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Abstract

We develop and apply a portfolio optimization method based on the

Stochastic Dominance (SD) decision criterion and the Empirical Likeli-

hood (EL) estimation method. SD and EL share a distribution-free as-

sumption framework which allows for dynamic and non-Gaussian return

distributions. The SD/EL method can be implemented using a two-stage

procedure which first elicits implied probabilities using Convex Optimiza-

tion and subsequently constructs the optimal portfolio using Linear Pro-

gramming. We apply the method to a range of equity industry momen-

tum strategies. Our moment conditions are based on stylized facts about

common risk factors in the stock market. SD/EL yields important ex-

ante performance improvements relative to heuristic diversification, Mean-

Variance optimization and a simple ‘plug-in’ approach. Relative to the

CRSP all-share index, SD/EL improves average out-of-sample return by

more than eight percentage points per annum, with less downside risk,

semi-annual rebalancing and no short sales.
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1 Introduction

Stochastic Dominance (SD) is a time-honored maxim for investment deci-

sion making which avoids the usual Gaussian approximation to the return dis-

tribution (Hadar and Russell (1969); Hanoch and Levy (1969); Rothschild and

Stiglitz (1970); Bawa (1975); Levy (2016)). This principle is particularly ap-

pealing for asset classes and investment strategies with asymmetric risk profiles,

for example, small-cap stocks, junk bonds and momentum strategies.

Portfolio choice based on SD is analytically more demanding than main-

stream Mean-Variance (MV) analysis. Nevertheless, modern-day computer hard-

ware and optimization software bring this approach within reach of practical

application.

For the common second-order SD (SSD) criterion and a discrete or dis-

cretized probability distribution, portfolio optimization can be formulated as

a Linear Programming (LP) problem (Shalit and Yitzhaki (1994); Rockafellar

and Uryasev (2000); Dentcheva and Ruszczynski (2003); Kuosmanen (2004);

Roman, Darby-Dowman and Mitra (2006)). The problem is very large, but it

remains tractable for realistic applications to security selection and asset alloca-

tion (Roman, Mitra and Zverovich (2013); Hodder, Jackwerth and Kolokolova

(2015)).

An issue that has received limited attention in this literature is the statistical

estimation of the joint return distribution of the base assets. Estimation accu-

racy is particularly relevant in portfolio optimization, because the optimal port-

folio weights can be very sensitive to estimation error and optimized portfolios

can perform poorly out-of-sample.

The econometric literature on SD focuses on testing hypotheses of domi-

nance or non-dominance for a given set of choice alternatives (Anderson (1996);

Davidson and Duclos (2000); Barrett and Donald (2003); Linton, Maasoumi and

Whang (2005); Scaillet and Topaloglou (2010)). These studies unfortunately

offer limited guidance for constructing a dominant alternative from elementary

prospects.

The existing applications of SD optimization generally analyze the empir-

ical distribution function (EDF). This ‘plug-in’ approach has sound points in

large samples, but it ignores available conditioning information and becomes

inaccurate if the available time series is short, especially if the number of base

assets is large. The plug-in approach also does not account for common dynamic

patterns such as price reversals and volatility jumps in high-frequency data.
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This study proposes a framework for SD optimization based on the non-

parametric Empirical Likelihood (EL; Owen (2001)) method. EL has several

well-known desirable information-theoretic and statistical properties.

In the asset pricing literature, EL and related estimation methods have been

proposed by Almeida and Garcia (2012, 2016), Julliard and Ghosh (2012), Gar-

cia, and Vicente (2016) and Ghosh, Julliard and Taylor (2016). The focus of

our study is instead on portfolio optimization with SD constraints.

Importantly, EL combines well with SD, due to a shared distribution-free

assumption framework and the use of a discrete estimator for the return distri-

bution - the ‘EL probabilities’. The complementary relation between EL and

SD was recognized earlier by Post and Pot̀ı (2017) and Post (2017). Those

earlier studies use EL to test whether a passive market index is stochastically

dominated, without identifying a superior alternative. By contrast, our study

uses the EL probabilities in the construction of an enhanced portfolio.

EL uses the realized return vectors as the support of a multinomial dis-

tribution and the probabilities are estimated by minimizing the divergence to

the sample distribution subject to a set of moment conditions. This approach

preserves the structure of the historical scenarios and allows for a finite, state-

dependent representation of the portfolio optimization problem. A block-wise

application of EL can account for dynamic patterns in a flexible way (Kitamura

(1997)).

The combination of SD and EL can be implemented using a tractable two-

stage procedure which first elicits the EL probabilities using standard Convex

Optimization (CO) and subsequently constructs the optimal portfolio using LP.

We apply SD/EL to a historical data set of daily returns to equity indus-

try portfolios. Since we form portfolios based on intermediate past returns and

rebalance the portfolios after a short-to-intermediate holding period, our invest-

ment strategies in effect exploit known industry momentum effects (Moskowitz

and Grinblatt (1999)).

Diversification is a core principle for momentum strategies, as a concentrated

position in just one or two top-performing industries would be riskier than most

investors would be willing to tolerate. The most common momentum strategies

rely on heuristic diversification rules without considering the risk levels and de-

pendence structure. Our study aims to improve on heuristic diversification by

using a combination of decision theory, mathematical programming and statis-

tical estimation.

Since the objective is active portfolio construction, we avoid the assumption
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that benchmark index is efficient. The return premium to winner industries

seems to defy rational risk-based explanations. More plausible explanations are

based on market imperfections such as short sales restrictions and behavioral

biases such as the ‘disposition effect’.

Instead, our moment conditions are based on general stylized facts about

common risk factors in the stock market. The use of risk factor models for

improving upon plug-in estimates is well-established for MV optimization. Dis-

tinguishing features of our approach are the use of model-free moment condi-

tions which avoid a full-fledged model specification and the estimation of EL

probabilities rather than mean and covariance terms only.

2 Methodology

This section presents the SD/EL method. For the sake of brevity, we focus on

the common SSD rule. In this case, SD/EL can be implemented using a tractable

two-stage procedure which uses standard CO to elicit the EL probabilities and

LP to construct the optimal portfolio given the EL probabilities.

The framework can however be applied directly to first-order SD (FSD) and

third-order SD (TSD). Stage-Two optimization based on those alternative rules

is generally more expensive than SSD; FSD requires Mixed Integer Linear Pro-

gramming (MILP) and TSD requires Quadratic Programming (QP). However,

the probability elicitation is based on a separate optimization problem which

does not affect the complexity of the portfolio construction problem.

2.1 Preliminaries

We consider K distinct base assets with random investment returns x ∈ XK

with joint Cumulative Distribution Function (CDF) F(x), X := [a, b], −∞ <

a < b < +∞. The portfolio possibility set consists of all convex combinations of

the base assets: Λ :=
{
λ ∈ RK : λT1K = 1;λ ≥ 0K

}
. Our goal is to enhance a

given benchmark portfolio which is characterized by weights τ ∈ Λ and returns

y := xTτ .

Importantly, the base assets are not restricted to be individual securities.

In general, the base assets are defined as the most extreme feasible combina-

tions of individual securities. This formulation allows for general linear port-

folio constraints, including bounded short sales constraints, position limits and

restrictions on risk factor loadings. To allow for dynamic intertemporal invest-
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ment problems, these combinations may be periodically rebalanced based on a

conditioning information set.

The marginal CDF for portfolio λ ∈ Λ is given by

Fλ(z):=

ˆ

{x∈XK :xTλ≤z}

dF(x). (1)

The first lower partial moment for portfolio λ ∈ Λ and threshold return

z ∈ X , amounts to:

Lλ(z) : =

ˆ z

a

Fλ(x)dx (2)

= EFλ
[(z − x)I (x ≤ z)] ,

where I (·) is an indicator function that takes a value of unity if the condition

within parentheses is satisfied and zero otherwise. The first lower partial mo-

ment is also known as ‘expected shortfall’, although the latter term may also

refer to Conditional Value at Risk (CVaR).

Definition 2.1.1: A given portfolio λ ∈ Λ dominates the benchmark by

SSD, or λ �F τ , if

Lλ(z) ≤ Lτ (z), ∀z ∈ X . (3)

The economic interpretation of SSD is well-established: λ �F τ if and only if

EFλ
[u(x)] ≥ EFτ [u(x)] for all monotone and concave utility functions u(x). The

equivalence of the two formulations stems from the observation that all relevant

utility functions are positive mixtures of elementary Russell and Seo (1989)

ramp functions vz(x) := min (x− z, 0) , z ∈ X ; expected shortfall equals the

negative expectation of an elementary utility function: Lλ(z) := −EFλ
[vz(x)].

If the constraints (3) are included in a portfolio optimization problem, then

the left-hand side (Lλ(z)) depends on the portfolio weights (λ), which are model

variables. In general, these constraints are not trivial from a numerical perspec-

tive, as they have infinite dimensions and are not linear. However, the conditions

can be captured by a finite system of linear constraints for discrete or discretized

distributions, as we will see in Section 2.3 below.
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2.2 Stage One: Probability Elicitation

The CDF is latent and has to be estimated using a time series of realized

return vectors, Xs := (X1,s · · ·XK,s)
T

, s = 1, · · · , T . The EDF amounts to

FT (x) := T−1
T∑
t=1
I (Xt ≤ x); it assigns an equal probability to each vector,

or PFT [x = Xs] = T−1, s = 1, · · · , T . Existing empirical applications of SD

optimization generally employ this ‘plug-in’ estimator.

The EDF is a natural starting point, because realized return vectors by their

own nature are realistic scenarios. Furthermore, its discrete structure is con-

venient for numerical optimization. In addition, if the observations are serially

Independent and Identically Distributed (IID), then the EDF is a statistically

consistent, nonparametric Maximum Likelihood estimator. Unfortunately, the

plug-in approach becomes inaccurate if the time series is short or exhibits dy-

namic patterns.

The EL method seems well suited for improving estimation accuracy, while

preserving the aforementioned favorable properties. The method combines the

data set and a set of moment conditions, using information theory. Using g(x)

for a vector-valued moment function on XK , the moment conditions follow:

EF [g(x)] = 0M . (4)

The moment function can be used to capture conditioning information, for

example, theoretical equilibrium conditions or empirical stylized facts. The mo-

ment function generally depends on latent model parameters and/or nuisance

parameters that are estimated as part of the procedure, but we suppress those

parameters here to simplify the notation. Moment inequalities can be repre-

sented by including latent slack variables in the moment function.

It can be convenient to use moment conditions for common factors which

are constructed as linear combinations of the returns to the base assets, or fj :=

xTwj , j = 1, · · · , F . This approach can capture prior information about factor

risk premiums such as the equity risk premium, term spread and credit spread.

If the factors are orthogonalized, then the analysis could focus on restricting the

marginal distribution rather than their joint distribution. Section 3.3 illustrates

the factor-based approach using the four common factors of Carhart (1997).

Whereas EL was originally developed for testing the moment conditions and

inference about the latent model parameters, we use its ‘implied probabilities’ to
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improve upon the EDF as an estimator for the CDF, taking the moment condi-

tions to be true. In the same way, the ‘EL bootstrap’ (Brown and Newey (2002))

uses implied probabilities to simulate the null distribution and ‘Bayesian Expo-

nentially Tilted Empirical Likelihood’ (BETEL; Schennach (2005)) uses implied

probabilities as a nonparametric likelihood function to compute Bayesian pos-

terior probabilities.

EL estimates the distribution function using a multinomial distribution with

atoms at the data points. The implied probabilities ps := P̂[x = Xs], s =

1, · · · , T , are found by minimizing the Relative Entropy, or the Kullback-Leibler

divergence to the sample probabilities πs := PFT
[x = Xs] = T−1, s = 1, · · · , T ,

DKL ({πs} ‖ {ps}) : =

T∑
s=1

πs ln

(
πs
ps

)
(5)

=
1

T

T∑
s=1

ln(ps)− ln(T ),

subject to the empirical equivalent of the moment conditions,

T∑
t=1

ptg(xt) = 0M . (6)

Block-wise Empirical Likelihood (BEL; Kitamura (1997)) applies this ap-

proach to data blocks rather than individual observations. The block-wise

application can account for a range of dynamic patterns, including common

stationary ARMA, GARCH and stochastic volatility processes. This approach

subdivides the original time series into T ∗ := (T −B+1) maximally overlapping

blocks of B consecutive observations.

Specifying the proper block length B involves a trade-off between the maxi-

mal duration of the dynamic effects and the number of independent blocks, or

bT/Bc. For serially IID observations, B = 1 yields the standard EL method. It

is generally recommended that the block length B grows with T but at a lower

rate, for example, (B−1+B2/T )→ 0 as T →∞. The block length also depends

also on the aggregation level of the base assets and the return frequency; BEL

seems particularly relevant for high-frequency data of individual securities and

less relevant for low-frequency data and diversified portfolios.
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The BEL procedure assigns probabilities b1, · · · , bT∗ to the data blocks and

equal (conditional) probabilities (B−1) to the observations in a given block;

the procedure then seeks to minimize DKL ({βi} ‖ {bi}), where βi := (T ∗)
−1
.

Observation t = 1, · · · , T is included in all blocks with indices from t− :=

max(1, t − B + 1) to t+ := min(t, T ∗). The implied probabilities therefore

amount to

pt ∝ (t+ − t− + 1)−1

 t+∑
i=t−

bi

 , t = 1, · · · , T. (7)

The block-level probabilities b1, · · · , bT∗ are the solution to the following

Minimum Relative Entropy (MRE) problem::

min

(
− 1

T ∗

T∗∑
i=1

ln(bi)− ln(T ∗)

)
(8)

s.t.

T∑
t=1

t+∑
i=t−

bi(t
+ − t− + 1)−1g(Xt) = 0M ;

T∗∑
i=1

bi = 1;

bi ≥ 0, i = 1, · · · , T ∗.

This problem is a standard CO problem, and, for sample size in our study

(T ≈ 250 trading days in a moving 12-month estimation window), the problem

size is small. The problem however can become computationally demanding

in applications which analyze intraday data or solve the problem repeatedly in

simulation or re-sampling routines. For such applications, there exists an alter-

native, more tractable representation of the problem in terms of the Lagrange

multipliers of the original minimization problem.

Using the implied probabilities, the joint CDF is estimated by

F̂(x) :=

T∑
t=1

ptI (Xt ≤ x) . (9)

Similarly, the EL estimator for the marginal CDF for portfolio λ ∈ Λ is
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F̂λ(z)=

T∑
t=1

ptI
(
XT
s λ ≤ z

)
. (10)

As the sample size increases, the effect of the moment conditions vanishes

asymptotically and pt, t = 1, · · · , T , converges to the value of T−1, under suit-

able regularity conditions. Hence, as T →∞, the EL estimator F̂(x) converges

to the EDF FT (x), which itself converges in probability to the true CDF F(x).

However, in small samples, F̂(x) in contrast to FT (x) has the advantage of

obeying the moment conditions, which represent known properties of F(x).

2.3 Stage Two: Portfolio Construction

The EL estimator F̂(x) is also analytically convenient for portfolio analysis.

The state-dependent structure is advantageous, because the state probabilities

(ps, s = 1, · · · , T ) are independent of the portfolio weights (λ) which simplifies

the statistical calculus for portfolio construction.

Furthermore, the estimated lower partial moment takes a simple piecewise-

linear, increasing and convex shape:

L̂λ(z) = EF̂λ
[(z − x)I (x ≤ z)] (11)

=

T∑
t=1

pt(z −XT
t λ)I

(
XT
t λ ≤ z

)
.

As a consequence, we have to check the dominance condition only at the

observed return levels for the benchmark (z = ys, s = 1, · · · , T ), as in Bawa,

Bodurtha, Rao and Suri (1985, Section I.C):

Proposition 2.3.1: A given portfolio λ ∈ Λ dominates the benchmark by

SSD under the implied probability distribution, or λ �F̂ τ , if and only if

L̂λ(ys) ≤ L̂τ (ys), s = 1, · · · , T. (12)

Although the number of constraints is finite (T ), the left-hand sides, L̂λ(ys),

s = 1, · · · , T , are non-linear functions of the portfolio weights. At first sight, the

binary variables I
(
XT
s λ ≤ z

)
, s = 1, · · · , T , seem to require integer program-

ming. However, we may avoid integer programming by using a linear relaxation

the spirit of Rockafellar and Uryasev (2000, Section 3):
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L̂λ(z) = min
θ

T∑
t=1

ptθt (13)

θt ≥ z −XT
t λ, t = 1, · · · , T ;

θt ≥ 0, t = 1, · · · , T.

This problem is designed such that θ∗t = (z − XT
t λ)I

(
XT
t λ ≤ z

)
, t =

1, · · · , T , is the optimal solution, which removes the need to use binary variables.

It follows from (13) that we can reformulate the inequality L̂λ(z) ≤ L̂τ (z)

using the following linear system:

T∑
t=1

ptθt ≤ L̂τ (z); (14)

θt ≥ z −XT
t λ, t = 1, · · · , T ;

θt ≥ 0, t = 1, · · · , T.

Specifically, if there exists any feasible solution θ∗∗t , t = 1, · · · , T , to this

system, then the minimizer θ∗t = (z−XT
t λ)I

(
XT
t λ ≤ z

)
, t = 1, · · · , T , is also

an feasible solution, which implies L̂λ(z) ≤ L̂τ (z).

We can apply linear system (14) to every threshold z = ys, s = 1, · · · , T , in

the SSD conditions (12). For this purpose, we introduce the model variables θs,t,

s, t = 1, · · · , T, to capture the terms (ys−XT
t λ)I

(
XT
t λ ≤ ys

)
, s, t = 1, · · · , T .

In addition, we treat the portfolio weights λ ∈ Λ as model variables, which does

not introduce further complications, because the constraints of problem (13) are

linear in the portfolio weights.

Combining these insights, we can identify SSD enhanced portfolios as solu-

tions to the following system of linear constraints:
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T∑
t=1

ptθs,t ≤ L̂τ (ys), s = 1, · · · , T ; (15)

−θs,t −XT
t λ ≤ −ys, s, t = 1, · · · , T ;

1T
Kλ = 1;

θs,t ≥ 0, s, t = 1, · · · , T ;

λk ≥ 0, k = 1, · · · ,K.

Any feasible solution λ∗ to this system dominates the benchmark portfolio τ

by SSD.

To find an SSD enhanced portfolio, we can develop mathematical programs

that optimize an objective function given the above system of constraints. A

convenient specification for the objective function is

Oλ := µ̂Tλ−
T∑
t=1

wtL̂λ(yt), (16)

where µ̂ :=
T∑
t=1

ptXt is the mean vector and wt ≥ 0, t = 1, · · · , T , are decision

weights. Objective function (16) is a linear function of the portfolio weights,

and hence we end up with an LP problem. Although the optimization problem

is much larger than a standard MV problem, it is perfectly manageable with

standard computer hardware and optimization software in typical applications.

The goal in our application section is to maximize the expected portfolio

return, or the extreme case with wt = 0, t = 1, · · · , T . This orientation allows

for a direct comparison with heuristic portfolio construction rules and with MV

optimization based on the same objective function. From a theoretical perspec-

tive, this specification introduces the possibility that the solution portfolio is

not fully efficient. However, unreported results show no material performance

improvements from using small non-zero decision weights or multi-objective pro-

gramming with risk reduction as the secondary objective function.

Another example of an objective function which is consistent with the SSD

criterion is minimizing the portfolio expected shortfall for a given threshold

level or a positive linear combination of expected shortfall for multiple threshold

levels. Kopa and Post (2015, Section 5) show how to specify decision weights

based on a pre-specified utility function.
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2.4 Hardware and software

In our application of SD/EL below, the probability estimation problem (8)

is modeled in GAMS and solved with CONOPT nonlinear solver (Drud (1994))

on a machine with an Intel Core i7 2.38GHz processor and 8GB memory. The

portfolio optimization problem (maximize objective (16) subject to linear sys-

tem (15)) is modeled in and solved with IBM ILOG CPLEX Optimization Stu-

dio 12.6.3.0 on a machine with 2 x Intel(R) Xeon(R) CPU E5-2695 2.40GHz

processors and 512GB memory. The combined computation time for the prob-

ability estimation problem and portfolio optimization problem was around half

a minute for the typical data set (K = 49 base assets, T ≈ 250 observations,

M = 8 moment conditions).

3 Application

We implement various equity industry momentum strategies and analyze

the performance improvements from using the SD choice criterion and the EL

estimation method. In this application, the data dimensions seem unfavorable

for the plug-in approach and conditioning information seems a useful addition

to the data set. We propose a set of model-free moment conditions based on

stylized factors of common risk factors for stock returns.

3.1 Data

Our benchmark is the all-share index from the Center for Research in Se-

curity Prices (CRSP), a value-weighted average of common stocks listed on the

NYSE, AMEX and NASDAQ stock exchanges.

We repeated our analysis with the equal-weighted average of the base assets

as the benchmark. ‘Naive diversification’ is a simple and effective way to achieve

robust outperformance (DeMiguel, Garlappi and Uppal (2009)). However, the

equal-weighted portfolio does not capture the momentum effects and it can

easily be enhanced using optimization in this study. Better performance can be

achieved using a conditional 1/K rule, which is discussed below. However, also

that heuristic appears suboptimal in our analysis.

The base assets consist of a set of K = 10, 17, 49 value-weighted industry

portfolios which are formed by grouping individual stocks based on their four-

digit Standard Industrial Classification (SIC) codes.
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Since the base assets are diversified industry portfolios, the analysis does

not allow for concentrated positions in individual stocks. The analysis also does

not allow for short sales, because the base assets include only long positions in

individual stocks. These portfolio-weight restrictions limit the effects of estima-

tion error (Frost and Savarino (1988), Board and Sutcliffe (1994), Jagannathan

and Ma (2003), DeMiguel et al. (2009)). In addition, the resulting strategies

can be implemented at lower transactions costs than a typical stock-level long-

short strategy. A possible, cost-effective implementation method would buy

exchange-traded funds (ETFs) that track specific sector indices. Furthermore,

excluding short sales limits the effect of momentum crashes, which are partly

attributable to the rebound of loser stocks after market sell-offs (Daniel and

Moskowitz (2016)).

Our data set consists of daily total returns to the industry portfolios and

daily values of risk factors from Kenneth French’s online data library.1 The

sample period is from January 3, 1927, through December 31, 2015.

3.2 Investment strategies

Earlier studies of industry momentum show that buying winners is most prof-

itable when using an intermediate estimation window and a short-to-intermediate

holding period. We therefore focus on an estimation window of 12 months and

a holding period of H = 3, 6, 12 months. Annual rebalancing occurs on the

first day of the month of January of every year; semi-annual rebalancing in the

months of January and July; quarterly rebalancing in January, April, July and

October.

At every formation date, we construct five different enhanced portfolios from

the base assets. The first, heuristic portfolio is an equal-weighted average of the

five industries with the highest realized return in the past 12 months. This

‘EW5’ portfolio uses a conditional version of ‘naive diversification’. In contrast

to the equal-weighted average of all industries, this strategy does capture the

momentum effects. The other four enhanced portfolios are constructed through

optimization. The objective is to maximize the mean (Oλ = µTλ) subject to

the restriction that the enhanced portfolio dominates the benchmark by MV or

SSD, using naive sample probabilities or EL implied probabilities.

Our EL analysis uses a short block length of B = 1, 2, 3 trading days. A short

length is used, because the base assets are diversified industry portfolios, rather

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library
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than individual stocks, and, consequently, we don’t observe strong dynamic

patterns. In addition, our typical estimation window contains only roughly

250 trading days, and a long block length would leave us with only few non-

overlapping blocks compared with the number of base assets.

3.3 Moment conditions

Since our estimation window is short, it seems useful to incorporate con-

ditioning information using implied probabilities. We deliberately use conser-

vative, uncontroversial moment conditions that do not require explicit testing,

although the investment performance from using the resulting implied proba-

bilities arguably is an implicit test.

Our specification is based on general stylized facts about stock returns. The

bulk of the joint variation of returns can be explained with a small number of

common factors. The predictability of these factors is limited, as expected in

an competitive capital market.

As a case in point, the daily excess return to a general stock market index,

which is a popular choice as a common factor of individual stocks returns, shows

only weak predictability using past returns and fundamentals compared with

the daily returns to individual stocks. Therefore, the market return strongly

regresses towards the mean after large downswings or upswings.

In order to capture this regression effect in a model-free way, we ‘winsorize’

the factor means using moment inequalities. Our moment conditions are

Lj ≤ EF [fj ] ≤ U j , j = 1, · · · , F, (17)

where Lj and U j , j = 1, · · · , F , are cut points for the left and right tails,

respectively. Put differently, we use M = 2F moment conditions and the ele-

ments of the moment function g(x) are given by g2j−1(x) = fj − s−j − Lj and

g2j(x) = fj +s+j −Uj , j = 1, · · · , F , where s−j , s
+
j ≥ 0 are latent slack variables.

We use the four factors of Carhart (1997): (1) general stock market re-

turn minus T-bill return (‘RMRF’), (2) small-caps return minus big-caps return

(‘SMB’), (3) value-stocks return minus growth-stocks return (‘HML’) and (4)

winner-stocks return minus loser-stocks return (‘MOM’). For the typical indus-

try portfolio, these factors explain more than 60% of the daily return variation.

We consider F = 1, 3, 4 factors: the single-factor ‘market model’ based on

RMRF (F = 1); the Fama and French (1993) three-factor model based on

RMRF, SMB and HML (F = 3); the Carhart (1997) four-factor model based
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on all four factors (F = 4).

Let C = 5, 10, 25. For the lower cut point, Lj , j = 1, · · · , 4, we use the C-th

percentile of the historical distribution, across all estimation windows, of the

factor sample mean; similarly, for the upper upper cut point, Uj , j = 1, · · · , 4,

we use the (100− C)-th percentile.

To address possible concerns about forward-looking bias, the analysis for

the second half of the sample period was repeated using cut points based on the

estimation windows from the first half of the sample period only. Encouragingly,

the results are not materially affected by this modification, consistent with the

below robustness for the specification of C.

If the moment conditions are violated in a given estimation window, then the

implied probabilities diverge from the EDF to adjust the factor means. For our

base case with F = 4 and C = 10, almost half of the samples are adjusted in this

way. The adjustments are relatively modest, in the sense that regression-based

forecasts of the factors will generally be closer to the mean than our cut points

and therefore require stronger divergence from the EDF.

In practice, the effect of these adjustments is to avoid large directional bets

on common factors, and to improve the focus on industry-specific events. For

example, the adjustments reduce the bias of the optimal portfolio towards de-

fensive industries after a general market sell-off and hence reduce the exposure

to momentum crashes.

Figure 1 illustrates the regression effect and our moment conditions. Each

panel plots the in-sample mean against the out-of-sample mean for one of the

four factors, using a 6-month holding period (H = 6). The regression effect

is particularly strong after large negative values, such as the market crash of

2008 and the momentum crash of 2009. The dotted 45° line represents naive

extrapolation of the in-sample values. The solid, piecewise line represents our

moment conditions, using winsorizing at the tenth and 90-th percentile. For all

four factors, the latter approach gives a better fit to the data.

[Insert Figure 1 about here.]

3.4 Evaluation method

We evaluate out-of-sample performance using annual, January-December re-
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turns from 1928 through 2015, a total of N = 88 evaluation periods. For short

holding periods (H = 3, 6), this approach means that rebalancing takes place

not only at the beginning of the evaluation period, but also during the evaluation

period.

We report the mean, standard deviation, semi-deviation and skewness of

the annual out-of-sample returns. We also report the mean spreads between

the competing strategies and the associated t-statistics, to gauge the level of

statistical significance of the performance improvements.

As distribution-free risk measures, we include the Value-at-Risk (VaR) and

CVaR for a confidence level of 95%. As a risk-adjusted performance measure, we

use the certainty equivalent return for a standard logarithmic utility function,

u(x) = ln(100 + x).

We also report the Sharpe ratio and, to account for asymmetry, the Sortino

ratio. However, the usual interpretation of these ratios does not apply here,

as it is not possible to ‘scale’ the enhanced portfolio without violating the con-

straints on short sales and benchmark risk. It seems more relevant to evaluate

the strategies by their ability to simultaneously enhance the mean and reduce

downside risk.

Corrections for exposures to common risk factors have a limited effect on

the relative performance of the strategies in our application. As a result of

the portfolio-weight restrictions, all enhanced portfolios have a similar market

beta. The exposures to non-market risk factors are limited, due to the diver-

sified nature of the industry portfolios, the absence of short positions and the

frequency of portfolio rebalancing. Even the exposures to stock-level momentum

factors are limited, because the strategies rely on industry momentum rather

than stock-level momentum and on buying winners rather than selling losers.

3.5 The base case

We start our analysis with the combination of K = 49 industries; a six-

month holding period (H = 6); F = 4 risk factors (the Carhart (1997) model);

cut points for the factor means based on C = 10; a block length of B = 1 (the

IID EL method). This combination seems favorable given the aforementioned

industry momentum studies and stylized facts.

Table I summarizes the out-of-sample performance of the competing portfo-

lios. The benchmark index (‘Bench’) on average yields 11.54% per annum with

a standard deviation of 20.27% in this sample period. The negative skewness re-
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flects the elevated correlation between stocks during market downswings, which

limits the potential for reducing downside risk through broad diversification.

The heuristic strategy (EW5) enhances average return by 6.70% to 18.24%.

The EW5 portfolio has a higher standard deviation than the benchmark, due

to the lower level of diversification. It is possible to reduce the standard de-

viation by including more winner industries (for example, ‘EW10’), but this

approach will also lower the mean. A more promising route is to explicitly ac-

count for the risk and dependence structure of the industries, using estimation

and optimization.

Using the plug-in approach, the performance enhancement from MV opti-

mization remains limited. The MV approach improves average return by 6.82%

to 18.36%, only 0.12% above the EW5 strategy. Using implied probabilities

clearly improves matters by adding another 0.56% per annum. The standard

deviation of the portfolio exceeds that of the benchmark, but the variability

stems mostly from upside rather than downside deviations. Unfortunately, the

MV rule does not recognize this asymmetry and it therefore penalizes the upside

potential of concentrated positions in past winner industries.

SD optimization leads to important further performance improvements. Us-

ing the plug-in approach, the improvements are again limited, but the full poten-

tial of SD comes to light when we use EL estimation. Using implied probabilities,

SD enhances average return by 8.38% to 19.92%, an improvement of 1.68% com-

pared with EW5, 1.55% compared with MV and 1.00% compared with MV/EL.

The improvements from using implied probabilities are statistically significant

at every conventional significance level. EL estimation is particularly beneficial

for the SD approach, because the SD portfolio tends to be less diversified and

more exposed to regression effects than the MV portfolio.

Due to the asymmetry of the return profile, the improvements are robust to

risk corrections, despite the higher standard deviation. Specifically, the SD/EL

portfolio has substantially lower VaR and CVaR than the benchmark and it

maximizes the certainty equivalent and Sortino ratio.

[Insert Table I about here.]

Figure 2 illustrates the cumulative performance of the competing portfolios

for the entire sample period. Shown is the dollar value of the benchmark and the

five enhanced portfolios, assuming an initial investment of one dollar in January
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1928. Not surprisingly, the differences in investment return of tens or hundreds

of basis points per annum translate into exponentially growing differences in

portfolio value over time. The SD/EL portfolio leads all other portfolios from

1931 until 2015. In 2015, after 88 years, it reaches a value of $830,487, compared

with only $3,020 for the benchmark and $561,869 for the second-best portfolio

(MV/EL). The limited downside risk of the SD/EL portfolio is reflected by

a maximum drawdown of 41%, which compares favorably with 69% for the

benchmark and 46% for the MV/EL portfolio.

[Insert Figure 2 about here.]

The above performance improvements seems impressive given that they are

achieved with the ‘minimal’ adjustment of winsorizing the factor means. The

moment inequalities are binding only in the samples in which some of the factors

take extreme values. Conditional on extreme events, the performance improve-

ments from using implied probabilities is even more impressive.

Table II gives more details of the performance following the most severe ‘fac-

tor crashes’. Whereas the heuristic strategy fails to improve on the benchmark,

SD/EL enhances average return by as much as 15.49%. Roughly half of these

improvements stem from the use of implied probabilities. If a factor crashes,

then industries with low exposure to that factor will appear attractive, based on

sample probabilities. Including these industries in the momentum portfolio will

then lower the portfolio’s expected return, due to the regression effect. Using

implied probabilities mitigates this problem and hence offers ‘crash protection’.

[Insert Table II about here.]

Figure 3 plots the relation between the implied probabilities and the factor

values during the factor crashes. In these periods, the implied probabilities

must diverge from the sample probabilities in order to raise the expected value

of the factor above the lower cut point. Hence, the implied probability tends

to increase with the factor value. If the other factors do not take extreme

values, then a perfect bivariate relation arises. By contrast, if multiple moment

conditions are violated, then the bivariate relation becomes noisy. If BEL is
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used, then the noise level tends to increase at the level of individual trading

days but it decreases at the level of data blocks.

[Insert Figure 3 about here.]

3.6 Alternative specifications

We will now analyze the effects of varying the parameters of the investment

strategy: the number of base assets (K), the length of the holding period (H),

the number of risk factors (F ), the choice of the cut points (C) and the block

length (B). Table III summarizes the results. To allow for a compact presen-

tation, we vary only one parameter (K, H, F , C or B) at the time, using the

strategy with K = 49, H = 6, F = 4, C = 10 and B = 1 as the base case. In

addition, we now tabulate only the average return and suppress all other output.

The performance of all momentum strategies improves as we widen the in-

vestment universe, consistent with the results of previous momentum studies.

Given that estimation risk increases with the number of base assets, it seems

not surprising that the contribution of the EL method is largest for the broadest

cross-section (K = 49). A broad cross-section is also beneficial for SD optimiza-

tion, as it allows for engineering positions with limited downside risk.

The general performance level also improves as we shorten the holding pe-

riod. However, the improvements seem not enough to warrant the additional

portfolio turnover and transaction costs, assuming that every round trip will

cost at least tens of basis points. In addition, the use of implied probabilities is

less effective, because it is more difficult to predict the out-of-sample values of

the factors, for short holding periods. Nevertheless, SD/EL remains the most

appealing strategy also for a short horizon.

As we increase the number of risk factors, and hence the number of moment

conditions, the performance improvements from using implied probabilities in-

creases. It seems vital to the success of our approach that the factors exhibit low

mutual correlation and that the factor exposures show high between-industry

variation. In this situation, every additional factor leads to further adjustments

of the implied probabilities and the relative returns of the industries.
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In contrast to the number of factors, the precise value of the cut points seems

of limited importance for investment performance. Using C = 5 or C = 25

leads to similar results as C = 10 in our analysis. Cut points outside the range

[5, 25] seem irrelevant at forehand, as they would lead to either minimal and

inconsequential deviations from the sample probabilities (C < 5) or large and

counter-factual adjustments that contradict the observed drift of the risk factors

(C > 25).

As expected, the investment performance deteriorates as we increase the

block length. The adverse effect in our application presumably reflects our

combination of diversified base assets, which exhibit relatively weak dynamic

patterns, and an intermediate estimation window, which implies that the num-

ber of non-overlapping blocks is small compared with the number of base assets.

In this situation, BEL introduces excessive variation of the implied probabilities

which is not related to the risk factors and which distorts the industry-level drift

signal.

[Insert Table III about here.]

4 Conclusions

The plug-in approach hampers the investment performance of optimized

portfolios, if the estimation window is short. EL estimation can improve the

estimation accuracy by incorporating conditioning information and accounting

for dynamic patterns, while preserving the discrete structure and realistic sce-

narios of the EDF. SD/EL can be implemented with a two-stage procedure using

standard mathematical programming methods.

In the application, SD/EL leads to important ex-ante performance improve-

ments, often in excess of a full percentage point per annum, compared with

heuristic diversification and optimization based on the MV rule and/or the plug-

in method. Heuristic diversification overlooks the risk and dependence structure

of the base assets; the MV rule does not recognize the favorable upside potential
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of concentrated winner portfolios; relying on sample probabilities overlooks the

regression effect of common risk factors.

The sensitivity to estimation error remains limited in our analysis, due to the

use of diversified base assets and portfolio-weight restrictions. Without those

benign features, improving the estimation accuracy seems even more important

than in our study.

We used moment conditions for winsorizing common risk factors, in order to

account for the regression effect and reduce the adverse effects of factor crashes.

These moment conditions are ‘loose’ in the sense that any reasonable regression

model will predict that the factors move closer to the mean than our cut points

and, therefore, require stronger divergence from the EDF. Further research could

focus on exploring tighter moment conditions for momentum strategies, as well

as other investment strategies.

Using the block-wise approach has an adverse effect in our study, because

our base assets are diversified industry portfolios, which exhibit relatively weak

dynamic patterns, and, furthermore, the number of non-overlapping blocks is

small compared with the number of base assets, as a result of using an inter-

mediate estimation window. The BEL seems more appropriate when the base

assets are individual securities or dynamic portfolios or when intraday returns

are studied.

Our analysis can be generalized in a straightforward way to Generalized

Empirical Likelihood (GEL), which allows for ‘exponential tilting’ and ‘contin-

uous updating’ estimators. EL is closely related to the Generalized Method of

Moments (GMM) and non-parametric Bayesian inference. Not surprisingly, we

find very similar results in our application using GMM implied probabilities or

BETEL probabilities based on the same moment function.

We hope that our analysis contributes to the portfolio optimization literature

by developing a framework to incorporate conditioning information and dynamic

patterns in SD optimization and by illustrating its potential profitability using a

set of model-free moment conditions; we also hope to contribute to the empirical

momentum literature by showing that optimization, when properly combined

with decision theory and statistical estimation, can improve significantly upon

heuristic investment strategies.
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Factor 1: RMRF Factor 2: SMB

Factor 3: HML Factor 4: MOM

Figure 1: Regression Effects and Moment Conditions

Each panel plots the in-sample mean against the out-of-sample mean for one
of the four factors of Carhart (1997): ‘RMRF’, ‘SMB’, ‘HML’ and ‘MOM’. The
in-sample mean is the sample mean of the daily values in a 12-month estimation
window; the out-of-sample mean is the sample mean in the subsequent 6-month
holding period. The first estimation window is from January 1927 to Decem-
ber 1927 and the first holding period is from January 1928 to June 1928; last
estimation window is from July 2014 to June 2015 and the last holding period
is from July 2015 to December 2015. The dotted 45° line represents historical
extrapolation; it equates the in-sample and out-of-sample means. The solid,
piecewise line represents our moment conditions (9). The lower cut point Lj ,
j = 1, · · · , 4, equals the tenth percentile of the distribution of the sample mean
across all estimation windows; the upper cut point Uj , j = 1, · · · , 4, equals the
90-th percentile.
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Figure 2: Cumulative Performance

This figure shows the development of the dollar value of six portfolios over the
entire sample period from 1928 through 2015: the passive benchmark (‘Bench’);
the heuristic portfolio (‘EW5’); the MV portfolio based on plug-in estimates; the
MV/EL portfolio; the SD portfolio based on sample probabilities; the SD/EL
portfolio. The initial investment in January 1928 in every portfolio is one dollar.
The portfolios are formed and rebalanced at the beginning of a 6-month holding
period based on a trailing 12-month estimation window of daily returns. The
first estimation window is January 1927 - December 1927 and the first holding
period is January 1928 - June 1928; the last estimation window is July 2014 -
June 2015 and the last holding period is July 2015 - December 2015. The implied
probabilities for MV/EL and SD/EL are based on the moment conditions (9);
we use the F = 4 factors of Carhart (1997); the lower cut point Lj , j = 1, · · · , 4,
equals the tenth percentile of the historical distribution of the sample mean; the
upper cut point Uj , j = 1, · · · , 4, equals the 90-th percentile. We use the IID
EL method, or block size B = 1. The graph uses a logarithmic scale.
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31H2-32H1 72H2-73H1

99H1-99H2 09H1-09H2

Figure 3: Close-up of Implied Probabilities during Factor Crashes

Each panel shows the implied probabilities pt, t = 1, · · · , T , for a 12-month
estimation window during which one of the risk factors achieves its lowest sample
mean across all estimation windows. The implied probabilities are based on the
moment conditions (9); we use the F = 4 factors of Carhart (1997); the lower cut
point Lj , j = 1, · · · , 4, equals the tenth percentile of the historical distribution
of the sample mean; the upper cut point Uj , j = 1, · · · , 4, equals the 90-th
percentile. The RMRF factor crashes in the period July 1932 - June 1932
(T = 301); SMB in July 1972 - June 1973 (T = 249); HML in January 1999 -
December 1999 (T = 252); MOM in January 2009 - December 2009 (T = 252).
We use the IID EL method, or block size B = 1. The implied probabilities
are normalized by dividing by the sample probability T−1. The graph uses a
logarithmic scale.
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