)

√

lnT
T

}

,

P(E3 � E2) > P(Λ�
ξT

−Λ
�
P 6= ∅� E2). (7)

3. Finally, if λ⋆ denotes the optimal solution to the population problem and λT :=
λ(u,PT , p, ξT ), then for any for any T ≥ 1, and if ξT > C(d)T− 1

d ,

P(|EPT
(u (λ′

Tx))− EP(u (λ
⋆′x))| > d(p)EPT

‖x‖2 ‖λT − λ⋆‖p + ‖λ⋆‖2 ξT )

≤ exp



−
(

1−C(d)T−
d+1
d

)2

Tξ2
T

2 infτ>0 h2(τ)



 .

(8)

Proof. Conditional on E2, the event Λ�
ξT

− Λ�
P 6= ∅ is equivalent to the inequalities’

system inf
Λ

�

ξT
,U⋆

2

infP∈Mp(PT ,ξT ) D(u, τ ,λ,P) ≥ 0 and inf
Λ

�

ξT
,U⋆

2

D(u, τ ,λ,P) < 0. Due

to the dual representation of W (see Kantorovich (1958)), the Hilbert projection
Theorem, and the equivalence between the ℓp norms in Rd,

P
(

Λ
�
ξT

−Λ
�
P 6= ∅

)

≤ P
(

inf
Λ

�

ξT
,U⋆

2

infP∈Mp(PT ,ξT ) D(v, τ ,λ,P)− inf
Λ

�

ξT
,U⋆

2

D(v, τ ,λ,P) ≥ − inf
Λ

�

ξT
,U⋆

2

D(v, τ ,λ,P)
)

≤ P
(

infP∈Mp(PT ,ξT ) supΛ
�

ξT
,U⋆

2

|D(v, τ ,λ,P)−D(v, τ ,λ,P)| ≥ − inf
Λ

�

ξT
,U⋆

2

D(v, τ ,λ,P)
)

≤ P
(

2 sup
Λ
‖λ‖2 dmax(0, 1p−

1

2) infP∈Mp(PT ,ξT ) W (P,P; p) ≥ − inf
Λ

�

ξT
,U⋆

2

D(v, τ ,λ,P)
)

≤ P

(

W (P,PT ; p) ≥
(

2dmax(0, 1p−
1

2) sup
Λ
‖λ‖2

)−1 (

ξT − inf
Λ

�

ξT
,U⋆

2

D(v, τ ,λ,P)
)

)

≤ P
(

W
(

PT ,P;
1
2

)

> 1
2d(p) supΛ‖λ‖

2

(

ξT − inf
Λ

�

ξT
,U⋆

2

D(v, τ ,λ,P)
))

≤ P
(

W
(

PT ,P;
1
2

)

> ξT
2d(p) supΛ‖λ‖

2

)

.

Due to the Bobkov-Godge equivalence (see Theorem 1.3 of Bobkov and Gotze, (1999)
(3)-see also Corollary 2.4 and Particular Case 2.5 of Bolley and Villani, (2005) (5)),
and Theorem 1.1 of Bolley et al. (2007) (6), the existence of the exponential squared
moment for ‖X0‖2, and relation (14) of Boissard (2011) (4), for any t⋆ > 0, we have
that
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P

(

W
(

PT ,P;
1

2

)

> t⋆ + E

(

W
(

PT ,P;
1

2

)))

≤ exp

( −Tt⋆2

2 infτ>0 h2(τ)

)

.

Setting in the above t⋆ := t− E
(

W
(

PT ,P;
1
2

))

for t > E
(

W
(

PT ,P;
1
2

))

, and ob-

serving that
(

t− E
(

W
(

PT ,P;
1
2

)))

≥
(

1− C(d)T− d+1

d

)2

t2, whenever t > E
(

W
(

PT ,P;
1
2

))

,

we obtain from the proof of Theorem 2.3 of Lei (2020) (12) (where we identify 4 as
an upper bound for the constant cp), as well as from the proof of Theorem 3.1 of Lei

(2020) (12), where first, we identify c ≤ 1 − log3(d)
d

due to the equivalence between
the Euclidean and the max norm, and the form of the packing number for closed
max-balls, and, second, let m → ∞ in the case where d − log3(d) < log3(T ) due to

the existence of the exponential squared moment, that if t > C(d)T− 1

d , then

P

(

W
(

PT ,P;
1

2

)

> t

)

≤ exp






−

(

1− C(d)T− d+1

d

)2

Tt2

2 infτ>0 h2(τ)






.

Setting in the previous t := ξT
2d(p) supΛ‖λ‖

2

establishes (6).

Furthermore, due to Corollary 2 of Maesono (1989) (15), and for any v, for
which D(v, τ ,λ,P) < 0, we obtain that there exist positive constants C1, C2 >

0, independent of T , and a positive asymptotically negligible sequence γ (T ) that
satisfies

√
Tγ (T ) → ∞, such that eventually,

C1√
T (1+T−1)

− C2γ(T )
T (1+T−1)

− o
(

T− 1

2

)

+ exp (−cTD2(v, τ ,λ,P))

≥ P (D(v, τ ,λ,PT )−D(v, τ ,λ,P) ≥ −D(v, τ ,λ,P)) ≥ P
(

Λ
�
PT

−Λ
�
P 6= ∅

)
,

as long as ξT >
(

2
√
2d (p) infτ>0 h(τ) supΛ

‖λ‖2
)

√

1

2
lnT+ln(1+T−1)−lnC1

T
, and thus the

second result in (7) follows. For the final result notice that due to the triangle
inequality, the Lipschitz continuity property of v, the boundedness of the support,
the Cauchy-Schwarz inequality, and the equivalence between the ℓp norms in Rd,

|EPT
(u (λ′

TX0))− EP (u (λ
⋆′X0))|

≤ |EPT
(u (λ′

TX0))− EPT
(u (λ⋆′X0))|+ |EPT

(u (λ⋆′X0))− EP (u (λ
⋆′X0))| ,

with

|EPT
(v (λ′

TX0))− EPT
(v (λ⋆′X0))| ≤ d (p)EPT

(‖X0‖2) ‖λT − λ⋆‖p ,



3 Results 11

and
|EPT

(u (λ⋆′X0))− EP (u (λ
⋆′X0))| ≤ ‖λ⋆‖2W

(

PT ,P;
1
2

)

,

and thereby

P
(

|EPT
(u (λ′

TX0))− EP (u (λ
⋆′X0))| > d (p)EPT

(‖X‖2) ‖λT − λ⋆‖p + ‖λ⋆‖2 ξT
)

≤ P
(

W
(

PT ,P;
1
2

)

> ξT
)

,

and the result in (8) follows by setting t := ξT in (3.2).

The results rely first on the iidness of the sample, an assumption that is com-
patible with our data frequency; it can be extended to m-dependent processes as
well as to a class of Markov processes that possess contractive transition kernels (see
Boissard (2011) (4)).

Second, they rely on the existence of some square-exponential moment for ‖X0‖22.
This is equivalent to the existence of the moment generating function of ‖X0‖22 in
a neighborhood of zero, a condition that fails whenever ‖X0‖ follows a distribution
with the right-tail behavior of the log-normal distribution. The exponential moment
existence holds whenever X is bounded, or more generally whenever its squared
elements follow sub-Gaussian distributions (see indicatively Chapter 2 of Vershynin
(2018) (22)). The maximal moment parameter τ can be estimated via the ratio
(κ+1)EPT (‖X0‖2κ2 )
EPT (‖X0‖2κ+2

2 )
, due to the power series representation of the exponential moment

and the properties of the ratio test for real series. Given this the optimization
resulting to infτ>0 h

2(τ) can be empirically approximated. The choice of some non-
optimal τ can also be considered at the cost of a potentially less efficient probability
bound, and a larger regularization parameter.

The probability bounds in the first and third cases of the theorem decline ex-
ponentially fast in Tξ2T , and hold for all T as long as the regularization parameter
dominates a sequence of order exp(− lnT

d
); this declines slowly when the base asset

dimensionality is large. This low rate of asymptotic negligibility for the multiplier
can be circumvented at either the cost of some positive large multiplicative constant
in front of the probability bound, or at the cost that the results hold eventually for
large enough T that also depends on the regularizer (see for example Bolley et al.
(2007) (6)).

The requirement of existence of squared exponential moments, can also be cir-
cumvented at the cost of loss of exponentially decreasing probability bounds; the
existence of regular (polynomial) moments of some order would imply eventual poly-
nomially decreasing probability bounds in Tξ2T (see also Bolley et al. (2007) (6)).
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The first result says that under E2, the probability that there exist empirically
enhanced portfolios that are non dominant in the population, is bounded above by the
exponential

exp



−
(

1−C(d)T−
d+1
d

)2

Tξ2
T

8d2(p) infτ>0 h2(τ) supΛ‖λ‖2
2



. The bound depends on the regularization coeffi-

cient, the base assets dimensionality, the size of the portfolio space, through d (p) on
the choice of the ℓp norm, and the squared exponential moment parameter; e.g, if d−
log3(d) ≥ log3(T )

2
and ξT = 2cC(d)d(p) sup

Λ
‖λ‖2 T− 1

d , for c > max(1, 1
8d(p) infτ>0 h(τ)

)
and p slightly less than 2, then the result implies that the probability of FD error is
eventually bounded above by exp(−c⋆T 1− 2

d ) for some (estimable) positive constant
c⋆.

Thus, for a given significance level α ∈ (0, 1), and if T ≥ (− ln(α)
c⋆

)
d

d−2 , the proba-
bility of FD is thus bounded above by α. The same upper bound on the probability
of FD holds whenever the regularization parameter is greater than the maximum

between

√
−8 ln(α)d(p) infτ>0 h(τ)

∣

∣

∣

∣

1−C(d)T−
d+1
d

∣

∣

∣

∣

sup
Λ
‖λ‖2 T− 1

2 and 2C(d)d(p) sup
Λ
‖λ‖2 T− 1

d . Tracing

the proof shows that analogous bounds would hold for all Λ�
PT
, as long as the weaker

E1 holds, yet failure of population dominance only happens inside U⋆
2 (u).

The second result also conditions on E2. It says that for the appropriate choice of
the regularization multiplier the probability of FD for the members of the enhanced
set, will eventually become smaller than the probability of false dominance for the
whole of Λ�

FT
, whenever failure of population dominance happens due to the com-

plement of U⋆
2 (u). It shows the significance of the positive slacks implied by the

regularization parameters on the SD conditions, for the small sample mitigation of
the particular decision error.

The third result corresponds to an oracle inequality that relates the opportunity
loss entailed by the empirical regularized problem, with the ℓp-deviation between the
empirical and the population solution and the regularization factor. If the empirical
solution is consistent, it implies asymptotic negligibility for the opportunity loss
w.h.p.

If instead of the regularized problem, the norm-constrained Lagrangean formula-
tion is used,

max
Λp(c)∩Λ�

PT

EPT
(u(λ′x)); (9)

Λp(c) :=
{

λ ∈ Λ : ‖λ− τ‖p ≤ c
}

, (10)
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for c > 0, then by the Lagrangian Duality Theorem, see Ch. 8, Theorem 1 of
Luenberger (1997) (14), and Corollary 2.3.1 of Burke (1991) (7), analogous results

would hold as long as max
λ∈Λ�

PT

‖λ− τ‖p − c = Ω
(

T− 1

d

)

.

3.3 Discussion

Analogous results would be analogously derivable to the above for other stochastic
dominance relations, if the relevant set of utility functions that define the relation is
equi-continuous w.r.t. the topology of locally uniform convergence. This could ac-
commodate cases of preferences with non-global disposition towards risk like appro-
priate sets of S-shaped utilities associated with the Prospect Stochastic Dominance
relation-see Levy and Levy (2013) (13).

The iid framework employed in Proposition 2 can be restrictive for economic
data of high to moderate observation frequencies. The extension of such-like results
to the more econometrically plausible framework of ergodicity and strong mixing
could be benefited by analogous extensions of the Wasserstein distance empirical
concentration inequalities to such settings. This is an interesting path for further
research. Optimality of the probability bounds is of simultaneous interest for the
non-asymptotic control of the probability of FD in realistically large samples.
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