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Abstract

We derive optimal monetary policy rules when government debt may be a constraint
for the monetary authority. We focus on an environment where fiscal policy is exogenous,
setting taxes according to a rule that specifies the tax rate as a function of lagged debt. In
the case where taxes do not adjust sufficiently to ensure the solvency of debt, then the mon-
etary authority is burdened by debt sustainability. Under this scenario, optimal monetary
policy is a ‘passive money rule’, setting the interest rate to weakly respond to inflation. We
characterize analytically the optimal inflation coefficients under alternative specifications of
the central bank loss function. We show that the maturity structure of debt is a key variable
behind optimal policy. When debt maturity is calibrated to US data, our model predicts
that a simple inflation targeting rule where the inflation coefficient is 1 − 1

Maturity is a good
approximation of the optimal policy.

Lastly, our framework nests the case where fiscal policy adjusts taxes to satisfy the in-
tertemporal debt constraint. In this scenario optimal monetary policy is an active policy
rule. We contrast the properties of active and passive policies, using the analytical optimal
policy rules derived from this framework of monetary/fiscal interactions.
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1 Introduction

Since the 2008-9 recession and more recently due to the spending and transfer programs launched

to deal with the effects of the COVID 19 recession, governments in developed economies accumu-

lated large stocks of debt. High debt levels require bold fiscal adjustments to ensure the solvency

of government budgets. However, in many cases it is questionable whether fiscal authorities will

be able/willing to generate the large required surpluses to finance debt.1

At high debt levels, and when fiscal authorities may not be able/willing to adjust taxes suffi-

ciently, debt may become an important constraint for monetary policy. Under such circumstances,

ensuring debt solvency becomes a task burdening the monetary authority and inflation needs to

be used to finance debt. How should policy be then designed to be optimal?

A sizable literature has studied optimal policy in the 3-equation New Keynesian model (see

e.g. Woodford (2001b); Giannoni and Woodford (2003); Orphanides and Williams (2007); Svens-

son (1999, 2003); Woodford (2003b); Giannoni (2014) among numerous others), that is in the

case where monetary policy is not burdened with debt substainability. These papers have used

the baseline New Keynesian framework to develop practically relevant recommendations for the

design of interest rate rules, the desirable response of the main instrument of monetary policy to

macroeconomic conditions.

Another strand of literature has analyzed optimal policy in environments where inflation re-

sponds to debt. Using the so called Ramsey approach to optimal policy, Chari and Kehoe (1999);

Siu (2004); Schmitt-Grohé and Uribe (2004); Faraglia, Marcet, Oikonomou, and Scott (2013);

Lustig, Sleet, and Yeltekin (2008); Leeper and Zhou (2021) among others, have solved policy

problems in which a Ramsey planner can simultaneously set inflation and fiscal variables (taxes)

to satisfy the intertemporal solvency of debt.

From this second class of models, however, it is not easy to derive transparent conclusions

concerning the conduct of monetary policy. Firstly, because bringing together monetary and fiscal

policies under one authority makes it difficult to disentangle which of the implications of the

models concern monetary policy and which do not.2 Secondly, and most importantly, because

in the optimal policy equilibrium in these models macroeconomic variables become functions of

the current and lagged values of the Lagrange multiplier attached to the consolidated budget

1Even prior to the COVID crisis, the US had a debt to GDP ratio exceeding 100 percent and that was projected
to rise. At the same time, on the fiscal side, there was no announced increase in tax rates to stabilize debt. In
light of this, several papers have built models based on the assumption that taxes do not adjust to ensure fiscal
solvency and investigating the effects on the macroeconomy (see Bianchi and Melosi (2017, 2019) and the recent
strand of the literature on monetary/fiscal interactions we summarize below).

In the Euro area, similar conditions held after the 2010-11 debt crisis, the main concern being that debt has been
explosive in some countries, and sustainable in others. This has led to a development of a considerable academic
and policy literature on ‘fiscal divergence’.

These problems are obviously more relevant today due to the effects of COVID on debt levels in OECD economies.
2In many of these models the planner will use the tax schedule not only to generate surpluses and finance debt,

but also to ‘manipulate interest rates’ and hence change the real costs of financing debt (see Lustig et al., 2008;
Faraglia et al., 2013; Leeper and Zhou, 2021). Taxes will therefore affect real and nominal interest rates but so
does monetary policy, operating through inflation and output targets. In effect, the optimal interest rate path is
jointly determined by the fiscal/monetary policies.
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constraint, the object that defines the dynamics of debt. The multipliers are state variables and

it is not easy to derive an interest rate rule that expresses the nominal rate solely as a function of

macroeconomic conditions, without involving Lagrange multipliers.

This is evidently an important limitation of the analysis. Lagrange multipliers cannot be

observed in practice, and therefore solving the Ramsey first order conditions (expressing the path

of the nominal rate as a function of the multipliers) cannot provide any meaningful guidance to

monetary policy.

This paper makes progress with characterizing optimal interest rate rules in an environment

where the monetary authority may have to take into account debt sustainability. We utilize a

standard New Keynesian model augmented with a fiscal block, the consolidated budget constraint

and a fiscal policy rule specifying taxes as a function of the lagged value of debt. We solve an

optimal policy problem in this linear quadratic framework assuming, as in much of the literature,

that the central bank may seek to minimize inflation and output variability.

In Section 2 we describe the competitive equilibrium equations in our baseline model and

setup the optimal policy program. We derive a formula expressing the inflation output trade-

off under the optimal policy: The sum of inflation and output growth (the latter scaled by the

relative weight attached to output stabilization in the loss function) is equated to a weighted

sum of the current and lagged Lagrange multipliers attached to the consolidated budget. Were

these multipliers equal to zero in the model (equivalently debt did not matter for optimal policy)

then optimality would take the form of the so called target policy criterion in the canonical NK

Keynesian model. It would then be fairly easy (given previous work by Giannoni and Woodford

(2003) and others) to express optimal monetary policy as a rule in which the interest rate reacts

to macroeconomic variables. However, in the presence of the Lagrange multipliers, characterizing

optimal policy through such a rule does not seem an obvious property of the model.

In Sections 3 and 4 we strive to find optimal interest rate rules, by either substituting out the

Lagrange multipliers, or identifying conditions under which the multipliers are zero and conse-

quently the optimal rules we can derive from our model are those of the standard New Keynesian

benchmark. We show that the model admits two types of optimal policy equilibria: In one case,

when taxes adjust strongly to debt (in broadly used terminology fiscal policy is ‘passive’), then

the Lagrange multipliers equal 0, and the debt constraint is slack. In the second case, when taxes

do not adjust to debt, (fiscal policy is ‘active’) then the debt constraint is binding; the multipliers

are not zero and exert an influence on the optimal policy.

We then focus on the latter scenario to find an equivalent writing of the optimal interest rate

rule where the right hand side variables are macroeconomic variables only, the Lagrange multipliers

can be dropped. Our key finding is that such rules do exist, and they are fairly simple inflation

targeting rules in which the coefficients attached to inflation can be expressed as functions of the

model parameters. Moreover, the nominal rate tracks the real interest rate and (under certain

conditions) a stochastic intercept term, a function of the contemporaneous shocks to the economy,

also exerts an influence. The optimal rules are passive money rules : the nominal rate responds

weakly to inflation (e.g. Leeper, 1991).
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We characterize analytically these optimal rules in alternative versions of our model, in order to

highlight the different channels of optimal policy. We firstly use a simplistic Fisherian setup (e.g.

Cochrane (2001); Sims (2013) among others) in which the central bank only seeks to minimize the

volatility of inflation. In this context, aggregate output does not exert any influence on debt (does

not matter for fiscal solvency) enabling us to focus on the direct impact of inflation on public

debt dynamics. We show that the optimal policy is a simple inflation targeting rule, in which the

inflation coefficient equals δ, the decay factor of the coupon payments on government debt.

This result is intuitive. Under passive monetary policy, a higher inflation coefficient implies

more persistence, given that inflation is a backward looking process. When the maturity of debt

is short (i.e. δ = 0) persistence is undesirable, since only short term price changes can contribute

towards making debt sustainable when a shock occurs. With long maturity (δ close to 1) it is

optimal for inflation to revert to target at the same rate as the coupon payments on government

debt decay. This enables to spread efficiently the costs of inflation over time.

Our analysis then departs from this simplistic setup to consider more plausible specifications

of the model, considering a central bank that desires to smooth both output and inflation and

assuming that the real interest rate is endogenously dependent on output growth, as in the canon-

ical New Keynesian model. Though we can derive explicitly the optimal interest rate rule when

both of these modelling assumptions are made, we first separately consider each of them in order

to continue highlighting transparently the key forces at work.

Smoothing output adds inertia to the optimal policy rule, making inflation a more persistent

process for any debt maturity. Intuitively, when a smooth path of output is desired, tempo-

rary innovations to inflation (that would otherwise be optimal when debt is short term) are not

warranted, as they result in output variability and increase the losses of the central bank. Our

analytical formula characterizes the optimal coefficients in this case, as a function of the relative

weight attached to output stabilization and of the debt maturity.

In the canonical model, where the real interest rates depend on output growth, optimal policy

also takes the form of a simple inflation targeting rule. The optimal inflation coefficient is now

not only a function of the average maturity of debt but also accounts for the indirect effects

of inflation, through output, on the real bond prices, since prices matter for the intertemporal

solvency of debt. We provide a simple formula showing the dependence of the optimal rule on the

parameters that account for the direct and indirect channels of inflation.

Bringing these margins together we characterize analytically the optimal policy rule in the

canonical model with a dual mandate objective function. The rule that we can derive is basically

a fusion of the two separate scenarios, featuring an inertial response to inflation and accounting

for the direct and indirect effects. Such a policy function remains optimal when we add subsidies

to the model to eliminate distortions from monopolistic competition, when we assume that the

central bank targets the natural rate of output, or when it pursues a simpler objective targeting

a constant (steady state) output level.

Section 4 delves deeper into these properties characterizing the impulse responses of macroe-

conomic variables to shocks. We draw two important findings from this analysis: First, when the
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maturity of debt is long, the objective to smooth output lines up with the objective to spread

the distortions of inflation across periods. Second, the indirect effect of inflation turns out not

to matter much with long term debt, since any impact of the output path on long bond prices is

compensated by an analogous impact on the real discount rates of future government surpluses.

These results lead us to the following important policy conclusion: When the maturity of debt

is calibrated to the US data, a simple rule setting the inflation coefficient equal to δ ≡ 1− 1
Maturity

provides a very good approximation of optimal policy in the canonical model and when the central

bank has the dual mandate to stabilize both output and inflation. A transparent rule where

the average maturity of debt is the only relevant moment, works well regardless of whether the

objective function of the central bank is ad hoc (e.g. targets constant output) or is derived through

a second order approximation of the household welfare function.

Section 5 summarizes the results from several extensions of the model considered in the ap-

pendix, showing the robustness of our findings to alternative modelling assumptions. A final

section concludes the paper.

This paper contributes and is related to several strands of literature. First, the main contri-

bution of our work is to characterize optimal interest rate policies when government debt matters

for inflation. As discussed previously, though a considerable amount of work has been done in

the standard New Keynesian framework (where debt is irrelevant for inflation, e.g. Giannoni and

Woodford (2003) and previously referenced papers), to our knowledge no existing theoretical work

has derived explicitly optimal interest rate rules when monetary policy needs to account for debt.

As we explained, the main difficulty with this task is that Ramsey optimality conditions feature

the history of Lagrange multipliers attached to the debt constraint. Our substantive finding is

that commitment to rules that set the nominal interest rate as functions of inflation and target

real rates are sufficient to implement optimal policy outcomes.

An alternative approach (which has been adopted by some papers in the literature) is to

numerically characterize optimal interest rate rules. For example, Schmitt-Grohé and Uribe (2007)

(the only paper that we are aware of doing this for the case of active fiscal policy) consider a rule

in which the nominal rate responds to inflation, output and one lag of the interest rate and then

numerically solve for the coefficients that maximize the welfare of the household. Interestingly,

Schmitt-Grohé and Uribe (2007) find that such standard rules can approximate Ramsey outcomes

when active fiscal policy entails a too strong reaction of taxes to debt, but not when taxes are

weakly responding to the debt level, as we assume here.3 They reach this finding in a model with

one period (quarterly) debt.

Our analytical formulae complement this line of work. Researchers interested in finding rules

3To explain this better, active fiscal policy means that debt has an explosive root. This can be the case when
taxes are constant (or nearly constant) or when taxes over-adjust so that the root is smaller than minus 1 (in that
equilibrium debt features explosive oscillations). Our analysis concerns the former (and more standard) scenario
where the rules employed by Schmitt-Grohé and Uribe (2007) do not perform as well.

In the appendix we revisit this conclusion, showing that rules similar to the ones used by Schmitt-Grohé and
Uribe (2007), with optimized coefficients, underperform relative to our optimal (Ramsey) rules across all maturity
structures. Differently from Schmitt-Grohé and Uribe (2007) however, who solve their model using a second order
accurate solution, we employ the standard linear quadratic framework with the usual microfounded loss function.
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that bring model outcomes close to optimal policy (or want to understand where simple rules of

the sorts used in DGSE models may fail in doing so) will find in our solutions a useful benchmark.

For instance, our result that a simple inflation targeting rule with a coefficient equal to δ can

approximate the Ramsey outcome, holds for an empirically plausible debt maturity structure, but

not with quarterly debt. Our formulae reveal that when debt is short term, then an optimal rule

may need to respond contemporaneously to shocks, or in the presence of strong indirect effects,

the inflation coefficient may be slightly negative! The methodology that we use in order to arrive

to these analytic results and which is spelled out in the online appendix (applied to the several

variants of the baseline model we consider), will be useful to researchers that may want to extend

our findings to alternative environments (e.g. models featuring more sources of rigidities than in

pricing, as we assumed here).

Our work is also related to a large literature studying the interactions between monetary and

fiscal policies in macroeconomic models (e.g. Sargent, Wallace et al., 1981; Leeper, 1991; Sims,

1994; Woodford, 1994, 1995, 2001a; Cochrane, 1998, 2001; Schmitt-Grohé and Uribe, 2000; Bas-

setto, 2002; Eggertsson, 2008; Canzoneri, Cumby, and Diba, 2010; Del Negro and Sims, 2015;

Davig and Leeper, 2007; Reis, 2016; Jarociński and Maćkowiak, 2018; Leeper and Leith, 2016;

Bianchi and Ilut, 2017; Bianchi and Melosi, 2017; Davig and Leeper, 2007; Bianchi and Melosi,

2019; Leeper, Traum, and Walker, 2017; Kumhof, Nunes, and Yakadina, 2010; Bi and Kumhof,

2011; Benigno and Woodford, 2007; among many others).4 Particularly related is the framing of

the interactions in Leeper (1991), in terms of two distinct regimes: In one regime fiscal/monetary

policies are active/passive and in the second regime they are passive/active (for any other config-

uration of policies, i.e. active/active or passive/passive, the model does not have a unique stable

rational expectations equilibrium).

As discussed previously, our model admits two types of equilibria, under passive and active fis-

cal policies. When taxes strongly adjust to debt (passive fiscal) the Lagrange multipliers attached

to the debt constraint are endogenously zero and we obtain the optimal policy of the standard

New Keynesian model. The optimal interest rate rules in this scenario are active. We characterize

these rules analytically for the different versions of the model we consider. Besides illuminating

the contrast with the case of active fiscal policy, these derivations demonstrate that the model

nests the two equilibria of active/passive policies defined in Leeper (1991).5 Whereas in Leeper

(1991) and the rest of the literature that used his influential framework, interest rate rules are

ad-hoc, here they are optimal. Our framework can thus be seen as an extension of this important

model to optimal monetary policy. This is a separate contribution of our paper.6

4See in particular Leeper and Leith (2016) for a very comprehensive overview of this literature focusing on the
interactions between monetary and fiscal policy.

5Our solution gives rise to two stable equilibria, there is no room here for any lack of coordination between the
two policies that could bring about multiple equilibria (as for example in the case of a passive/passive regime).
This has to do with the assumed structure of the policy program. The fiscal authority ‘commits’ to a tax rule
and this is internalized by the optimizing monetary authority. Essentially, monetary policy acts like a ‘Stackelberg
leader’ (though this term is not fully correct since we do not model optimal fiscal policy). Given this framing, it
is not surprising that optimal monetary policy leads to unique equilibria.

6Our framework can be used to study optimal policies in context of the various significant extensions of Leeper
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Our work is also related to a considerable literature studying optimal policy with debt. A large

strand of this literature has studied the properties of optimal distortionary taxes and debt issuance

in real models (e.g. Lucas and Stokey (1983); Aiyagari, Marcet, Sargent, and Seppälä (2002);

Angeletos (2002); Buera and Nicolini (2004); Faraglia, Marcet, Oikonomou, and Scott (2019, 2016)

among many others). Lucas and Stokey (1983) were the first to tackle this problem in a complete

financial market setting, assuming that debt is issued in state contingent securities. Aiyagari et al.

(2002) and Marcet and Scott (2009) instead focused on the case where the optimizing government

issues only non-state contingent debt, a short term bond. Faraglia et al. (2016) extended this

approach to long term government bonds.

Our approach to modelling optimal policy is methodologically similar to the approach of these

papers. We assume incomplete markets as Aiyagari et al. (2002), Marcet and Scott (2009), and

Faraglia et al. (2016) do. Moreover, even though taxes are exogenous here and instead policy sets

distortionary inflation to make debt solvent, many of the features of the optimal allocation are

common with optimal taxation models. We therefore frequently refer to well known results from

this literature to explain our findings.

From the second strand of this related literature studying optimal policy with debt- the papers

on Ramsey monetary/fiscal policies previously referenced- the work of Leeper and Zhou (2021)

is most closely related to ours. Leeper and Zhou (2021) utilize a linear quadratic framework

broadly similar to the one employed here, to investigate how the optimal mix of inflation and

taxes varies with the debt maturity and with the relative importance attached to smoothing

inflation v.s. smoothing output fluctuations in the objective of the planner. While their paper

makes considerable progress with deriving analytical results in this context, their interest is not

in deriving optimal monetary policy rules. Thus, our findings are complementary.7

Lastly, in recent work, Chafwehé, de Beauffort, and Oikonomou (2022) use the simplistic

Fisherian model we present in Section 3 to derive optimal interest rate rate rules in a model with

active fiscal policy. Their paper experiments with alternative ways of modelling government bonds,

most notably considering separately the case where governments can engage in debt buybacks and

the case where they cannot. We use a standard setup of modelling government debt (as in e.g;

Woodford, 2001a; Bianchi and Ilut, 2017; Leeper and Zhou, 2021 and others) and moreover,

relative to Chafwehé et al. (2022), our derivations extend to more plausible calibrations of the

New Keynesian model with debt.

(1991) considered in the literature. For example, it can be applied to study regime fluctuations, (Davig and Leeper
(2007); Bianchi and Melosi (2017, 2019)), an extension we are pursuing in current work. Our analytical rules and
methodology should also be applicable in the context of models with jointly optimal monetary/fiscal policies, the
papers previously referenced.

7Our findings are also complementary to Kirsanova and Wren-Lewis (2012) who, departing from the jointly
optimal problem, consider the case where fiscal variables follow feedback rules similar to the ones assumed here.
Their numerical solutions suggest that under a strong reaction of spending or taxes to (short term) debt, optimal
monetary policy resembles an active policy. However, their characterization of active/passive policy is based on
the model solution which links the nominal rate with the state variables of their model (shocks and debt stocks).
This is a very different approach than the one we adopt in this paper. Kirsanova and Wren-Lewis (2012) do not
derive standard interest rate rules.
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2 Theoretical Framework

We consider an optimal policy problem where a Ramsey planner (the Fed) sets the path of macroe-

conomic variables, interest rates, inflation and output, subject to the dynamic equations that define

the competitive equilibrium. Our framework is a standard New Keynesian model, with monopo-

listically competitive firms operating technologies which are linear in the labour input and setting

prices subject to adjustment costs as in Rotemberg (1982). The model is augmented with a fiscal

block, the consolidated budget constraint and a tax rule that determines the response of taxes to

the lagged value of government debt. We derive our main results under the assumption that taxes

are lump sum.

Since this is a standard setup, we will describe the competitive equilibrium using the equations

of the log-linear model. We leave it to the appendix to characterize the household and firm optimal

behavior from the (background) non-linear model.

2.1 The model

We use the standard notation x̂ to denote the log deviation of variable x (in the nonlinear model)

from its steady state value, x. The model equations are the following:

π̂t = κ1Ŷt − κ2Ĝt + βEtπ̂t+1, (1)

where κ1 ≡ − (1+η)Y
θ

(γh + σ Y
C
) > 0, and κ2 ≡ − (1+η)Y

θ
σG
C
> 0,

ît = Et

(
π̂t+1 − ξ̂t+1 + ξ̂t − σ

[
Y

C
(Ŷt − Ŷt+1)−

G

C
(Ĝt − Ĝt+1)

])
, (2)

pδbb̂t,δ + pδbp̂t,δ = −sŝt + (1 + δpδ)b

(
b̂t−1,δ − π̂t

)
+ δpδbp̂t,δ, (3)

pδp̂t,δ = β(1 + pδδ)Et

[
−σ
(
Y

C
(Ŷt+1 − Ŷt)−

G

C
(Ĝt+1 − Ĝt)

)
− π̂t+1 + ξ̂t+1 − ξ̂t

]
+ βδpδEtp̂t+1,δ

]
.

(4)

(1) is the Phillips curve at the heart of our model. π̂t represents inflation and Ŷt is output. Ĝt

denotes government spending in t. Parameters η < 0 and θ > 0 govern the elasticity of substitution

across the differentiated (monopolistically competitive) goods produced in the economy and the

degree of price stickiness, respectively.8

σ denotes the inverse of the intertemporal elasticity of substitution and γh is the inverse of

the Frisch elasticity of labour supply. These objects influence the slope of the Phillips curve, κ1,

through their influence on the response of hours/output to changes in marginal costs (wages). σ

influences the magnitude of coefficient κ2 due to the income effect on labour supply.

(2) is the standard log-linear IS-Euler equation which prices a short term nominal asset. ξ̂ is a

8θ is the parameter that governs the magnitude of price adjustment costs in the standard quadratic cost function
of Rotemberg (1982). When θ equals zero prices are fully flexible.

8



standard preference shock which affects the relative valuation of current vs. future utility by the

household. A drop in ξ̂ makes the household relatively patient, willing to substitute current for

future consumption.9

(3) is the consolidated budget constraint. The left hand side (LHS) of this equation represents

the value of debt issued in period t. The leading term, b̂t,δ, denotes the quantity of real net

government bonds issued in t and held by the private sector, whereas the second term, p̂t,δ,

represents the price of the newly issued debt in deviation from steady state. When δ > 0 debt

is issued in a perpetuity bond that pays decaying coupons.10 When δ = 0 only short bonds are

issued by the government. On the right hand side (RHS) of (3) we have the government’s surplus

(sŝt = τ τ̂t − GĜt, where τ denotes taxes) and the real value of debt that was issued in t − 1

(remaining terms).

Finally, equation (4) defines the recursive formula that determines the price of debt in period

t. Iterating forward this equation and substituting the equilibrium price in (3) and rearranging,

it is possible to write the consolidated constraint as:

βb

1− βδ
b̂t,δ + b

∞∑
j=1

βjδj−1

[
Et

(
−σ(Y

C
Ŷt+j −

G

C
Ĝt+j)−

j∑
l=1

π̂t+l + ξ̂t+j

)]

= −sŜt − bσ

(
Y

C
Ŷt −

G

C
Ĝt

)
+ bξ̂t (5)

+
b

1− βδ
(b̂t−1,δ − π̂t) + δb

∞∑
j=1

βjδj−1Et

(
−σ(Y

C
Ŷt+j −

G

C
Ĝt+j)−

j∑
l=1

π̂t+l + ξ̂t+j

)

where Ŝt denotes the surplus scaled by marginal utility in deviation from the steady state and

sŜt ≡
[
−G
(
Ĝt(1 + σ

G

C
)− σ

Y

C
Ŷt + ξ̂t

)
+ τ

(
τ̂t − σ(

Y

C
Ŷt −

G

C
Ĝt) + ξ̂t

)]
2.1.1 Tax rule

Fiscal policy is assumed to follow a standard rule that links the level of taxes to the face value of

debt outstanding:

τ̂t = ϕτ,bb̂t−1,δ (6)

9We focus on these two shocks as firstly fiscal shocks are clearly important in the context of a paper on fiscal
inflation, and secondly, changes in real interest rates driven by discount factor shocks have been shown an important
source of fluctuations for government budgets. For example, de Lannoy, Bhandari, Evans, Golosov, and Sargent
(2022) argue that such shocks are an important source of risk that debt management should ward off to ensure
the intertemporal solvency of US government debt. Here the focus is on the inflation consequences of these shocks.
See also Bianchi and Melosi (2017, 2019) for in depth analyses of the monetary/fiscal interactions in the context
of DSGE models with recessions being induced by discount factor shocks.

Finally, it should also be noted that the formulae that we will derive below will continue being relevant when
we assume additional sources of shocks, e.g. shocks to government transfers, or cost-push shocks. We discuss this
further below.

10In this case we assume that short term debt is in zero net supply.
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Coefficient ϕτ,b is a crucial object. Below we will separately consider cases where taxes adjust

strongly to debt, so that debt becomes solvent through fiscal policy and cases where taxes do

not strongly adjust and the solvency of debt will be (endogenously) ensured by monetary policy.

In standard terminology, fiscal policy is passive in the former scenario and active in the latter

(Leeper, 1991).

To derive our results analytically, we will assume that when fiscal policy is ‘active’, then

ϕτ,b = 0. This assumption is also made (for example) by Bianchi and Ilut (2017) and Bianchi and

Melosi (2017). For passive fiscal policy, we will set ϕτ,b > ϕ̃τ , where ϕ̃τ is a threshold value defined

below as a function of model parameters.11

2.2 Optimal Policy

Policy Objective. The central bank sets the inflation and output sequences to maximize the

following objective function:

− 1

2

∞∑
t=0

βtE0

{
π̂2
t + λY Ỹ

2
t

}
(7)

for λY ≥ 0 and where Ỹt defines the output target.

A couple of lines are needed to motivate this choice. First, notice that (7) is a standard

dual mandate objective function when the central bank assigns a positive weight λY to output

stabilization. It is well known (see e.g. Woodford (2003a), Ch. 6), that λY can be derived

endogenously as a function of the structural parameters of the model through a second order

approximation of the household utility function. However, our derivations below will establish

formulas applicable to any λY ≥ 0, including λY = 0 (in which case the optimal policy focuses on

inflation stabilization only). This broader approach will offer analytical convenience and help us

to separately highlight the channels of optimal policy so that our (more complex) formulae under

the quadratic welfare approximation are more easily interpretable.

Furthermore, notice that in (7) the central bank seeks to stabilize a measure of the output gap

defined by Ỹt. We will consider two separate cases: Ỹt = Ŷt (the objective is to stabilize output

relative to its steady state level) and Ỹt = Ŷt− Ŷ n
t (stabilize output relative to the natural level.)12

Assuming a steady state output target is quite common in the literature (e.g. Giannoni and

Woodford, 2003 and Gaĺı, 2015) and moreover it is plausible since in practice central banks are

called to achieve such simple objectives (McKay and Wolf, 2022).13 On the other hand, targeting

the natural output is consistent with the micro-founded approach to optimal policy. We will show

11Our results do not depend on the exact specification of (6). Since taxes are lump sum, the precise timing of
taxes is irrelevant. Therefore, we could (for instance) assume a more persistent tax response, adding a first order
autoregressive component to (6). Only the distinction between active/passive fiscal policies is relevant for our
results.

12We use the standard definition of the natural output, Ŷ n
t = κ2

κ1
Ĝt = G

Y+
γh
σ C

Ĝt. See for example Woodford

(2003a).
13Some of the well known results in the literature have been derived assuming steady state output targets and

for this reason this is a case that is worth considering. For example, in the appendix we extend our results to the
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that our formulae can easily accommodate both of these scenarios.14

Optimality. Maximization of (7) is subject to the dynamic equations (1) and (5) and given

the tax rule (6).15 As it is standard, we solve for optimal policies with a Lagrangian. Letting

ψπ,t be the multiplier attached to the Phillips curve constraint, and ψgov,t the analogous multiplier

attached to the consolidated budget, the first order conditions for the optimum are given by:16

−π̂t +∆ψπ,t +
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l = 0 (8)

−λY Ỹt − ψπ,tκ1 + σ
Y

C
b

∞∑
l=0

δl∆ψgov,t−l + σ
Y

C
(G− τ)ψgov,t = 0 (9)

b

1− βδ

(
ψgov,t − Etψgov,t+1

)
+ ϕτ,bτEtψgov,t+1 = 0 (10)

(8) is the FONC with respect to π̂t; (9), (10) are first order conditions with respect to Ỹt and

b̂t,δ respectively.

2.2.1 Interpreting the first order conditions

To inspect these optimality conditions, let us consider first ψgov,t = 0 for all t. Notice that this

corresponds to the case where the consolidated budget constraint exerts no influence on optimal

policy and it will later be shown an endogenous outcome of the model under passive fiscal policy.

Under this assumption, combining equations (8) and (9) to substitute out the multiplier ψπ, we

get:

π̂t +
λY
κ1

∆Ỹt = 0 (11)

objective function used by Giannoni and Woodford, 2003,

−1

2

∞∑
t=0

βtE0

{
π̂2
t + λY Ŷ

2
t + λiî

2
t

}
when the policy objective targets steady state output, featuring also interest rate smoothing. We derive supple-
mentary results for this scenario.

14The welfare based criterion requires to be derived under the assumption that the fiscal authority subsidizes
factor inputs to eliminate the inefficiency emanating from imperfect competition. We have not (yet) introduced
subsidies to the model, however, this will only be a simple extension of our derivations.

15Given optimal policies we can use (4) to solve for p̂t,δ. In other words, we do not have to keep track of the bond
price in the optimal policy program. Analogously, (2) is slack, and given a path of the optimal policy variables we
can find the sequence {̂it} to satisfy this constraint.

16Note that we solve for optimal policy from a timeless perspective. We thus do not consider (for example) the
usual initial allocation problem whereby the planner may inflate away public debt at the beginning of the horizon.

As is well known, solving for optimal policies from a timeless perspective, requires to introduce additional
constraints on the initial allocation (e.g Giannoni and Woodford, 2003), or the program can be stated in terms of
an objective function that accounts explicitly for the lagged Lagrange multipliers at the beginning of the planning
horizon (e.g Faraglia et al. (2016)). To avoid introducing explicitly all these elements we do not state the Lagrangian
here.
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Equation (11) designates the trade-off between inflation and output growth under the optimal

policy. It is the same optimality condition as the one we would derive from the standard 3-

equation New Keynesian model without the debt constraint (e.g. Woodford (2003a)). As is well

known, this optimal plan is inertial (the FONC features the lag of the Lagrange multiplier ψπ,t−1)

due to the presence of forward expectations in the Phillips curve (Woodford (2003a); Giannoni

and Woodford (2003)). Committing to a higher inflation rate in t changes Ỹt by
1
κ1

and Ỹt−1 by

− β
κ1
. Given discounting in the planner’s objective, we obtain (11).

Consider now ψgov,t ̸= 0. Rearranging the FONC we get :

π̂t +
λY
κ1

∆Ỹt =

:=Dt︷ ︸︸ ︷
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l + σ
Y

C
b

∞∑
l=0

δl
(
∆ψgov,t−l −∆ψgov,t−l−1

)
+ σ

Y

C
(G− τ)∆ψgov,t

(12)

Thus, the optimal policy will not equate π̂t +
λY
κ1
∆Ỹt to 0, but to a weighted sum of the current

and lagged values of the multiplier on the consolidated budget. To save notation we label this

sum Dt.

What do these terms capture? Shocks to government spending or to preferences will impact

the value of debt and the deficit. When the debt constraint becomes important for the optimal

allocation, inflation and output adjust to satisfy the constraint and ensure the solvency of debt.

The terms on the RHS of (12) essentially capture changes in π̂t and Ỹt driven by shocks being

filtered through the consolidated budget constraint.

To further clarify this, consider the intertemporal budget constraint that can be obtained by

iterating forward on (5):

Et

∞∑
j=0

βjsŜt+j =
b

1− βδ
b̂t−1,δ + b

∞∑
j=0

βjδjEt

[
−σ
(
Y

C
Ŷt+j −

G

C
Ĝt+j

)
−

j∑
l=0

π̂t+l + ξ̂t+j

]
(13)

The intertemporal constraint (13) links the present value of the government’s surplus (LHS) to

the real value of debt outstanding in t (RHS). Note also that (13) is equivalent to (5) in terms of

the optimal policy.17 Consider the impact of a shock which lowers the LHS of (13) relative to the

RHS. This may, for example, occur following a shock which increases spending. In response to

such a shock, the constraint tightens and the value of the multiplier ψgov increases. To satisfy the

constraint, the monetary authority may need to engineer a drop in the real payout of debt (the

RHS of (13)) either through increasing inflation and/or adjusting output when σ > 0. Moreover,

since optimal policy features full commitment, it is feasible to adjust both the current and future

values of these variables. The lagged values of the multipliers in the date t optimality condition

capture the promises made by the planner to change inflation and output in t in response to shocks

which have occurred in the past.

17See for example Aiyagari et al. (2002).
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The multiplier under active fiscal policy. Assume that fiscal policy is active and so ϕτ,b = 0.

Then (10) becomes:

ψgov,t = Etψgov,t+1

The multiplier evolves according to a random walk.

This result is standard in models of optimal policy under incomplete markets. Aiyagari et al.

(2002); Faraglia et al. (2016) examine models where a Ramsey planner optimally sets the path

of distortionary taxes to finance spending shocks. In Schmitt-Grohé and Uribe (2004); Lustig

et al. (2008); Faraglia et al. (2013); Leeper and Zhou (2021) the planner can simultaneously set

distortionary taxes and inflation to satisfy the intertemporal budget constraint. The multiplier

on the debt constraint measures the burden of the distortions and it follows a random walk, as

the planner aims to evenly spread the costs over time.

The same principle applies here. Although we have assumed that taxes are lump sum and

exogenous to the planning program, inflation is distortionary due to the Phillips curve and the

objective (7). The random walk property implies that the optimal policy aims to evenly distribute

the burden of the distortions caused by inflation across periods.

3 Optimal Monetary Policy and Interactions with Fiscal

Policy

The previous paragraph showed that optimality in the Ramsey program takes the form of condition

(12) expressing the inflation output trade-off as a function of the sum of current and lagged

Lagrange multipliers. In the case where ψgov,t = Dt = 0 (the debt constraint is not relevant

for optimal policy) then (11), the standard optimality of the 3 equation New Keynesian model,

applied.

When π̂t +
λY
κ1
∆Ỹt = 0 optimal monetary policy can be represented by an interest rate rule

setting ît as a function of macroeconomic variables. One can simply use the Euler equation to

back out the appropriate policy rule satisfying π̂t+
λY
κ1
∆Ỹt = 0 for all t. (See for example Giannoni

and Woodford (2003) and our derivations below).

However, when the debt constraint affects optimal policy, such that ψgov,t,Dt ̸= 0, finding a

rule that relates interest rates to macroeconomic variables is not straightforward. Condition (12)

(together with the Euler equation) suggests that the sequence of optimal interest rates depends

on the current and lagged multipliers. Such a representation of interest rate policy is of limited

practical relevance.

We show in this section that optimal monetary policy can be summarized by standard rules

that express the nominal rate as a function of macroeconomic variables, both when Dt = 0 and

when Dt ̸= 0. The two scenarios will be relevant because the model admits two types of equilibria:

When fiscal policy is passive and debt sustainability is ensured by taxes, we will have Dt = 0.
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When fiscal policy is active then we will have Dt ̸= 0.

Furthermore, in the case where Dt ̸= 0, the optimal interest rate rule will be a passive money

rule (e.g. Leeper, 1991); and when fiscal policy is passive, the optimal policy will be an active rule.

We will present our results as two separate equilibria, one in which the monetary/fiscal regime is

active/passive and one in which it is passive/active. This framing follows Leeper (1991).

We provide analytical formulae for these optimal rules for several calibrations of the model. We

start with a very simple setup: a Fisherian economy in which the central bank aims at stabilizing

only inflation, λY = σ = 0. Under this calibration the real interest rate is exogenous (driven

by shocks ξ̂t) and, since income effects on labour supply are absent, we also have κ2 = 0.18 This

setup offers considerable analytical convenience and it will help us build intuition for the optimal

policy in more realistic calibrations of the model, which we will consider next. Analogous Fisherian

models can be found in Aiyagari et al. (2002); Cochrane (2001); Davig and Leeper (2007); Cochrane

(2018); Sims (2013); Faraglia et al. (2016); Bouakez, Oikonomou, and Priftis (2018); Bianchi and

Melosi (2019).

3.1 A Fisherian model with an inflation stabilization objective.

3.1.1 Fiscal Policy

We begin by characterizing the equilibrium multiplier ψgov under passive and active fiscal policies.

To simplify the algebra, let us also assume δ = 0 and that shocks to preferences and spending are

i.i.d.19 Then, inflation will evolve according to:

π̂t = b∆ψgov,t (14)

Using this expression to substitute inflation out from the consolidated budget and using the

Phillips curve to substitute output, together with the tax rule (6), we get:

b̂t,δ − bEt∆ψgov,t+1 +
1

βb

(
(s− b)ξ̂t −GĜt

)
=

1

β

[
1− τϕτ,b

b

]
b̂t−1,δ − b∆ψgov,t (15)

Equation (15) together with (10) form the system of equations that needs to be resolved to find

the optimal allocation.

Active Fiscal Policy. Consider first ϕτ,b = 0. Since from (10) ψgov,t is a random walk we can

write (15) as:

b̂t,δ +
1

β
χ̃t =

1

β
b̂t−1,δ − b∆ψgov,t

18Thus, a spending shock under the Fisherian setup does not impact the Euler equation or the Phillips curve, it
only appears in the government budget constraint. It is essentially equivalent to pure (lump sum) transfer shock.

19At the end of this subsection we generalize the results to δ ≥ 0. Moreover, we will derive most of our analytical
results in Sections 3 and 4 assuming i.i.d shocks for simplicity, but in Section 5 we will show that it is straightforward
to extend our analytical formulae to the case of persistent shocks.
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where χ̃t ≡ 1
b

(
(s− b)ξ̂t−GĜt

)
. This difference equation has an unstable root, 1

β
. It can be solved

forward to give:

b̂t−1,δ =
∑
j≥0

βjEt

[
χ̃t+j + b∆ψgov,t+j

]
= χ̃t + b∆ψgov,t (16)

where the second equality makes use of the assumption that shocks are i.i.d and the random walk

property of the multiplier. Clearly, (16) can be consistent with the random walk if and only if

b̂t,δ = 0 for all t. In equilibrium we then have:

∆ψgov,t = −1

b
χ̃t and π̂t = −χ̃t.

Passive Fiscal Policy. Now assume ϕτ,b is positive and its value exceeds some threshold

ϕ̃τ > 0. ψgov,t evolves according to:

ψgov,t =

(
1− τϕτ,b

b

)
Etψgov,t+1

and solving forward we get ψgov,t = 0 for all t20.

Inflation will be zero at all times. Using these results and the consolidated budget (15) we can

show that debt is a stable process if the following condition is met:

ϕτ,b > (1− β)
b

τ
≡ ϕ̃τ (17)

The model admits two types of equilibria: In one case, when fiscal policy is active, we have

that ψgov,t ̸= 0 and inflation responds to shocks that hit the consolidated budget constraint. In

the second scenario, fiscal policy adjusts taxes to debt so that condition (17) holds; then, taxes

ensure the intertemporal solvency of debt and ψgov,t = 0. Since the debt constraint is slack, it is

not necessary to use inflation to adjust the real value of debt.

The above derivations can be easily extended to the case where δ > 0. The algebra is a bit

cumbersome and so we simply highlight the main result with the following Proposition:

Proposition 1. If ϕτ,b satisfies

ϕτ,b >
(1− β)

(1− βδ)

b

τ
≡ ϕ̃τ

then ψgov,t = 0. If ϕτ,b = 0 then ψgov,t ̸= 0.

20We will focus on cases where

(
1 − τϕτ,b

b

)
> 0. Scenarios in which taxes respond too strongly to debt and

violate this condition are implausible since they imply that debt has a negative root and oscillates through time.
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Finally, note that Proposition 1 does not only hold under the calibration λY = σ = 0 considered

in this paragraph. It will continue to hold when these parameters are considered positive in

subsequent sections.

3.1.2 Optimal Monetary Policy Rules

We now turn to the optimal monetary policy rules that can implement the Ramsey outcome. We

let δ ≥ 0. We will verify that the following simple inflation targeting rule can implement the

allocation under the optimal policy:

ît = ξ̂t + ϕππ̂t (18)

Consider first the case where fiscal policy is passive, ϕτ,b ≥ ϕ̃τ . As we showed previously, in

this equilibrium, optimal policy sets π̂t = 0. From the Phillips curve we find Ŷt = 0. It is easy to

show that the interest rate rule (18) can implement this outcome. Combining (18) with the Euler

equation we get the following difference equation in inflation:

π̂tϕπ = Etπ̂t+1

Standard results yield π̂t = 0 if and only if ϕπ > 1.

Consider now the case of active fiscal policy. In equilibrium, inflation and the interest rate are

given by

π̂t =
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l ît = ξ̂t +
bδ

1− βδ

∞∑
l=0

δl∆ψgov,t−l

A rule of the form (18) can implement this outcome if the following holds:

ϕπ
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l = δ
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l

Hence, ϕπ = δ ∈ [0, 1].

We highlight these results with the following Proposition:

Proposition 2. Assume λY = σ = 0. The optimal policy is a rule of the form (18). In the

case where fiscal policy is passive, the optimal monetary policy sets ϕπ > 1. In the case where

fiscal policy is active, the optimal inflation coefficient is ϕπ = δ ∈ [0, 1]. Optimal monetary policy

is then ‘passive’.

Several comments are in order. First, note that Proposition 2 clearly reveals the analogy

between our framework and the equilibria with active/passive monetary/fiscal policies defined

in Leeper (1991). Whereas in Leeper (1991), and in the rest of the literature that used this
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influential framework, monetary policy is modeled using ad hoc interest rate rules, here interest

rates are optimal in the sense that commitment to rule (18) can implement the optimal allocation

when the parameter values are as stated in Proposition 2. Moreover, simple inflation targeting

rules as in (18) are commonly used in the literature. The analytical derivations we provide here

show the conditions under which (18) is optimal in terms of the objective of the planner and the

fundamental model parameters.

Interpretation. According to Proposition 2, in the case of passive fiscal policy, the optimal

allocation can be implemented with any rule that satisfies the Taylor principle (ϕπ > 1). In

contrast, in the active fiscal scenario, optimal monetary policy constrains the parameter ϕπ to

equal δ, the rate at which the coupon payments on debt decay. The average debt maturity ( 1
1−δ )

becomes a key variable determining the reaction to inflation. A higher maturity of debt entails a

stronger reaction.

Why is this the desired response to inflation? To illuminate the forces at work, let us assume

that the economy is hit by a shock in t assuming also (for simplicity) that no shock hits the economy

thereafter. When monetary policy follows (18) and ϕπ < 1, then inflation becomes a backward

looking process. We can therefore solve the path of inflation as π̂t+j = ϕjππ̂t, j = 1, 2, ... up to the

initial condition π̂t. In turn, π̂t can be found to satisfy the intertemporal budget constraint given

the shock. Inflation will jump initially, and revert to steady state at rate ϕπ.

Now consider the optimal policy plan. The path of inflation is: π̂t+j = b
1−βδδ

j∆ψgov,t. The

shock will induce a change in the value of the multiplier in t and thereafter ψgov will remain

constant; under the optimal policy, inflation will jump in t (to again satisfy the intertemporal

constraint) and converge back towards the steady state at rate δ.

It is quite evident that setting ϕπ = δ produces the exact same responses in the two cases (the

initial jumps would also be equal to satisfy effectively the same intertemporal budget). Intuitively,

if ϕπ exceeded δ then inflation persistence would be too high under the interest rate rule and

inflation would be far from 0 even when the coupon payments are close to 0. High future inflation

would however not contribute significantly towards making debt sustainable and a policy setting

ϕπ > δ couldn’t be optimal.

Analogously, if ϕπ is lower than δ, then inflation will be more frontloaded than under the

optimal policy. To satisfy the intertemporal budget, inflation will then need to be higher in period

t, since it decays faster towards 0. But this path doesn’t fully exploit the maturity structure of

debt; it is possible to reduce inflation in t by targeting a smoother and more persistent path of

inflation, relying on a bigger adjustment of the real payout of future coupon payments to the

shock. This will enable to spread the burden of fiscal inflation more efficiently and reduce the

losses of the central bank.

Finally, note that under both active and passive fiscal policies, the optimal interest rate rule

tracks the real interest rate which, in this simple Fisherian model, is equal to ξ̂t. This feature of

optimal monetary policy enables to eliminate the demand shock from the Euler equation. When

fiscal policy is passive, it leads to the zero inflation/divine coincidence outcome we previously
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showed. In the case of active fiscal policy inflation is not zero, since the preference shock is also

filtered through the government budget constraint. Real interest rate tracking will be a feature of

all versions of the model we will consider subsequently.21

3.2 Alternative Settings

The simple model of the previous subsection highlighted an important property of optimal mon-

etary policy in the active fiscal regime: inflation persistence governed by the coefficient ϕπ, is

desirable with long term debt. The condition ϕπ = δ sets the persistence of inflation equal to the

persistence of the payment profile of the long bond.

This mechanism continues being relevant in the case where λY , σ are not constrained to equal

zero, to which we will now turn. However, introducing an output smoothing objective (λY > 0)

or setting σ > 0, to make real interest rates endogenously vary with aggregate output (as in the

canonical New Keynesian model) introduces additional channels that impact optimal inflation and

the interest rates. When λY > 0 making inflation an i.i.d process is not warranted even when debt

is short term, since temporary jumps in inflation result in excess output volatility, increasing the

losses of the central bank. As we shall see, output smoothing leads to optimal inflation persistence.

Furthermore, whilst in a Fisherian model output fluctuations are irrelevant for the debt solvency,

when σ > 0, changes in output growth result in fluctuations in bond prices that affect the solvency

of the intertemporal budget. This channel will also impact the optimal monetary policy.

We now derive the optimal interest rate rules for the cases of output smoothing and endogenous

real interest rates, extending our previous analytical results. In order to highlight transparently

what each of these features brings to optimal policy, we study them in isolation, starting from

σ = 0, λY > 0 (Fisherian model with output smoothing) and then considering σ > 0 λY = 0

(canonical New Keynesian model with a pure inflation smoothing objective).

In this subsection we will show our formulae for the interest rate rules. Then, in the first part

21Multiplicity: It should be noted that the optimal interest rate rule in this simplistic version of the model is
not unique in the sense that other specifications of the interest rate reaction function can deliver the same outcome
as (18). For example, consider a rule of the form

ît = ξ̂t + ϕππ̂t + ϕY Ŷt (19)

where the nominal rate responds to both output and inflation. We can show that (19) can implement the optimal
policy outcome under active fiscal policy provided that ϕπ + ϕY

κ1
(1 − βδ) = δ. When this condition holds, then

inflation will again decay at rate δ following a shock to the economy (the analogous condition to get the passive
fiscal policy equilibrium under rule (19) is the familiar ϕπ + ϕY

κ1
(1− β) > 1).

Though (19) is an optimal interest rate rule in the Fisherian model of this paragraph, we prefer to work with
the simple rule in (18) for two main reasons: First, because it is less appealing to assume that monetary policy
targets output in a model where output fluctuations do not contribute towards making debt sustainable (i.e. when
σ = 0 see below) and do not enter into the central bank’s objective function; second, rule (18) leads to a more
transparent policy recommendation, setting the inflation coefficient equal to δ, relative to (19) where the analogous
condition involves estimating additional parameters β and κ1.

Finally, note that multiplicity may be specific to the assumptions in this model (where output is a slack variable).
In the less restrictive versions of the model that we will consider next, it will not be easy to test explicitly whether
multiplicity arises under active fiscal policy. The optimal policy rules that we will derive will be simple, transparent
and readily interpretable functions of inflation.
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of Section 4 we will use our analytical results to clarify the forces behind optimal policy through

studying the dynamic adjustment of the economy to shocks. Finally, at the end Section 4 we will

be in place to show the optimal interest rate policy when λY , σ > 0, which will basically combine

the margins of the two separate cases we consider here.

3.2.1 Case 1: λY > 0, σ = 0.

Assume that the planner’s objective is to smooth both inflation and the output gap, focusing on

the case where λY > 0 but σ = 0. Natural output is constant, and thus Ỹt = Ŷt. Combining (8)

and (9) we can show that inflation satisfies the following condition:

−π̂t −
λY
κ1

∆Ŷt +
b

1− βδ

∞∑
k=0

δk∆ψgov,t−l = 0 (20)

Moreover, using the Phillips curve to substitute out aggregate output and after rearranging we

obtain the following :

Etπ̂t+1 − (1 +
1

β
+ κ̃)π̂t +

1

β
π̂t−1 = −ζt (21)

where κ̃ =
κ21
λY β

and ζt ̸= 0 (=0) when fiscal policy is active (passive).22 Inflation thus follows a

second order difference equation.

Consider the equilibrium where fiscal policy is passive. Equation (21) can be written as:

Etπ̂t+1 = (λ̃1 + λ̃2)π̂t − λ̃1λ̃2π̂t−1

where λ̃1,2 are the roots of the characteristic polynomial in (21):

λ̃1,2 =
1

2

(
(1 +

1

β
+ κ̃)±

√
(1 +

1

β
+ κ̃)2 − 4

β

)

Since one of the roots is unstable (say λ̃2) and the other root is stable, the interest rate rule that

implements the optimal allocation

ît = ξ̂t + (λ̃1 + λ̃2)π̂t − λ̃1λ̃2π̂t−1 (22)

defines an active monetary policy.

Turning to the active fiscal scenario, we can show that the optimal interest rate rule is:

ît = ξ̂t + (λ̃1 + δ)π̂t − λ̃1δπ̂t−1 − δ
õ

λ̃2 − 1
∆ψgov,t (23)

22For brevity we define the forcing term ζt in the appendix.
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where õ > 0 is defined in the appendix for brevity.

Proposition 3 summarizes these results:

Proposition 3. Assume λY > 0 and σ = 0. The Ramsey optimal interest rate rule is given

by (22) when fiscal policy is passive and ψgov,t = 0. It is given by (23) when fiscal policy is active

and ψgov,t ̸= 0.

Proof: See appendix.

The result in Proposition 3 and in particular the active fiscal scenario deserves a brief comment.

Note first that the systematic response of the nominal rate to inflation in (23) indeed defines a

passive monetary policy. Since λ̃1 + δ − λ̃1δ < 1 an x per cent rise in inflation will lead to a less

than x per cent increase in the nominal rate. Thus, this case also conforms with the principle that

when fiscal policy is active, optimal monetary policy can be expressed as a passive money rule.

Moreover, as we will explain in detail in Section 4, the fact that the rule is inertial (the nominal

rate responds to both the current and lagged inflation rates) implies that the optimal path of

inflation is more persistent in this model where the planner desires to smooth output fluctuations.

To show this in the simplest case possible, let δ = 0. Then (23) becomes ît = ξ̂t + λ̃1π̂t and so,

following any shock to the consolidated budget constraint, inflation will jump and revert to 0 at

rate λ̃1. In contrast, as we previously saw, setting λY = 0 and with short term debt, the optimal

inflation was an i.i.d process.

Furthermore, notice that in the case where δ > 0 optimal policy, besides responding to inflation

and the real rate, also responds to the term −δ õ

λ̃2−1
∆ψgov,t, a function of the Lagrange multiplier.

We did not (yet) derive a rule expressing the nominal rate as a function of macroeconomic variables

only.

This term is a stochastic intercept. It introduces a temporary innovation to the interest rate

rule whenever a shock hits the economy leading to ∆ψgov,t ̸= 0. For example, assume that spending

increases in t and so ∆ψgov,t > 0. Then, according to (23), optimal policy will keep the nominal

rate slightly lower in t than the value implied by the systematic component of the interest rate

rule. This effect concerns only period t since ∆ψgov,t is an i.i.d. variable.

It turns out that, in equilibrium, ∆ψgov,t can be written as a function of the two shocks (see

Section 4 for the analytical expression). Thus, we could replace the stochastic intercept with the

shocks, or even some linear combination of macroeconomic variables can substitute out ∆ψgov,t.

We choose not to expand on this here. In Section 4, when we will evaluate the model, we will

explore in detail the stochastic intercept term and investigate its significance for optimal policy.

We will then show that over plausible calibrations of the model this term exerts only a small

influence on optimal policy.

20



3.2.2 Case 2: σ > 0, λY = 0

Consider now the case where σ > 0. For illustrative purposes and to simplify the formulae we

will derive in this subsection, let us first assume that only preference shocks can hit the economy,

setting G = 0.

Combining the FONC of the planner’s program we get:

π̂t =
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l +
σ

κ1
b

∞∑
l=0

δl
(
∆ψgov,t−l −∆ψgov,t−l−1

)
− στ

κ1
∆ψgov,t (24)

which expresses inflation as a function of the multipliers.

It is evident that optimal inflation is zero in the equilibrium where ψgov,t = 0 for all t. A simple

inflation targeting rule as in (18) can implement this outcome insofar as ϕπ > 1.

Consider now the case where ψgov,t ̸= 0. Using the Phillips curve to eliminate aggregate output

we can write the Euler equation as:

ît =
σ

κ1
Et

(
π̂t+1 − βπ̂t+2 − π̂t + βπ̂t+1

)
+ Etπ̂t+1 + ξ̂t

and using (24) it is simple to show that:

Etπ̂t+1 = δπ̂t −
σ

κ1
(b− δτ)∆ψgov,t and Etπ̂t+2 = δEtπ̂t+1

With appropriate substitutions (see appendix) we obtain the following expression for the interest

rate rule:

ît = ξ̂t +

(
δ +

σ

κ1
(1− δ)(δβ − 1)

)
π̂t − ω̃∆ψgov,t (25)

where ω̃ > 0 is derived in the appendix and

(
δ + σ

κ1
(1 − δ)(δβ − 1)

)
< 1 so that (25) defines a

passive monetary policy.

The nominal rate thus again follows a simple rule which tracks the real rate ξ̂t, and responds

to inflation. The optimal coefficient ϕπ is a function of debt maturity, but now also parameters κ1

(the slope of the Phillips curve) and σ (the inverse of the IES) influence the value of the coefficient.

We will later explain in detail how these parameters are relevant, but basically they pertain to the

effects that changes in output have on real bond prices and on the intertemporal debt constraint,

when σ > 0. These effects are internalized by optimal policy through the term σ
κ1
(1− δ)(δβ − 1).

Notice further that, as in the previous paragraph, the optimal rule features a stochastic inter-

cept, the final term on the RHS of (25). The loading on this term is negative and therefore when

∆ψgov,t > 0 optimal policy will keep the nominal interest rate lower in t than what is implied by

the systematic component of the rule. We again leave it to Section 4 to explain this term.

We next state the optimal policy rule in the case where fiscal shocks can hit the economy and
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G > 0.

Proposition 4. Assume σ > 0, λY = 0 and G > 0. The optimal monetary policy rule under

active fiscal policy is:

ît = r̃t +

(
δ +

Y

C

σ

κ1
(1− δ)(δβ − 1)

)
π̂t − f∆ψgov,t︸ ︷︷ ︸

Stochastic Intercept

(26)

where r̃t ≡ ξ̂t +
γhG

Y+
γh
σ
C
Ĝt ≡ r̃nt

Proof: See appendix.23

For brevity, we give the formula for coefficient f (which depends on the output gap measure

Ỹ ) in the appendix. (26) is similar to (25), the main difference is that the real interest rate r̃t

that needs to be tracked is now also a function of the spending shock. According to Proposition

4, r̃t is equal to the natural rate of interest, r̃nt (see Woodford, 2003a).

4 Going deeper into optimal policy

We now build on the analytical results of the previous section to go deeper into the mechanics of

optimal policy, unraveling the various channels under the different scenarios we considered. To

do so, we complement our derivations with new formulae characterizing the transmission of the

shocks to the macroeconomy, focusing in particular on the dynamic response of inflation.

Throughout this section we focus on the case of active fiscal policy. The passive fiscal model,

besides having been very well investigated in the literature, will result in zero inflation. Thus, it is

simple for the reader to compare the properties of the equilibrium under passive and active fiscal

policies.

The key properties of optimal policy that we focus on in this section are the following: First,

an explicit output smoothing objective is a source of inflation persistence in the model. Even

when the maturity of debt is short, the planner still finds optimal to let inflation deviate from

target for a while, following a shock to the economy. With long term debt however, the incentive

to make inflation deviations persistent in order to smooth output fluctuations lines up with the

incentive to reduce real debt after a shock. Second, as discussed previously, in the canonical New

Keynesian model, inflation fluctuations do not only impinge a direct impact on the real payout

of government debt (by changing the price level they change the real value of a promised stream

of payments), but also indirect effects, by altering the path of output they affect the real bond

prices and the intertemporal debt constraint. We examine closely this margin using our analytical

23The rule in the passive fiscal scenario is of the form:

ît = r̃t + ϕππ̂t

where again ϕπ > 1. Since this is easy to verify, we left it outside Proposition 4, but state it here for completeness.
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formulae and show that indirect effects become weaker as the maturity of debt increases. With

a long enough maturity of debt, optimal monetary policy needs to be only concerned about the

direct effects of inflation.

Bringing these findings together, we derive a key conclusion of this paper: for an average

maturity of debt calibrated to the US data, the optimal monetary policy in the canonical model

with both inflation and output smoothing objectives can be approximated by a simple inflation

targeting rule where the optimal inflation coefficient is δ.

4.1 Impulse Responses

4.1.1 Output smoothing (λY ≥ 0)

Consider first the Fisherian model with the dual mandate objective, λY ≥ 0. We characterize

analytically the impulse response functions to shocks {Ĝt, ξ̂t} at date t. In the appendix we prove

the following dynamic response of inflation to the shocks:

π̂t =
λ̃2

λ̃2 − 1
õ∆ψgov,t

(27)

π̂t+j = õ
(δj+1 − λ̃j+1

1 )

δ − λ̃1
∆ψgov,t + õ

λ̃j1

λ̃2 − 1
∆ψgov,t, j ≥ 1

where 0 < λ̃1 < 1,λ̃2 > 1 and õ were defined previously.24 Moreover,

∆ψgov,t = ψ̃(GĜt + (b− s)ξ̂t) (28)

where ψ̃ > 0.

A positive demand (spending) shock. According to (28) a positive spending shock in t

will yield ∆ψgov,t > 0. This is not surprising; the increase in spending reduces the present value

of government revenues and the consolidated budget constraint tightens. The planner needs to

increase inflation to make debt solvent.

(27) shows that this will have a persistent effect on inflation. Persistence derives from two

sources: First, from the maturity of debt, with a higher coefficient δ implying more persistence;

and second, it derives from the objective to smooth output through time (coefficient λ̃1 is increasing

in λY ).

The rationale behind the first channel was stated previously. Assume again that λY = 0. We

can then show that λ̃1 = 0, λ̃2 → ∞ and õ = b
1−βδ . Then, the above formulae tell us that inflation

will display persistence equal to δ.

In addition to this channel, output stabilization also contributes to persistence. Assume that

24This formula assumes the most plausible scenario λ̃1 ̸= δ.
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δ = 0 and so debt is only short term. We then have:

π̂t+j = õ
λ̃2

λ̃2 − 1
λ̃j1∆ψgov,t, j ≥ 0

and inflation decays at rate λ̃1. We can further show that dλ̃1
dλY

> 0 and in the limit, when λY → ∞,

λ̃1 → 1. Even in the presence of short term debt, the deviations of inflation from target can be

very persistent, depending on the desire to smooth output fluctuations. The intuition for this

property is simple: Making inflation respond only in period t (the optimal policy under δ = 0 and

no output smoothing) will entail a large contemporaneous response of output. When a smooth

path of output is desired, inflation needs to adjust gradually to the shock.

Let us now investigate how the output smoothing objective affects the magnitude of the re-

sponse of inflation to the shock. A stark result is that when δ = 0, coefficient λY has no bearing

on the level of inflation in t.25 In contrast, when δ > 0, then a stronger incentive to smooth output

implies a smaller initial response of inflation to the shock. To understand these properties notice

first that, in this Fisherian model, the path of output does not matter at all for fiscal sustainability.

Since real bond prices and the intertemporal surplus are not functions of output, it is only inflation

that can adjust to make debt sustainable. When δ = 0 all of the burden of the adjustment falls

on period t inflation. Thus, more inflation persistence when λY > 0 will not change the level of

inflation in t required to satisfy the intertemporal constraint. In contrast, with long term debt, a

more persistent response of inflation will imply a larger fall in the real payout of debt following

the spending shock, and the increase in inflation in t required to satisfy the intertemporal budget

will be smaller.

It may thus seem that when the maturity of debt is long an explicit output smoothing objective

will complement the inflation smoothing motive of the planner. However, this is really not so.

Once again, output has nothing to do with satisfying the intertemporal debt constraint, and

inflation persistence driven by output stabilization may not be desirable in terms of the inflation

smoothing objective.

The term õ
(δj+1−λ̃j+1

1 )

δ−λ̃1
∆ψgov,t in (27) reveals this property. It is essentially a correction for the

persistence of the inflation process, relative to the second term in (27), which represents persistence

driven purely by output smoothing. Whenever δ < λ̃1 then persistence deriving from smoothing

output is too high and the first term will frontload inflation to match more closely the payment

profile of debt. In contrast, if δ > λ̃1 then the first term in (27) will add persistence, the planner

targets a flatter path of inflation than what is dictated by the objective to smooth output.

25To see this, combine (27) and (28), evaluated at δ = 0. We get

π̂t =
GĜt + (b− s)ξ̂t

b

which is independent of λ̃1 and λ̃2 and hence also independent of λY .
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Graphical impulse response analysis. We complement the above formulae with plots

showing the impulse responses of macroeconomic variables to the spending shock under different

calibrations of λY and δ. Table 1 reports the assumed numerical values of the model’s parameters

and the notes of the table briefly explain our calibration targets.

Table 1: Calibration

Parameter Value Label

β 0.995 Discount factor
λY {0, 0.12, 0.5} Loss function - weight on output
θ 17.5 Price Stickiness
η -6.88 Elasticity of Demand
σ {0, 1} Inverse of IES
γh 1 Inverse of Frisch Elasticity

b 0.132 SS bond quantity
τ 0.11 SS tax Rate
Y 1 SS output
G 0.1 SS gov. spending

Notes: The table reports the values of model parameters assumed in the numerical examples in Section
4 of the paper. β denotes the discount factor chosen to target a steady state (annual) real interest rate
of 2 percent. Parameter η is calibrated to target markups of 17 percent in steady state. θ governs the
price adjustment cost and is calibrated as in Schmitt-Grohé and Uribe (2004). The steady state level
of debt is assumed equal to 60 percent of GDP (at annual horizon), and the level of public spending is
10 percent of aggregate output which is normalized to unity in steady state. The value of the tax rate
is such that the steady state government budget constraint holds. We further assumed that inflation at
steady state is 0.

These parameter values are held constant throughout the numerical experiments of Section 4. Parame-

ters λY and σ (the relative weights on output and interest rates stabilization and the inverse of the IES

respectively) vary across experiments. We set σ = 1 as our baseline in the canonical New Keynesian

model. Moreover, when we assume an ad hoc loss function we let λY ∈ {0, 0.5}. For the microfounded

loss function, using the formula λY =
σ Y

C
+γh

θ , we get λY ≈ 0.12.

The top panel of Figure 1 shows the responses to the spending shock when λY = 0. From left

to right we plot the response of inflation, output and the nominal interest rate. The blue, red

and black lines represent the case of active fiscal policy under δ = 0, 0.5, 0.95 respectively.26 The

bottom panel of the Figure plots the same responses when λY = 0.5.

The graphs are qualitatively consistent with our analytical results. Consider the behavior of

the interest rate shown in the top panels. When debt is short term and the planner only cares

about smoothing inflation, the nominal rate is kept constant after the spending shock. With long

term debt, optimal policy increases the interest rate with inflation, the optimal response is equal

to δ.

Introducing the objective to stabilize output exerts an influence on the path of macroeconomic

variables but only when debt is short or medium term. Under long term debt (i.e. δ = 0.95)

setting λY to 0 or to 0.5 makes only a small difference to the path of inflation and the nominal

26For comparison, the cyan line shows the passive fiscal outcome.
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Figure 1: Impulse response functions, G shock
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Notes: The figure displays the impulse responses of inflation, output, and the nominal interest rate following a
government spending shock, in the case where σ = 0. Top panels assume λY = 0, while in the bottom panels we
set λY = 0.5. In each plot, the solid blue line depicts impulse responses in the case where government debt is short
term (δ = 0); the dashed red lines and dash-dotted black lines plot the responses of variables when δ = 0.5 and
δ = 0.95, respectively. The dotted cyan line considers the case where fiscal policy is passive.
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rate.

This property is worth highlighting. With long debt, inflation rises (almost) permanently to

absorb the shock, and the path of output is guaranteed to be smooth regardless of λY . The

incentive to make inflation persistent in order to smooth output fluctuations lines up with the

incentive to spread inflation efficiently following a shock.27

Preference shock. From the formula in (28) it is clear that the dynamic adjustment of the

model variables to a preference shock is (qualitatively) the same to the adjustment to the spending

shock. For brevity, we plot the impulse responses and discuss in detail the channels via which

preference shocks impact inflation in the online appendix (Section C.4).

4.1.2 The canonical New Keynesian model (σ > 0)

We now turn to the case where σ > 0. The following formula characterizes the path of inflation

under active fiscal policy and λY = 0:

π̂t+j =



[
b

1−βδ +
σ
κ1

Y
C
(b− s)

]
∆ψgov,t j = 0

[
b

1−βδδ
j − σ

κ1
(1− δ)δj−1 Y

C
b

]
∆ψgov,t j ≥ 1

 (29)

where

∆ψgov,t = ϵ̃

[
(G+ (b− s)σ

G

C
)Ĝt + (b− s)ξ̂t

]
(30)

and ϵ̃ > 0.28

Let us explain this formula starting from the impact effect of a shock on inflation. In (29)

there are two main channels driving period t inflation: The term b
1−βδ measures the direct effect

on the real payout of all outstanding debt. An increase in inflation in t lowers the real value of

the entire stream of payments, b, bβδ, b(βδ)2, ...

27Note that in terms of the equation (28), this means that if δ is close to 1 and δ > λ̃1 , then the dynamics of
inflation are effectively the same, regardless of λY . For δ = 0.95 it will take a very high λY for output smoothing
to exert an influence.

We set λY = 0.5 for our output smoothing scenario, which is at the high end of the values typically assumed in
the literature. (The value assumed by Giannoni and Woodford (2003) is an order of magnitude smaller, and around
what one would typically get from a second order approximation of household welfare). For comparison purposes,
it would perhaps be useful to investigate whether our calibration of λY may be too low relative to the value implied
by the welfare based loss function in this Fisherian model. A second order approximation of household welfare
would give us the following objective function:

−1

2
E(π̂2

t +
γh
θ
Ŷ 2
t )

(see online appendix in Chafwehé et al. (2022)). With γh = 1 and θ = 17.5 (Table 1) we get λY = 0.057. Thus,
λY = 0.5 is already high, relative to the weight implied by a second order approximation of the welfare function.

28The expression for ϵ̃ is cumbersome and for the sake of the exposition is left to the appendix.
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The second term represents the indirect effect of inflation, through output, on the intertemporal

budget constraint. Since we now assume σ > 0 the path of output affects the constraint through

two channels: First, through impacting real bond prices it impacts the real value of debt (this is

measured by the term b σ
κ1

Y
C
); second, output also affects the value of the government’s surplus

(the term s σ
κ1

Y
C
).

Next, consider inflation after t. Again, we have the two distinct channels: The direct effect,
b

1−βδδ
j (the magnitude decays at the coupon rate since π̂t+j affects the real value of payments to

be made in t+ j and thereafter) and the indirect effect, − σ
κ1
(1− δ)δj−1 Y

C
b.

Let us focus on the new indirect output channel in t and after t and note that what is partic-

ularly striking here is that whereas in t the output term contributes positively to the variability

of inflation (i.e. it holds that b > s), after t, the sign switches and the effect becomes negative.

To understand this, consider again the intertemporal budget constraint (13). Assume δ = 0

and for simplicity let us also assume that only spending shocks can hit the economy. Then, (13)

can be written as:

−GĜt + s
G

C
σĜt − s

Y

C
σŶt + Et

∞∑
j=1

βjsŜt+j = bb̂t−1,δ − b

[
σ

(
Y

C
Ŷt −

G

C
Ĝt

)
+ π̂t

]
(31)

With short term debt, the RHS of the constraint decreases in period t output. The LHS also

decreases in output, but the effect on the RHS dominates. Thus, following a positive spending

shock, the planner will increase output to satisfy the constraint. The dependence of the importance

of this channel on parameter κ1 follows from the Phillips curve.

Moreover, to understand why inflation will continue responding to the shock in t+1 and turn

negative, isolate the term

Et

∞∑
j=1

βjsŜt+j = −Et
∞∑
j=1

βjsσ
Y

C
Ŷt+j = −s σ

κ1

Y

C
βEtπ̂t+1 (32)

where the second equality makes use of the Phillips curve.29 Thus, committing to negative inflation

in t+ 1 contributes to the satisfaction of (31).

In this model with short term debt, the path of output affects the intertemporal budget

constraint through its influence on the path of real interest rates and the present value of (constant)

surpluses. Lowering the real discount rates accomplishes to increase the present value, and to

‘relax’ the debt constraint after the spending shock.30 Letting inflation (and hence output) turn

negative in t+ 1 is the optimal way to accomplish this.

29Notice that with constant taxes we have sŜt+j = −sσ Y
C
Ŷt+j − (G − sσG

C
)Ĝt+j + sξ̂t+j . Then dropping the

shocks (as these will cancel out due to the i.i.d processes) we get Et

∑∞
j=1 β

jsŜt+j = −Et

∑∞
j=1 β

jsσ Y
C
Ŷt+j .

30The effect is analogous to what Leeper and Zhou (2021) label a ‘discount factor’ impact of policy. Whereas in
their model this channel concerns both inflation and tax policies, here it is a pure inflation effect.

28



Notice further that another way of interpreting the negative inflation in t+ 1 is the following:

When the planner is not concerned about output stabilization, she will optimally shift as much

of the burden of the adjustment as possible to date t output. A higher output level is possible if

π̂t+1 < 0 (from the Phillips curve) and since the distortions stemming from inflation are convex,

it is optimal to tolerate a negative inflation rate in t + 1, in exchange for a smaller inflation

adjustment to the shock in t. This margin will become less significant when λY > 0, as we will

confirm later on.

Let us now turn to the case of long debt to explain why these considerations become pro-

gressively less important when δ > 0. In this case, distorting output may increase the value of

the surpluses, however, it will also increase the price of the long term debt. There is thus less

of a gain of making inflation turn negative in t + 1 in terms of fiscal solvency and in the limit,

when long bonds are consols, this margin becomes absolutely irrelevant. Simple inspection of the

intertemporal budget in (13) is sufficient to see this property. It is also confirmed in (29); the

term σ
κ1
(1− δ)δj−1 Y

C
b becomes smaller in magnitude as δ increases.31

The direct and indirect channels of inflation we highlighted in this paragraph are clearly present

in the optimal interest rate rule we derived for this model, in Proposition 4. The optimal inflation

coefficient was derived equal to δ + σ
κ1
(1− δ)(δβ − 1) which echoes the principle that the optimal

policy is mindful not only of the direct impact of inflation on the real debt, but also of the indirect

output impact. Moreover, our analytical formula clearly shows that with long term debt the

indirect channel is less significant. For δ sufficiently close to 1, σ
κ1
(1− δ)(δβ− 1) is approximately

0, and the optimal policy can be approximated by a simpler rule setting the inflation coefficient

equal to δ. This is an important property to which we will return in the final paragraph of this

section.

Graphs. Figure 2 plots the usual IRFS for the spending shock (see appendix for the

analogous plots with preference shocks). Focus on the top panel in Figure 2 to continue studying

the effect of the spending shock when λY = 0. As can be seen from the Figure, when debt is short

term, output and inflation increase contemporaneously with the shock and subsequently drop in

t+1. The nominal interest rate drops initially and turns positive in t+1. This is due to monetary

policy operating through the indirect output channel, when δ = 0.

With long maturity debt (δ = 0.95) optimal policy targets a smooth path of inflation and

output. The nominal rate rises on impact (since it is optimal to track r̃t) and subsequently reacts

to inflation only.

Finally, these properties continue being relevant in the case λY > 0 studied in the bottom

panels of the Figure. As expected, the indirect output channel now becomes less important.

However, it remains an active margin of policy when debt is short term.

31The no discounting result under consols is well known to the literature (see for example Lucas and Stokey
(1983); Leeper and Zhou (2021)). In the optimal fiscal policy setting of Lucas and Stokey (1983) the optimizing
government will not want to distort output intertemporally when long bonds are consols, and the optimal allocation
becomes time consistent.
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Figure 2: Impulse response functions with σ > 0 (G shock)
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Notes: The figure displays the impulse responses of inflation, output, and the nominal interest rate following a
government spending shock, in the case where σ = 1. Top panels assume λY = 0, while in the bottom panels we
set λY = 0.5. In each plot, the solid blue line depicts impulse responses in the case where government debt is short
term (δ = 0); the dashed red lines and dash-dotted black lines plot the responses of variables when δ = 0.5 and
δ = 0.95, respectively. The dotted cyan line considers the case where fiscal policy is passive.
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4.2 Optimal Policy under the Dual Mandate Objective

We have now analyzed the key forces behind optimal monetary policy in the two versions of the

model. As we have seen, assuming that the monetary authority desires to smooth inflation and

output introduces inertia in the optimal policy, ît responds to both current and lagged inflation.

Moreover, in the canonical model with σ > 0 where optimal monetary policy set the interest rate

as a function of current inflation only, the optimal inflation coefficient reflected both the direct

effect of inflation on real debt and the indirect effect through output on the debt constraint.

Finally, our results in Section 3 demonstrated that in both of these cases optimal interest rate

rules featured stochastic intercepts, terms involving the multiplier ∆ψgov,t.

We can now derive the optimal interest rate rule in the canonical New Keynesian model with

a dual mandate objective, σ, λY > 0. The appendix proves the following Proposition:

Proposition 5: Assume that fiscal policy is active and σ, λY > 0. The optimal interest rate

rule is:

ît = r̃t +

{
σ

κ1

Y

C

[(
1−

(
λ̃1 + δ

))((
λ̃1 + δ

)
β − 1

)
+ βδλ̃1

]
+

(
λ̃1 + δ

)}
π̂t−

−δλ̃1
{
σ

κ1

Y

C

[
(1 + β)− β

(
λ̃1 + δ

)]
+ 1

}
π̂t−1 + f̃∆ψgov,t︸ ︷︷ ︸

Stochastic intercept

(33)

where r̃t = r̃nt under the natural output target and r̃t = r̃nt + υ̃t under the steady state output target.

The appendix delivers the expression for the term υ̃t affecting the real rate that monetary

policy needs to track under the constant output target. This term is not zero because government

spending shocks shift the Phillips curve in the presence of income effects on labour supply. These

impacts are accounted for by natural output. However, with the constant output target, they are

not. When λY > 0 this matters for optimal policy.32 Moreover, parameter f̃ also depends on the

output target. For brevity the derivations are relegated to the appendix.

The reader will note in formula (33) the key elements of the optimal interest rate rules of

Propositions 3 and 4. The parameter λ̃1 in current and lagged inflation serves the output smooth-

ing objective (Proposition 3) and the bracketed terms multiplied by σ
κ1

Y
C

represent the indirect

output effects (Proposition 4). The indirect effects are now dependent also on parameter λ̃1, since

as we saw previously, output smoothing alters the relative importance of this margin. We conclude

that the dual mandate optimal policy is basically a fusion of the rules of Propositions 3 and 4.

4.2.1 The microfounded loss function

The optimality of (33) holds when we assume a microfounded objective function for the planner.

The only difference in this case is the addition of a subsidy to the model that ensures the efficiency

of the steady state. This introduces a new term to the consolidated budget, dependent on the

32In Proposition 4 we had υ̃t = 0 when λY = 0. When the planner focuses on stabilizing inflation, shocks to the
Phillips curve are fully absorbed by output and do not affect the optimal interest rate rule.
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current output, which the optimal policy will internalize. Consequently, the stochastic intercept

f̃∆ψgov,t in Proposition 5 will now also reflect this margin. Otherwise, the optimal rule remains

the same as in Proposition 5.

4.3 Optimal Simple Rules

We now turn to a more detailed examination of the elements of the optimal interest rate rules

derived in Propositions 3 to 5. Specifically, we aim to verify the significance of the stochastic inter-

cept terms for optimal policy. As previously discussed, these terms introduce temporal variation

in interest rates, incorporating a non-systematic element into the policy functions. Our goal is to

determine whether these non-systematic components are a crucial feature of optimal Ramsey rules

across different maturity structures of debt. In addition, while Propositions 3 to 5 provided an

analytical characterization of the optimal systematic reaction to inflation—where the coefficients

are simple functions of model parameters—we will now delve deeper into these expressions to

investigate whether the indirect effects of inflation play a significant role in shaping policy.

Our main finding in this paragraph is that under a plausible calibration of the maturity struc-

ture (for example δ = 0.95 implying a 5 year average maturity of debt, a value that aligns with

the US data) not accounting for stochastic intercepts and indirect output effects or for lagged

inflation does not change dramatically the macroeconomic outcomes. We therefore find that the

rule ît = r̃t+δπ̂t approximates very well the Ramsey policy. Commitment to a rule that tracks the

real interest rate and sets the inflation coefficient equal to 1− 1
Maturity

(where Maturity denotes the

average maturity of government debt) is sufficient to bring the economy very close to the Ramsey

outcome. We thus show that our model gives rise to a very simple and practical policy rule for

an empirically relevant maturity structure.

4.3.1 The (un)importance of stochastic intercepts.

To show transparently our results we first revisit Cases 1 and 2 of Section 3.33 This enables us to

identify whether stochastic intercepts may matter in the context of the output smoothing objective

or in the context of targeting real discount rates and bond prices through monetary policy.

Let us first consider the model of subsection 3.2.1 and in particular equation (23) characterizing

optimal policy when λY > 0. Using also the analytical formula for ∆ψgov,t in equation (28) we can

write:

−δ õ

λ̃2 − 1
∆ψgov,t = −δ õ

λ̃2 − 1
ψ̃GĜt

Consider a positive fiscal shock. In response to this shock optimal policy will keep the nominal

rate slightly lower in t than the value implied by (λ̃1 + δ)π̂t− λ̃1δπ̂t−1. This temporal variation in

the interest rate aims at having a more gradual/smoother path of output.

33We again focus only on the case of spending shocks, however, our results also apply to preference shock induced
fluctuations.
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Figure 3 shows the responses. The solid blue lines are the Ramsey IRFS, the dashed red lines

are the analogous objects drawn from a model in which monetary policy sets interest rates as in

(23) but without the stochastic intercept. The top panel corresponds to short term debt. The

middle and bottom panels set δ = 0.5 and δ = 0.95 respectively. Unsurprisingly, the stochastic

intercept has no bearing on the outcomes in the case of short debt.34 However, even when we

assume long term debt the differences between the Ramsey outcome and the model without the

intercept are not significant. We conclude that the stochastic intercept is not an important feature

of policy to accomplish the output smoothing objective.

Next, consider the model of subsection 3.2.2 (setting σ > 0) focusing on equation (26), and

noting that we can again express the stochastic intercept −f∆ψgov,t as a function of the spending

shock (e.g. equation (30)). This term will effectively keep the nominal rate lower in t following

a positive innovation to government spending. The effect of this channel is revealed in Figure

4 which plots the IRFS under the optimal policy and in a model where monetary policy is set

according to

ît = r̃t +

(
δ +

Y

C

σ

κ1
(1− δ)(δβ − 1)

)
π̂t

The top, middle and bottom panels vary the maturity of debt δ.

When debt is short or medium term, the stochastic intercept does affect optimal policy. Most

notably, in the case where δ = 0 the interest rate rule without the intercept predicts that output

and inflation increase when the shock hits, but they will not fall in the next period as is the

case under the optimal policy. This leads to a smaller increase in output in t which needs to

be compensated by a larger reaction of inflation contemporaneously to the shock, to satisfy the

intertemporal budget constraint. Thus, the stochastic intercept enables to reduce the variability

of inflation by relying on a stronger response of output to make debt solvent. It is at the heart of

the indirect output channel.

Finally, as is evident from the bottom panel of the Figure, the stochastic intercept is not at

all important when we set δ = 0.95.

4.3.2 Simple inflation targeting rules / The (un)importance of the indirect channel.

Simple rules as in Propositions 3 and 4 without the stochastic intercepts can approximate well the

optimal policy outcome under the plausible calibration δ = 0.95. Building on this finding, we now

investigate whether even simpler interest rate rules, that focus on the direct impact of inflation,

can sustain this outcome.

In Figure 5 we show the responses of macroeconomic variables to spending shocks under the

dual mandate objective function. The bottom panel considers the case of the microfounded loss

34Evidently, when δ = 0 there is no margin for the planner to smooth the response of output by trading off
less inflation in t for more inflation in the future, since only date t inflation can satisfy the intertemporal budget
constraint.
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Figure 3: The role of stochastic intercepts: λY > 0, σ = 0.
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Notes: The figure plots the impulse responses of inflation, output, and the nominal interest rate following a
government spending shock, in the full Ramsey solution (solid lines) and in a model without stochastic intercepts
(dashed lines). We assume λY = 0.5 and σ = 0. The top panel shows the case of short term debt, the middle and
bottom panels set δ = 0.5, 0.95 respectively.
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Figure 4: The role of stochastic intercepts: λY = 0, σ > 0.
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(dashed lines). We assume λY = 0 and σ = 1. The top panel shows the case of short term debt, the middle and
bottom panels set δ = 0.5, 0.95 respectively.
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Figure 5: Rules vs Ramsey

0 10 20 30
0

0.002

0.004

0.006

0.008

0.01

 =
 0

.9
5

0 10 20 30
0

0.005

0.01

0.015

0.02

 Microfounded Loss Function

0 10 20 30
0

0.005

0.01

0.015

0.02
Ramsey

Dual Mandate Rule

Simple Rule

0 10 20 30
0

0.002

0.004

0.006

0.008

0.01

 =
 0

.9
5

0 10 20 30
0

0.005

0.01

0.015

0.02

 Ad Hoc Loss Function, Natural Output Target

0 10 20 30
0

0.005

0.01

0.015

0.02

Notes: The figure compares the optimal policy impulse responses of inflation, output, and the nominal interest rate
(blue solid lines) with analogous objects when policy is set according to the rule in Proposition 5 (Dual Mandate
Policy, red dashed line) and the simple inflation targeting rule ît = r̂nt +δπ̂t (black dashed line). We assume δ = 0.95
in all graphs. The top panel focuses on the case of an ad hoc objective function and monetary policy targets natural

output. The bottom panel assumes the microfounded loss function. In both cases λY =
σ Y

C
+γh

θ ≈ 0.12. We assumed
σ = γh = 1

function (approximation around the efficient steady state) whereas in the top panel we consider

an ad hoc loss function with natural output targeting.35 The Ramsey optimal policy is depicted

using the blue solid lines. The dashed red lines utilize the optimal rule in Proposition 5 without

the stochastic intercept, and the black lines consider an even simpler policy function ît = r̃t+ δπ̂t.

As can be seen from the Figure, the impulse responses produced by the three models almost

completely overlap.

The finding that the ‘Dual Mandate’ rule of Proposition 5 continues to provide a close ap-

proximation of the Ramsey policy outcome, when we have omitted the stochastic intercept term,

should be unsurprising in light of the results of the previous paragraph. Stochastic intercepts are

not a significant feature of optimal policy when debt is long term, or in the presence of an output

smoothing objective and therefore, what we found previously, generalizes to the canonical model

with the dual mandate loss function.

The finding that an even simpler rule ît = r̃t + δπ̂t, also provides a good fit of Ramsey

35The appendix extends this graph to the case of the constant output target.
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policy merits more emphasis. We have seen that when debt is long term, distorting output

intertemporally to ensure the solvency of the intertemporal budget, is not optimal. In other

words, the indirect output channel becomes a less significant margin of policy, the main driving

force is the direct impact of inflation on the real value of debt. Moreover, a strong incentive

to smooth output fluctuations, also weakens the indirect effect. Our finding is explained by the

combination of these forces.

In short, our substantive result in this section is that for a plausible calibration of the maturity

structure of debt, a simple inflation targeting rule focusing on the direct channel of inflation is

enough to approximate closely the Ramsey outcome. Though we will subsequently present several

robustness checks to further test the validity of this result in alternative modelling environments,

before concluding this paragraph it is worthwhile to make a couple comments concerning our key

finding. First, our result illustrates that the average maturity of debt is the only relevant moment

for the optimal inflation coefficient. We have however constrained our focus on a particular debt

structure, assuming geometrically decaying payments. It turns out, however, that this assumption

fits the US data well (see for example de Lannoy et al. (2022) for data on the payment profiles of US

debt). Thus, our assumption appears not to be restrictive for the US. Second, with the parameter

values we assumed in the calibration of this section, we get δ + Y
C
σ
κ1
(1− δ)(βδ − 1) = 0.9484 (the

inflation coefficient in Proposition 4) which is indeed very close to δ = 0.95. However, our finding

generalizes to a large range of parameter values. We can (for example) set σ = 5 (a commonly

assumed upper bound in macro models) or θ = 100 (targeting a flatter Phillips curve) and we

will continue finding that the simple inflation targeting rule works well. Finally, assuming lower

values for the coefficient δ (0.9 or even 0.8, see next paragraph) or repeating the analysis of this

section to consider to preference shocks instead or spending shocks also leaves our main finding

unchanged.

4.4 Macroeconomic volatility under Optimized rules and ‘Ramsey rules’

How important is it for monetary policy to follow ‘Ramsey’ optimal rules when fiscal policy is

active? In the appendix we compare the macroeconomic volatility implied by our rules with that

deriving from ad hoc interest rate rules with optimized coefficients. More specifically, we posit

the following specification of monetary policy, commonly assumed in DSGE models,

ît = ρiît−1 + (1− ρi)(ϕY Ŷt + ϕππ̂t)

and find the coefficients ϕY , ϕπ, ρi that minimize the loss function.36

Our results are as follows: First, ‘Ramsey rules’ (including stochastic intercepts) significantly

outperform rules with optimized coefficients. At the minimum distance (when δ = 0.7), the loss

function under the ad hoc rule with optimized coefficients is 13 percent higher than under the

36The calibration of the model is discussed in detail in the appendix, but basically we borrowed the stochastic
processes for spending and preference shocks from the estimated DSGE models literature (Smets and Wouters,
2007). The results that we drew from this exercise were however robust to numerous calibrations of the model.
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Ramsey rule. The percentage differences are even more pronounced when debt is short term (>

100 percent) and when it is long term (for example when δ = 0.95 approximately 70 percent).

Second, removing stochastic intercepts does worsen the performance of the policy rules, but only

in the case where debt is short term. For δ > 0.8 we find that the rules without intercepts produce

effectively the same outcome as the full Ramsey solution. Note that this means that the result

of the previous paragraph extends to an average maturity greater than one year and one quarter

(which is already a very low number compared with the empirical moments in OECD economies).

Third, when debt is short term (a case studied extensively in previous literature) the dual

mandate rule without a stochastic intercept performs considerably better than the optimized

coefficients rule.

5 Extensions

Before concluding the paper in the next section we briefly consider a few extensions of our baseline

model, discussing the robustness of our findings to alternative model structures. We first extend

our derivations to persistent shocks and to supply side factors (markup shocks). We then extend

our findings by replacing the assumption that taxes are lump sum with distortionary taxation.

Finally, we briefly state what optimal policy would look like in the case where the government

can issue state contingent bonds (complete markets). For brevity all the derivations that pertain

to these models are relegated to the online appendix.

5.1 Alternative Shocks and Shock Structures

Persistent shocks We derived, for tractability, our analytical results assuming that shocks

are i.i.d. Our derivations can be generalized to the case where spending and preference shocks

follow first order autoregressive processes. It is then possible to show that the interest rate rules

in Propositions 3 to 5 will continue being optimal, the coefficients attached to inflation will not

change, the only part of these rules that needs to be adjusted is the term r̃t (r̃
n
t ).

For example, consider the version of the model studied in subsection 3.2.2. The optimal interest

rate rule with general first order autoregressive shocks is :

ît = ξ̂t(1− ρξ) + σ(
G

C
− σκ2

κ1

Y

C
)Ĝt(1− ρG)︸ ︷︷ ︸

r̃t=r̃nt

+

(
δ +

Y

C

σ

κ1
(1− δ)(δβ − 1)

)
π̂t − f∆ψgov,t (34)

where ρξ and ρG are the persistence coefficients for spending and preference factors. The inflation

coefficient is unaffected by shock persistence and parameter f is exactly the same as in Proposition

4. Thus, the only change that shock persistence brings to the optimal rule is through the real rate

target. We can easily show that this applies to all of the policy functions we derived in this paper.

The principle behind this change is the following: The leading term r̃t needs to account for

shock persistence since monetary policy uses this term to eliminate the shocks from the Euler
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equation. The optimal inflation coefficients and the stochastic intercepts are however determined

by the debt constraint and the persistence of the shocks will not matter for how inflation will

optimally adjust to satisfy this constraint. Shock persistence will only affect the size of the

response of inflation and output, not the shape of the path of these variables.

Finally, in the online appendix, we run several experiments to test the robustness of our findings

in Section 4 to non i.i.d. shocks. We found that assuming persistent shock processes does not

change any of our results.

Supply side shocks In the appendix, we extend our analysis to include supply-side shocks,

which we model as markup shocks that shift the Phillips curve. The central features of the opti-

mal Ramsey rules remain unchanged, which is unsurprising given that the usual New Keynesian

inflation-output trade-off was already accounted for in our formulas. Consequently, the optimal

interest rate rules we derive retain the same inflation coefficients. However, supply shocks must

be incorporated into the expression for the target rate r̃t when λY > 0. We provide an analytical

derivation of the relevant formula.

Moreover, when evaluating the performance of the Ramsey rules in the presence of supply

shocks across different maturity structures, we discovered a striking result. For the dual mandate

objective, the maturity structure of debt has only a moderate impact on optimal policy. Our

explanation for this outcome is the following: supply-side shocks create a steep trade-off between

output and inflation, even within the standard New Keynesian model. They do not directly affect

the debt constraint, thus prompting the planner to address them in the usual New Keynesian

manner. Any imbalances of the intertemporal debt constraint resulting from these shocks can be

managed with slight adjustments in inflation. The bulk of the volatility in inflation and output,

however, does not derive from the debt constraint.

5.2 Real rate tracking

A key property of the optimal interest rate policies that we derived in this paper is that the

nominal rate needs to track the appropriate (consistent with the output target) measure of the

real interest rate r̃t. Real rate tracking is a common feature of optimal policy in the canonical New

Keynesian model (see for example Woodford (2003a); Holden (2024)), however implementing the

target r̃t pragmatically requires to possess accurate estimates of the underlying shock processes

and shock realizations.

Holden (2024) proposes (as an alternative target) that monetary policy track the real interest

rate that can be inferred from the Fisher equation (r̃t := ît − Etπ̂t+1). He describes an approach

to back this real rate from the yields of inflation indexed government bonds.

In the appendix we investigate whether with this alternative target, our optimal interest rate

rules can continue providing a good approximation of the Ramsey outcome. We find that indeed

they do, and more specifically our key result, that with an inflation coefficient equal to δ a simple

rule is nearly optimal under the dual mandate loss function, continues to hold.
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5.3 Distortionary Taxation

We briefly discuss the implications of replacing the assumption that taxes are lump sum with

distortionary taxation. Distortionary taxes do not change any of the conclusions we drew from

our analysis; the optimal rules are very similar to the rules we derived previously.

With distortionary taxes, the threshold for passive fiscal policy is given by:

ϕ̃τ ≡
b(1− β)

R(1− βδ)

(
1

1−τd −
τd

1−τd (1 +
1

γh+σ
Y
C

)

)
where R denotes the steady state revenue of the government and τ d is the distortionary tax rate.

Parameters γh, σ become important for the threshold ϕ̃τ since they determine the response of

output to shocks and consequently that of fiscal revenue.

To illustrate how the presence of distortionary taxes may affect the optimal policy rules we

derived, let us focus on the simplest possible scenario σ = λY = 0. In the active fiscal case the

optimal interest rate rule is:

ît = ξt + δπ̂t − δ
R(1 + γh)

κ1
∆ψgov,t (35)

(see appendix).

Relative to Proposition 2, assuming distortionary taxation introduces an additional element

to policy, the final term on the RHS of (35). This term relates to the effect of output on fiscal

revenue. An increase in inflation will increase current output and thus increase the revenue and

the surplus. The optimal policy internalizes the new revenue effect, by keeping the nominal rate

slightly lower in t after a positive spending shock.37

It turns out that this effect is not substantial. One can therefore drop the stochastic intercept

term from the optimal policy rule and end up with very similar dynamics for macroeconomic

variables. For the sake of brevity, we leave it to the appendix to plot the impulse response

functions for this model. We also derive optimal policy rules for each of the other versions of the

model we considered. We prove that our previous results continue to hold.

5.4 Complete Markets

Our results in this paper were derived under the assumption that debt is not state contingent.

Methodologically, our paper is thus very close to numerous papers studying optimal policy under

incomplete markets (e.g. Faraglia et al. (2013, 2019); Schmitt-Grohé and Uribe (2004); Lustig

et al. (2008); Leeper and Zhou (2021) among others). In the appendix we extend our analysis

to the case of complete markets, assuming that government debt is state contingent. We ask:

What will optimal interest rate rules look like in this model when fiscal policy is active? Our

37Notice that this effect is valid only when debt is not short term. With short debt, only period t inflation can
finance debt and the magnitude of the response of inflation is pinned down by the intertemporal budget.

40



finding is that the optimal policy continues to follow a passive money rule, which tracks the real

rate. However, any response to inflation ϕπ < 1 can implement the optimal policy outcome. With

complete markets, debt acts as a shock absorber. Since shocks effectively do not impact the debt

constraint we get ∆ψgov,t = 0 in equilibrium. Then, inflation does not need to adjust to ensure

the solvency of debt and any passive rule can implement the outcome.

This is a limiting result that concerns only the case of complete markets. Whenever markets

cannot be completed and ∆ψgov,t ̸= 0 the rules that we derived in this paper are applicable.

6 Conclusion

We presented a framework of optimal monetary policy when the central bank may need to take

into account the government budget constraint and is thus concerned with the solvency of debt.

Our model is tractable and enables us to derive optimal interest rate rules analytically. One of

our substantive finding is that simple inflation targeting rules that track the real interest rate

are sufficient to implement the Ramsey policy outcomes. A second key result is that for a debt

maturity structure that approximates the US data, a simple (and practically relevant) inflation

targeting rule setting the inflation coefficient equal to 1− 1
Maturity

is nearly optimal.

A few of extensions of this work seem to us fruitful for future research. First, using the frame-

work we proposed to extend the analysis to the case of regime fluctuations, seems a meaningful

next step. More specifically, it would be interesting to study optimal policy in the context of a

model in which the work of Davig and Leeper (2007) showed that the generalized Taylor principle

is required for the determinacy of the equilibrium. In this context, optimal monetary policy will

probably not be purely passive or purely active, pressumably a combination of the policy rules we

derived here will be the optimum. Second, our analytical results were derived in the baseline New

Keynesian framework (augmented with a fiscal block) and we have not explored optimal policy in

environments featuring wage rigidities, inflation inertia or the zero lower bound constraint. We

believe that the methodological approach that we followed in this paper to derive analytically

optimal rules is applicable to models including these features. Lastly, our approach should also

be applicable to models in which the Ramsey planner sets jointly monetary and fiscal variables.

Thus, our findings should be useful also in the context of optimal coordinated policies.
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Online Appendix

A Proofs of Propositions and Derivations in Sections 3

and 4

We provide proofs for the Propositions 3 and 4. We also derive the analytical formulae shown in
Section 4 of the paper (the impulse responses of inflation).

A.1 Proof of Proposition 3 and derivations for Case 1: λY > 0, σ = 0.

The FONC for inflation and output combined give us the following condition:

−π̂t −
λY
κ1

∆Ŷt +
b

1− βδ

∞∑
k=0

δk∆ψgov,t−l = 0

Using the Phillips curve, we can write:

−π̂t −
λY
κ21

(π̂t − βEtπ̂t+1) +
λY
κ21

(
π̂t−1 − βEt−1π̂t

)
+

b

1− βδ

∞∑
k=0

δk∆ψgov,t−l = 0

Define:

ζt ≡
(
π̂t − Et−1π̂t

)
+

κ21
βλY

b

1− βδ

∞∑
k=0

δk∆ψgov,t−l = 0

Then, inflation evolves according to:

Etπ̂t+1 −
(
1 +

1

β
+

κ21
λY β

)
π̂t +

1

β
π̂t−1 = −ζt (36)

We will now resolve the above difference equation. Letting κ̃ =
κ21
λY β

, the characteristic polynomial

is λ2 − (1 + 1
β
+ κ̃)λ+ 1

β
. The two roots are:

λ̃1,2 =
1

2

(
(1 +

1

β
+ κ̃)±

√
(1 +

1

β
+ κ̃)2 − 4̃

β

)
It is simple to show that one root is stable and one unstable. Let λ̃1 denote the stable root. (43)
can be written as:

π̂t =
1

λ̃2
Etπ̂t+1 +

1

λ̃2

1

1− λ̃1L
ζt =

1

λ̃2

1

1− λ̃1L

∑
j≥0

1

λ̃j2
Etζt+j (37)

(for the usual boundary condition that inflation does not explode).
Let us compute the term

∑
j≥0

1

λ̃j2
Etζt+j =

∑
j≥0

1

λ̃j2
Et

[(
π̂t+j − Et+j−1π̂t+j

)
+ κ̃

b

1− βδ

∞∑
k=0

δk∆ψgov,t+j−l

]
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When ∆ψgov,t ̸= 0 (in an equilibrium with active fiscal policy), the final term on the RHS is

κ̃
b

1− βδ

∑
j≥0

1

λ̃j2
Et

[ ∞∑
k=0

δk∆ψgov,t+j−l

]
= κ̃

b

1− βδ

1

1− δ

λ̃2

1

1− δL
∆ψgov,t

(this follows from the random walk property of the multiplier). Moreover, it clearly holds that:∑
j≥0

1

λ̃j2
Et

(
π̂t+j − Et+j−1π̂t+j

)
= π̂t − Et−1π̂t

Putting everything together and using (44) we have:

π̂t = λ̃1π̂t−1 +
1

λ̃2
(π̂t − Et−1π̂t) +

κ̃

λ̃2

b

1− βδ

1

1− δ

λ̃2

1

1− δL
∆ψgov,t (38)

A.1.1 Proof of Proposition 3.

To derive the interest rate rules use (38). Consider first the the case where ∆ψgov,t = 0 (passive
fiscal policy).

Then,

Etπ̂t+1 = λ̃1π̂t +
1

λ̃2
Et

(
π̂t+1 − Eπt+1

)
= λ̃1π̂t

and clearly Et−1π̂t = λ̃1π̂t−1. Then since ζt = 0 from (36) optimal inflation solves

π̂t+1 −
(
λ̃1 + λ̃2

)
π̂t + λ̃1λ̃2π̂t−1 = 0 (39)

(expectations can be dropped because inflation is clearly not random). The unique solution is
π̂t = 0 for all t. Standard arguments imply uniqueness of the equilibrium when:

ît = ξ̂t +

(
λ̃1 + λ̃2

)
π̂t − λ̃1λ̃2π̂t−1

Now consider the case where ∆ψgov,t ̸= 0. From (38) we have

Etπ̂t+1 = λ̃1π̂t +
κ̃

λ̃2

b

1− βδ

1

1− δ

λ̃2

Et
1

1− δL
∆ψgov,t+1︸ ︷︷ ︸

= δ
1−δL

∆ψgov,t

and also

Et−1π̂t = λ̃1π̂t−1 +
κ̃

λ̃2

b

1− βδ

1

1− δ

λ̃2

δ

1− δL
∆ψgov,t−1
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We thus get

π̂t − Et−1π̂t =
1

λ̃2

(
π̂t − Et−1π̂t

)
+

κ̃

λ̃2

b

1− βδ

1

1− δ

λ̃2

∆ψgov,t

→π̂t − Et−1π̂t =
λ̃2

λ̃2 − 1

κ̃

λ2

b

1− βδ

1

1− δ

λ̃2

∆ψgov,t

It is now easy to derive the optimal interest rate rule. Let õ = κ̃
λ2

b
1−βδ

1
1− δ

λ2

ît = ξ̂t + Etπ̂t+1 = ξ̂t + λ̃1π̂t + õ
δ

1− δL
∆ψgov,t = ξ̂t + λ̃1π̂t + δ

(
π̂t − λ̃1π̂t−1 −

õ

λ̃2 − 1
∆ψgov,t

)
■

A.1.2 Additional derivations: The path of optimal inflation.

We now provide additional derivations for the impulse responses shown in Section 4.
The case where fiscal policy is passive is trivial since inflation and output are at steady state

in all periods. Consider the case where fiscal policy is active. Focus on the case a shock in either
spending or preferences can hit the economy in t and all shocks before or after t are 0. Thus,
∆ψgov,t ̸= 0 but ∆ψgov,t+j = 0 for j ̸= 0. Moreover, let b̂t−1 = 0. The intertemporal consolidated
budget in this model can be written as:

−GĜt + (s− b)ξ̂t = −b
∑
j≥0

(βδ)j
j∑
l=0

π̂t+l

From the above derivations we can show that:

π̂t = λ̃1π̂t−1 +
1

λ̃2 − 1
õ∆ψgov,t + õ∆ψgov,t

(given ∆ψgov,t−1 = ∆ψgov,t−2 = ...0.) Also,

π̂t+1 = λ̃1π̂t + õδ∆ψgov,t = λ̃1π̂t−1 + õ(δ + λ̃1)∆ψgov,t + õ
λ̃1

λ̃2 − 1
∆ψgov,t

...

π̂t+l = λ̃l+1
1 π̂t−1 + õ

(
δl + δl−1λ̃1 + δl−2λ̃21 + ...+ δλ̃l−1

1 + λ̃l
)
∆ψgov,t + õ

λ̃l1

λ̃2 − 1
∆ψgov,t

Noting that

(
δl + δl−1λ̃1 + δl−2λ̃21 + ... + δλ̃l−1

1 + λ̃l1

)
=

δl+1−λ̃l+1
1

δ−λ̃1
(in the more plausible case
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λ̃1 ̸= δ) and also by assumption π̂t−1 = 0, we can write the consolidated budget constraint as:

−GĜt + (s− b)ξ̂t = −bõ∆ψgov,t
∑
j≥0

(βδ)j
j∑
l=0

(
λ̃l1

λ̃2 − 1
+
δl+1 − λ̃l+1

1

δ − λ̃1

)
The final result is:

∆ψgov,t = (1− βδ)(1− βδλ̃1)
GĜt + (b− s)ξ̂t

bõ( 1
1−βδ2 +

1

λ̃2−1
)

Now use the above derivations to derive the impulse responses. We have:

π̂t =
λ̃2

λ̃2 − 1
õ∆ψgov,t

π̂t+j = õ
δj+1 − λ̃j+1

1

δ − λ̃1
∆ψgov,t + õ

λ̃j1

λ̃2 − 1
∆ψgov,t, j ≥ 1

The case λY = 0. Let us calculate the limit when λY = 0. In this case we have κ̃ → ∞ and
it is easy to show that λ̃1 → 0 and λ̃2 → ∞. Also: limλY →0 õ = limλY →0

κ̃
λ2

b
1−βδ

1
1− δ

λ2

= b
1−βδ . We

thus have:

π̂t+j =
b

1− βδ
δj∆ψgov,t, j ≥ 0

and

∆ψgov,t = (1− βδ)2(1− βδ2)
GĜt + (b− s)ξ̂t

b
2

A.2 Proof of Proposition 4 and derivations for Case 2: σ > 0 λY = 0.

We first derive the optimal rules in the case where G = κ2 = 0 The FONC for inflation are:

π̂t =
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l + σ
Y

Cκ1
b

∞∑
l=0

δl
(
∆ψgov,t−l −∆ψgov,t−l−1

)
+
ωY
κ1

∆ψgov,t (40)

To find the optimal interest rate rule in the case where fiscal policy is active we combined the
Euler equation and the Phillips curve:

ît = σ

(
EtŶt+1 − Ŷt

)
+ Etπ̂t+1 + ξ̂t =

σ

κ1
Et

(
π̂t+1 − βπ̂t+2 − π̂t + βπ̂t+1

)
+ Etπ̂t+1 + ξ̂t
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We can now derive Etπ̂t+1 as follows:

Etπ̂t+1 =
bδ

1− βδ

∞∑
l=0

δl∆ψgov,t−l + δ
σ

κ1
b

∞∑
l=0

δl
(
∆ψgov,t−l −∆ψgov,t−l−1

)
− σ

κ1
b∆ψgov,t =

δπ̂t − δ
ωY
κ1

∆ψgov,t −
σ

κ1
b∆ψgov,t

Moreover, it is simple to show that

Etπ̂t+2 = δ2π̂t − δ2
ωY
κ1

∆ψgov,t − δ
σ

κ1
b∆ψgov,t

Making use of this we get:

ît = ξ̂t +

(
δ +

σ

κ1
(1− δ)(δβ − 1)

)
π̂t − (δ

ωY
κ1

+
σ

κ1
b)(1 +

σ

κ1
+ β

σ

κ1
(1− δ))︸ ︷︷ ︸

:=ω̃

∆ψgov,t

Now let us turn to the passive fiscal policy case. Since the shock is a demand shock, we have
that π̂t = Ŷt = 0 (divine coincidence). The interest rate rule that can implement this outcome is
ît = ξ̂t + ϕππ̂t where ϕπ > 1.

A.2.1 Proof of Proposition 4: Optimal interest rate rules when G > 0.

We now derive the optimal rule when G > 0.

ît = σ
Y

C

(
EtŶt+1 − Ŷt

)
+ Etπ̂t+1 + ξ̂t + σ

G

C
Ĝt

=
σ

κ1

Y

C
Et

(
π̂t+1 − βπ̂t+2 − π̂t + βπ̂t+1

)
+ Etπ̂t+1 + ξ̂t + σ

G

C
Ĝt −

σκ2
κ1

Y

C
Ĝt

Moreover,

Etπ̂t+1 =
bδ

1− βδ

∞∑
l=0

δl∆ψgov,t−l + δ
Y

C

σ

κ1
b

∞∑
l=0

δl
(
∆ψgov,t−l −∆ψgov,t−l−1

)
− Y

C

σ

κ1
b∆ψgov,t =

δπ̂t − δ
ωY
κ1

∆ψgov,t −
σ

κ1

Y

C
b∆ψgov,t

and

Etπ̂t+2 = δ2π̂t − δ2
ωY
κ1

∆ψgov,t − δ
σ

κ1

Y

C
b∆ψgov,t

We therefore get:

ît = ξ̂t + σ
G

C
Ĝt −

σκ2
κ1

Y

C
Ĝt +

(
δ +

Y

C

σ

κ1
(1− δ)(δβ − 1)

)
π̂t − f∆ψgov,t (41)

where f :=

(
1 + Y

C
σ
κ1
(1 + β − βδ)

)(
δ ωY

κ1
+ Y

C
σ
κ1
b

)
■
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A.2.2 The optimal path of inflation

We now derive the optimal inflation path for this model shown in Section 4. The LHS of the
consolidated budget constraint under the parameter values assumed here, is:

∑
j≥0

βjsŜt+j =
∑
j≥0

βj
[
−GĜt+j + (τ −G)σ

G

C
Ĝt+j − (τ −G)σ

Y

C
Ŷt+j + (τ −G)ξ̂t+j

]

= −GĜt + (τ −G)σ
G

C
Ĝt + (τ −G)ξ̂t −

∑
j≥0

βj
[
(τ −G)σ

Y

C
Ŷt+j

]
Consider the last term. We have:

−(τ −G)σ
Y

C

∑
j≥0

βjŶt+j = −(τ −G)
σ

κ1

Y

C

∑
j≥0

βj
[
π̂t+j + κ2Ĝt+j − βπ̂t+j+1

]

= −(τ −G)
σ

κ1

Y

C

(
π̂t + κ2Ĝt

)
We therefore get:

∑
j≥0

βjsŜt+j = −GĜt + (τ −G)σ
G

C
Ĝt + (τ −G)ξ̂t − (τ −G)

σ

κ1

Y

C

(
π̂t + κ2Ĝt

)
The RHS of the intertemporal constraint is:

b
∑
j≥0

(βδ)j
(
−σ(Y

C
Ŷt+j −

G

C
Ĝt+j)−

j∑
l=0

π̂t+l

)
+ bξ̂t

Let us separately derive each of the components. The first is:

b
∑
j≥0

(βδ)j
(
−σ(Y

C
Ŷt+j −

G

C
Ĝt+j)

)

= −σb
∑
j≥0

(βδ)j
(
Y

C
Ŷt+j

)
+ σb

G

C
Ĝt −

σ

κ1

Y

C
b
∑
j≥0

(βδ)j
(
π̂t+j + κ2Ĝt+j − βπ̂t+j+1

)
+ σb

G

C
Ĝt

= − σ

κ1

Y

C
b
∑
j≥0

(βδ)j
(
π̂t+j − βπ̂t+j+1

)
+ σbĜt

(
G

C
− κ2
κ1

Y

C

)

We can now substitute out the term π̂t+j − βπ̂t+j+1 using formula (29) in text. Let ν = σ
κ1

Y
C
(b−

(τ −G)) we can write (29) as:

π̂t+j − βπ̂t+j+1 =



[
b

1−βδ (1− βδ) + ν − β σ
κ1
(1− δ)Y

C
b

]
∆ψgov,t j = 0

[
b

1−βδδ
j − σ

κ1
(1− δ)δj−1 Y

C
b

]
(1− βδ)∆ψgov,t j ≥ 1
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Making use of this result we can write:

− σ

κ1

Y

C
b
∑
j≥0

(βδ)j
(
π̂t+j − βπ̂t+j+1

)
= − σ

κ1

Y

C
b

[
b

1− βδ
(1− βδ) + ν − β

σ

κ1
(1− δ)

Y

C
b

]
∆ψgov,t

− σ

κ1

Y

C
b(1− βδ)∆ψgov,t

∑
j≥1

(βδ)j
[

b

1− βδ
δj − σ

κ1
(1− δ)δj−1Y

C
b

]
=

− σ

κ1

Y

C
b∆ψgov,t

{
(1− βδ)

[
b

1− βδ

βδ2

1− βδ2
− σ

κ1
(1− δ)

Y

C
b

βδ

1− βδ2

]
+

[
b

1− βδ
(1− βδ) + ν − β

σ

κ1
(1− δ)

Y

C
b

]}
= − σ

κ1

Y

C
b∆ψgov,t

{[
b

1− βδ2
+ ν − σ

κ1

Y

C
b(1− δ)

(
(1− βδ)

βδ

1− βδ2
+ β

)]}
Consider now the term:

−b
∑
j≥0

(βδ)j
( j∑
l=0

π̂t+l

)
=

[
− b

1− βδ
ν − b

2

1− βδ

∑
j≥0

(βδ)j
1− δj+1

1− δ
+
σ

κ1
(1− δ)

Y

C
b
2∑
j≥1

(βδ)j
1− δj

1− δ

]
∆ψgov,t

= −
[

b

1− βδ
ν +

b
2

(1− βδ)2(1− βδ2)
− σ

κ1
(1− δ)

Y

C

b
2
(βδ)2

(1− βδ)(1− βδ2)

]
∆ψgov,t

We can thus write the intertemporal constraint as:

−
[
µ1 + µ2 − s

σ

κ1

Y

C

(
b

1− βδ
+ ν

)]
∆ψgov,t = −GĜt +

(
s− b

)
σ

(
G

C
− κ2
κ1

Y

C

)
Ĝt +

(
s− b

)
ξ̂t

(42)

where µ1 =

[
b

1− βδ
ν +

b
2

(1− βδ)2(1− βδ2)
− σ

κ1

(
1− δ

)
Y

C

b
2
(βδ)2

(1− βδ)(1− βδ2)

]
µ2 =

σ

κ1

Y

C
b

[
b

1− βδ2
+ ν − σ

κ1

Y

C
b

(
1− δ

)(
(1− βδ)

βδ

1− βδ2
+ β

)]
and s = τ −G.

Finally, consider the Ĝt terms in (42). We have κ2
κ1

=
σG

C

(γh+σ
Y
C
)
and so:

−GĜt +

(
s− b

)
σ

(
G

C
− κ2
κ1

Y

C

)
Ĝt = −GĜt +

(
s− b

)
σ
G

C

(
1− 1

(γh + σ Y
C
)

Y

C

)
Ĝt

B The nonlinear model

We present here the nonlinear equations of our baseline New Keynesian model.

Households Households maximize

E0

∞∑
t=0

βtξt

(
C1−σ
t

1− σ
− χ

h1+γht

1 + γh

)
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subject to

PtCt + Pt,sBt,S + Pt,LBt,δ ⩽ (1− τt)Wtht − PtTt + PtDt +Bt−1,S + (1 + δPt,L)Bt−1,δ

where Ct denotes consumption and ht denotes hours worked. Dt represents firms’ profits redis-
tributed to households, and Pt denotes the aggregate price level. Bt,δ is a long-term government
bond, a perpetuity with coupon payments decaying at the rate 0 ⩽ δ < 1 and price Pt,L. Bt,s

denotes short-term bonds with price is Pt,S. We assume that short debt is in zero net supply. ξt is
the preference shock. 0 ≤ τt ≤ 1 denotes the (distortionary) tax rate on labour, and Tt the level
of lump-sum taxes.

The first order conditions of the household’s problem are:

Pt,sξtC
−σ
t = βEtξt+1

C−σ
t+1

πt+1

Pt,LξtC
−σ
t = βEtξt+1

C−σ
t+1

πt+1

(1 + δPt+1,L)

hγht C
σ
t = (1− τt)

Wt

Pt

where πt ≡ Pt

Pt−1
is the gross inflation rate.

Firms Production takes place in monopolistically competitive firms which operate technologies
with labour as the sole input. The final good is a CES aggregate of the intermediate goods Yt(j):

Yt =
(∫ 1

0

Yt(j)
1+η
η dj

) η
1+η

where η governs the elasticity of substitution between differentiated goods. Firms set prices to
maximize profits subject to the demand curve

Yt(j) =
(Pt(j)

Pt

)η
Yt

and given price adjustment costs, modelled as in Rotemberg (1982). The dynamic profit maxi-
mization program is:

max
Pt(j)

Et

∞∑
s=0

Qt,t+s

(Pt+s(j)
Pt+s

Yt+s(j)−
Wt+s(j)

Pt+s
Yt+s(j)− ACt+s(j)

)
s.t. Yt+s(j) =

(Pt+s(j)
Pt+s

)η
Yt+s

ACt+s(j) =
θ

2

( Pt+s(j)

Pt+s−1(j)
− π

)2
Yt+s

where Qt,t+s ≡ βs is the discount factor of households and Wt+s is the wage rate, that is equal to
the marginal cost of production. (43) is the quadratic adjustment costs incurred by firms.

Focusing on a symmetric equilibrium, the first order condition from the firm’s dynamic pro-
gram, gives us the following non-linear Phillips Curve:

θ(πt − π)πt = 1 + η(1− Wt

Pt
) + βθEt

Cσ
t

Cσ
t+1

Yt+1

Yt
(πt+1 − π)πt+1
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Fiscal policy Government spending Gt evolves exogenously according to an AR(1) process in
logs:

Ĝt = ρgĜt−1 + ϵg,t

where Ĝt ≡ logGt − logG.
The labor tax is set by the fiscal authority according to the simple rule described in text (in

log-linear form). The flow government budget constraint can be written as:

Pt,Lbt,δ = (1 + δPt,L)
bt−1,δ

πt
+Gt − Tt

where bt,δ ≡ Bt,δ

Pt
denotes real long-term government debt.

Log-linearization Making use of the labor supply condition hγht C
σ
t = Wt

Pt
, as well as the resource

constraint ht = Yt = Ct + Gt +
∫
AC(j)dj to dispense with Wt, Ct and ht, we get the following

linear New Keynesian Phillips Curve:

π̂t = κ1Ŷt − κ2Ĝt + βEtπ̂t+1

where κ1, κ2 were defined in text.
Defining it ≡ − logPt,S, log-linearizing the Euler equation for short bonds (and again making

use of the resource constraint) we get:

ît = Et

(
π̂t+1 − ξ̂t+1 + ξ̂t − σ

[Y
C
(Ŷt − Ŷt+1)−

G

C
(Ĝt − Ĝt+1)

])

Finally, making use of the Euler equation for long bonds and iterating forward and making use of

the resource constraint we get Pt,L =
∑

j≥1Etβ
jδj−1 ξt+j

ξt

(Yt+j−G−σ
t+j)

(Yt−G−σ
t)

∏j
l=1 πt+l

. Using this to substitute

out PL,t from the government budget constraint we obtain:∑
j≥1

Etβ
jδj−1 ξt+j

ξt

(Yt+j −Gt+j)
−σ

(Yt −Gt)−σ
∏j

l=1 πt+l
bt,δ =

(
1 + δ

∑
j≥1

Etβ
jδj−1 ξt+j

ξt

(Yt+j −Gt+j)
−σ

(Yt −Gt)−σ
∏j

l=1 πt+l

)bt−1,δ

πt
− St

where St = τthtwt −Gt or St = Tt −Gt depending on whether the fiscal instrument is the labour
tax or the lump-sum tax. Log-linearizing this equation we get:

βb

1− βδ
b̂t,δ + b

∞∑
j=1

βjδj−1

[
Et

(
−σ(Y

C
Ŷt+j −

G

C
Ĝt+j)−

j∑
l=1

π̂t+l + ξ̂t+j

)]

= −SŜt − bσ

(
Y

C
Ŷt −

G

C
Ĝt

)
+ bξ̂t

+
b

1− βδ
(b̂t−1,δ − π̂t) + δb

∞∑
j=1

βjδj−1Et

(
−σ(Y

C
Ŷt+j −

G

C
Ĝt+j)−

j∑
l=1

π̂t+l + ξ̂t+j

)
which is the equation stated in the main text.
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C Optimal policy with dual mandates/ microfounded loss

function

In this subsection we present the following results: First, we derive the interest rate rule for a dual
mandate objective function in the canonical New Keynesian model. This is Proposition 5 in the
main text. Second, we derive a quadratic loss function based on a second order approximation of
household utility. Third, we repeat our derivations for the dual mandate under the welfare based
objective. Fourth, we explore the optimal policies in the case where supply side shocks can hit
the economy. Finally, we show the IRFS for this model under Ramsey policy and under simpler
inflation targeting rules.

C.1 Optimal interest rates in the canonical model with a dual mandate
objective function/ Proof of Proposition 5

We first consider the case of targeting steady state output. Moreover, we assume that the NK
Phillips curve is given by

π̂t = κ1Ŷt + µ̂t + βEtπ̂t+1

The term µ̂t picks up all the shock terms that may appear in the Phillips curve. It can be
interpreted as a cost push shock, or (following the specification of the baseline model in text)
it may represent the term −κ2Ĝt (the income effect on labour supply induced by spending).
We will derive our formula for the optimal interest rate using the notation µ̂t. Then, it will be
straightforward to add spending shocks explicitly.

The Ramsey optimality condition when σ, λY > 0 is given by:

0 = π̂t +
λY∆Ŷt
κ1

− σ

κ1

Y

C
b

∞∑
l=0

δl
(
∆ψgov,t−l −∆ψgov,t−l−1

)
− ωY
κ1

∆ψgov,t −
b

(1− βδ)

∞∑
l=0

δl∆ψgov,t−l

Using the Phillips curve, we can write:

−π̂t −
λY
κ21

(
π̂t − µ̂t − βEtπ̂t+1

)
+
λY
κ21

(
π̂t−1 − µ̂t−1 − βEt−1π̂t

)
+

b

1− βδ

∞∑
k=0

δk∆ψgov,t−l +
σ

κ1

Y

C
b

∞∑
l=0

δl
(
∆ψgov,t−l −∆ψgov,t−l−1

)
+
ωY
κ1

∆ψgov,t = 0

Define:

ζt ≡
(
π̂t − Et−1π̂t

)
+

κ21
βλY

[
b

1− βδ

∞∑
k=0

δk∆ψgov,t−l

+
σ

κ1

Y

C
b

∞∑
l=0

δl
(
∆ψgov,t−l −∆ψgov,t−l−1

)
+
ωY
κ1

∆ψgov,t

]
+

1

β
∆µ̂t

Then, inflation evolves according to:

Etπ̂t+1 −
(
1 +

1

β
+

κ21
λY β

)
π̂t +

1

β
π̂t−1 = −ζt (43)
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We will now resolve the above difference equation. Letting κ̃ =
κ21
λY β

, the characteristic polynomial

is λ2 − (1 + 1
β
+ κ̃)λ+ 1

β
. The two roots are:

λ̃1,2 =
1

2

(
(1 +

1

β
+ κ̃)±

√
(1 +

1

β
+ κ̃)2 − 4̃

β

)
It is simple to show that one root is stable and one unstable. Let λ̃1 denote the stable root. (43)
can be written as:

π̂t =
1

λ̃2
Etπ̂t+1 +

1

λ̃2

1

1− λ̃1L
ζt =

1

λ̃2

1

1− λ̃1L

∑
j≥0

1

λ̃j2
Etζt+j (44)

(for the usual boundary condition that inflation does not explode).
Let us compute the term

∑
j≥0

1

λ̃j2
Etζt+j =

∑
j≥0

1

λ̃j2
Et

[(
π̂t+j − Et+j−1π̂t+j

)
+ κ̃

b

1− βδ

∞∑
k=0

δk∆ψgov,t+j−l

+κ̃
σ

κ1

Y

C
b

∞∑
l=0

δl
(
∆ψgov,t+j−l −∆ψgov,t+j−l−1

)
+ κ̃

ωY
κ1

∆ψgov,t+j

]
When ∆ψgov,t ̸= 0 (in an equilibrium with active fiscal policy), the second term on the RHS is

κ̃
b

1− βδ

∑
j≥0

1

λ̃j2
Et

[ ∞∑
k=0

δk∆ψgov,t+j−l

]
= κ̃

b

1− βδ

1

1− δ

λ̃2

1

1− δL
∆ψgov,t

(this follows from the random walk property of the multiplier). The final term is∑
j≥0

1

λ̃j2
Et

[
κ̃
ωY
κ1

∆ψgov,t+j

]
= κ̃

ωY
κ1

∆ψgov,t

and the third term is

∑
j≥0

1

λ̃j2
Et

[
κ̃
σ

κ1

Y

C
b

∞∑
l=0

δl(∆ψgov,t+j−l −∆ψgov,t+j−l−1)

]
=

κ̃
σ

κ1

Y

C
b

(
1

1− δ

λ̃2

1

1− δL
(∆ψgov,t −∆ψgov,t−1) +

1

λ̃2

1

1− δ

λ̃2

∆ψgov,t

)
Moreover, it clearly holds that:∑

j≥0

1

λ̃j2
Et

(
π̂t+j − Et+j−1π̂t+j

)
= π̂t − Et−1π̂t

Finally, ∑
j≥0

1

λ̃j2
Et

1

β
∆µ̂t+j =

1

β

1

1− ρµ

λ̃2

(1− 1

λ̃2
)µ̂t −

1

β
µ̂t−1
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We can now use the above results to derive te optimal path for inflation in this model. Sub-
stituting into (44) we get:

π̂t = λ̃1π̂t−1 +
1

λ̃2

(
π̂t − Et−1π̂t

)
+

κ̃

λ̃2

b

1− βδ

1

1− δ

λ̃2

1

1− δL
∆ψgov,t +

κ̃

λ̃2

ωY
κ1

∆ψgov,t

+
κ̃

λ̃2

σ

κ1

Y

C
b

(
1

1− δ

λ̃2

1

1− δL
(∆ψgov,t −∆ψgov,t−1) +

1

λ̃2

1

1− δ

λ̃2

∆ψgov,t

)
+

1

βλ̃2

1

1− ρµ

λ̃2

(1− 1

λ̃2
)µ̂t −

1

β
µ̂t−1

and obviously

(1− 1

λ̃2
)(π̂t − Et−1π̂t) =

κ̃

λ̃2

b

1− βδ

1

1− δ

λ̃2

∆ψgov,t+

κ̃

λ̃2

ωY
κ1

∆ψgov,t +
κ̃

λ̃2

σ

κ1

Y

C
b

(
1

1− δ

λ̃2

∆ψgov,t +
1

λ̃2

1

1− δ

λ̃2

∆ψgov,t

)
+

1

βλ̃2

1

1− ρµ

λ̃2

(1− 1

λ̃2
)(µ̂t − ρµµ̂t−1) →

(π̂t − Et−1π̂t) = ψ∆ψgov,t +
1

βλ̃2

1

1− ρµ

λ̃2

(µ̂t − ρµµ̂t−1)

Inflation solution. Optimal inflation is given by:

π̂t = λ̃1π̂t−1 +
1

λ̃2
ψ∆ψgov,t +

κ̃

λ̃2

b

1− βδ

1

1− δ

λ̃2

1

1− δL
∆ψgov,t +

κ̃

λ̃2

ωY
κ1

∆ψgov,t

+
κ̃

λ̃2

σ

κ1

Y

C
b

(
1

1− δ

λ̃2

1

1− δL
(∆ψgov,t −∆ψgov,t−1) +

1

λ̃2

1

1− δ

λ̃2

∆ψgov,t

)
+

1

βλ̃2

1

1− ρµ

λ̃2

(µ̂t − µ̂t−1)

(45)

The solution reveals that inflation displays persistence λ̃1 reacts directly to shocks to the Phillips
curve (the term 1

βλ̃2

1
1− ρµ

λ̃2

(µ̂t − µ̂t−1)) and also to the multipliers attached to the consolidated

budget constraint. The first two elements are standard features of the NK model. Shocks to
the Phillips curve induce a trade-off between output and inflation and under the optimal policy
this is resolved by making inflation partially absorb the shock, depending on the weight attached
to output stabilization in the policy objective function. If λY is a very small number, then λ̃2
approaches infinity and cost-push shocks do not exert any influence on inflation. Conversely, if λY
is infinite (equivalent to the planner only seeking to stabilize the output gap) then λ̃2 → 1

β
and

all of the effect of the cost-push shock is absorbed by inflation.
Moreover, attaching a larger weight to output stabilization yields a more persistent inflation

process. The intuition behind this property is simple: Since from the Phillips curve output
variability is proportional to the variability of the changes in inflation, the planner makes inflation
react persistently to shocks in order to smooth the output target. In the limit, when policy only
cares about smoothing output fluctuations, then λ̃1 → 1 and inflation displays a unit root.

Finally, the terms ∆ψgov capture the effect of shocks being filtered through the consolidated
budget on inflation. These terms also induce an inflation-output trade-off (hence the dependence

on parameters λ̃1, λ̃2) but, as expected, this trade-off now depends also on the debt maturity
structure. Innovations to ∆ψgov can result from both demand and supply side shocks.
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Expected inflation. Given this solution it is straightforward to show that the expected inflation
rates in t+ 1 and t+ 2 are given by.

Etπ̂t+1 = λ̃1π̂t +

[
κ̃

λ̃2

b

1− βδ

1

1− δ

λ̃2

δ +
κ̃

λ̃2

σ

κ1

Y

C
b

(
1

1− δ

λ̃2

(δ − 1)

)]
︸ ︷︷ ︸

≡ζ̃

∆ψgov,t
1− δL

+
1

βλ̃2

(ρµ − 1)

1− ρµ

λ̃2︸ ︷︷ ︸
ν̃1

µ̂t

and

Etπ̂t+2 = λ̃1Etπ̂t+1 + δζ̃
∆ψgov,t
1− δL

+ ρµν̃1µ̂t = λ̃21π̂t + (δ + λ̃1)ζ̃
∆ψgov,t
1− δL

+ (ρµ + λ̃1)ν̃1µ̂t

where we used for convenience the notation ν̃1 and ζ̃ to summarize the more complex algebraic
expressions.

The Ramsey rule. We make use of these results inside the Euler equation to derive the optimal
interest rate rule. Assuming for now that µ̂t is a pure cost push shock (hence does not affect directly
the Euler equation) we have

ît = σ
Y

C

(
EtŶt+1 − Ŷt

)
+ Etπ̂t+1

=
σ

κ1

Y

C
Et

(
π̂t+1 − βπ̂t+2 − π̂t + βπ̂t+1

)
+ Etπ̂t+1 +

σ

κ1

Y

C
(1− ρµ)µ̂t

Gathering terms and using the previous formulae to substitute out expected inflation we get:

ît =

(
(1 +

σ

κ1

Y

C
(1 + β))λ̃1 − 1− β

σ

κ1

Y

C
λ̃21

)
π̂t +

σ

κ1

Y

C
(1− ρµ)µ̂t+

[(1 +
σ

κ1

Y

C
(1 + β))− β

σ

κ1

Y

C
(ρµ + λ̃1)]ν̃1µ̂t + ζ̃[(1 +

σ

κ1

Y

C
(1 + β))− β

σ

κ1

Y

C
(δ + λ̃1)]

∆ψgov,t
1− δL

Moreover, from (45) it is simple to show that

ζ̃

δ

∆ψgov,t
1− δL

= π̂t − λ̃1π̂t−1 − f̃∆ψgov,t −
1

βλ̃2

1

1− ρµ

λ̃2

(µ̂t − µ̂t−1)

where f̃ sums the coefficients of all terms ∆ψgov,t.
The optimal interest rate rule is:

ît =

(
(1 +

σ

κ1

Y

C
(1 + β))λ̃1 − 1− β

σ

κ1

Y

C
λ̃21

)
π̂t +

σ

κ1

Y

C
(1− ρµ)µ̂t+

[(1 +
σ

κ1

Y

C
(1 + β))− β

σ

κ1

Y

C
(ρµ + λ̃1)]ν̃1µ̂t

+[(1 +
σ

κ1

Y

C
(1 + β))− β

σ

κ1

Y

C
(δ + λ̃1)]δ[π̂t − λ̃1π̂t−1 − f̃∆ψgov,t −

1

βλ̃2

1

1− ρµ

λ̃2

(µ̂t − µ̂t−1)]

Spending and preference shocks. It is simple to modify the above formula to introduce
spending and preference shocks. Let µ̂t = −κ2Ĝt (from the Phillips curve assumed in text).
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Then the optimal rule is:

ît =

(
(1 +

σ

κ1

Y

C
(1 + β))λ̃1 − 1− β

σ

κ1

Y

C
λ̃21

)
π̂t + ξ̂t(1− ρξ) + σ(

G

C
− κ2
κ1

Y

C
)(1− ρG)Ĝt+

[(1 +
σ

κ1

Y

C
(1 + β))− β

σ

κ1

Y

C
(ρµ + λ̃1)]ν̃1Ĝt

+[(1 +
σ

κ1

Y

C
(1 + β))− β

σ

κ1

Y

C
(δ + λ̃1)]δ[π̂t − λ̃1π̂t−1 − f̃∆ψgov,t −

1

βλ̃2

1

1− ρµ

λ̃2

(Ĝt − Ĝt−1)]

which can be rearranged to obtain the formula in Proposition 5.
■

C.2 The micro-founded loss function

We now derive the microfounded objective function using a second-order approximation of house-
hold utility function. To do so, we use a model version in which the first best allocation is reached
at the steady-state. We thus subsidize output at rate κ = −1

η+1
> 0.

The competitive equilibrium in the model with the output subsidy is summarized by:

C−σ
t = βRtEt

C−σ
t+1

πt+1

Pt,LC
−σ
t = βEt(1 + δPt+1,L)

C−σ
t+1

πt+1

χhϕtC
σ
t = wt

θ(πt − π)πt = η(1− wt) + βθEt
uc,t+1

uc,t

Yt+1

Yt
(πt+1 − π)πt+1

Ct +Gt +
θ

2
(πt − π)2Yt = Yt = ht

Pt,Lbt,δ = (1 + δPt,L)
bt−1,δ

πt
+Gt + κYt − Tt

χ
−1
σ (Y n

t )
−ϕ
σ +Gt = Y n

t

To save notation we abstract from preference shocks. Y n
t denotes the natural output level which,

in log-linear form, is given by

Ŷ n
t =

σG

σY + ϕC
Ĝt

Taking a second-order approximation of the utility function Ut = u
(
Yt(1− θ

2
(πt−π)2)−Gt

)
−v(Yt)

(we use the resource constraint to substitute Ct and the equilibrium Yt = ht to substitute hours)
around the steady-state we get:

Ut ≈ ucY Ŷt +
1

2
(uccY

2
+ ucY )Ŷ 2

t − 1

2
θucπ

2Y π̂2
t − uccY GŶtĝt − vhY Ŷt −

1

2
(vhhY

2
+ vhY )Ŷt + t.i.p

where “t.i.p” groups terms that are independent of policy. In an efficient steady-state, uc = vn.
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This gives:

Ut ≈
1

2
(uccY − vhhY )Y Ŷ 2

t − 1

2
θucπ

2Y π̂2
t − uccY GŶtĜt + t.i.p

Using (46) we obtain:

Ut ≈
1

2
(uccY − vhhY )Y Ŷ 2

t − 1

2
θucπ

2Y π̂2
t − uccY

σY + ϕC

σ
ŶtŶ

n
t + t.i.p

Using ucc = −σC−σ−1
and vhh = ϕχY

ϕ−1
= ϕC

−σ
/Y , we get:

Ut ≈ −1

2

[
C

−σ−1
Y (σY + ϕC)

(
Ŷt − Ŷ n

t

)2
+ θπ2C

−σ
Y π̂2

t

]
+ t.i.p

Rescaling (and using π = 1), we get the loss function:

L =
1

2
E0

∞∑
t=0

βt
(
π̂2
t +

σ Y
C
+ ϕ

θ
(Ŷt − Ŷ n

t )
2
)

(46)

Setting γh = ϕ (our notation in text) the optimal output stabilization weight is equal to λY =
σ Y

C
+γh

θ
.

C.3 Optimal interest rates with the microfounded loss function.

We now derive the optimal interest rate rule in the case where the planner’s objective function is
given by (46).

For simplicity, we will denote Ỹt = Ŷt − Ŷ n
t the output gap. The constraint set of the planner

is

ît = σ
Y

C
(EtỸt+1 − Ỹt) + Etπ̂t+1 + r̂nt

π̂t = κ1Ỹt + βEtπ̂t+1 + µ̂t

p̂t,δ = −ît + βδEtp̂t+1,δ

bpδ(b̂t,δ + p̂t,δ) = −SŜt + b(1 + δpδ)(b̂t−1,δ − π̂t) + pδδbp̂t,δ

where now κ1 = −η
θ
(γh + σ Y

C
). r̂nt =≡ − γhG

Y+
γh
σ
C
(EtĜt+1 − Ĝt)−Et(ξ̂t+1 − ξt) denotes the natural

rate of interest. Notice that while government expenditures do not show up in the Phillips curve
(they are included in the natural output definition) variable µ̂t has been added as a shifter and it
represents a standard cost push shock.38

The government’s surplus is now given by:

SŜt = −ω1GĜt − ω2Ỹt

38It is simple to show that adding this shock does not change our derivations for the welfare function, the natural
output or the natural interest rate.
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We thus focus on the active fiscal scenario in which debt is not back by surpluses. More-
over, parameter ω2 is not zero since we assume that the government sets a subsidy to elimi-
nate distortions from monopolistic competition as it is standard in the literature. Specifically,

ω2 = κY
(
1 + γh +

σY
C

)
> 0 and also ω1 = 1 + κY

Y+
γh
σ
C
> 0

As discussed in text, we can simplify the Ramsey program noting that ît can be set to satisfy
the Euler equation. Moreover, subsituting out the bond price we can write the consolidated budget
constraint as:

b
β

1− βδ

(
b̂t,δ − σ

∑
j≥1

(βδ)j−1Y

C
(EtỸt+j − Ỹt+j−1)−

∑
j≥1

(βδ)j−1Etπ̂t+j −
∑
j≥1

(βδ)j−1r̂nt+j−1

)
=

(1 + ω1)GĜt + ω2Ỹt + b
1

1− βδ

(
b̂t−1,δ − π̂t

)
− δβ

1− βδ
b

(
σ
∑
j≥1

(βδ)j−1Y

C
(EtỸt+j − Ỹt+j−1) +

∑
j≥1

(βδ)j−1Etπ̂t+j +
∑
j≥1

(βδ)j−1r̂nt+j−1

)
Given multipliers ψπ,t for the Phillips curve constraint and ψgov,t for the budget constraint we

can state the optimality condition for inflation as:

−π̂t +∆ψπ,t +
b

1− βδ

∑
j≥0

δj∆ψgov,t−j = 0

The first order condition for output is given by:

−λY Ỹt − ψπ,tκ1 − ω2ψgov,t − σ
b

1− βδ
(1− δ)

Y

C

∑
j≥1

δj−1ψgov,t−j + σ
Y

C

b

1− βδ
β(1− δ)

∑
j≥0

δjψgov,t−j = 0

However,

−σ b

1− βδ
(1− δ)

Y

C

∑
j≥1

δj−1ψgov,t−j + σ
Y

C

b

1− βδ
β(1− δ)

∑
j≥0

δjψgov,t−j =

σb
Y

C

∑
j≥0

δj∆ψgov,t−j + σ
Y

C

b

1− βδ
(β − 1)ψgov,t = σb

Y

C

∑
j≥0

δj∆ψgov,t−j − Sσ
Y

C
ψgov,t

where the last equality follows from the steady state intertemporal budget b
1−βδ =

S
1−β . Thus, we

can write the output FONC as

−λY Ỹt − ψπ,tκ1 − ω2ψgov,t + σb
Y

C

∑
j≥0

δj∆ψgov,t−j − Sσ
Y

C
ψgov,t = 0

Combining the two first order conditions we thus get:

−π̂t −
λY
κ1

∆Ỹt −
ω2 + Sσ Y

C

κ1
∆ψgov,t +

σ

κ1
b
Y

C

∑
j≥0

δj
(
∆ψgov,t−j −∆ψgov,t−j−1

)
+

b

1− βδ

∑
j≥0

δj∆ψgov,t−j = 0

(47)

Equation (47) is basically the same as the optimal trade-off equation we derived in text for the
baseline model. The difference is that here the planner targets the natural output (hence the term
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∆Ỹt has replaced ∆Yt and now ωY =
ω2+Sσ

Y
C

κ1
instead of

Sσ Y
C

κ1
). However, this difference does not

matter for the optimal inflation coefficients of the interest rate rules, it only matters for the real
interest rate target and the constant multiplying the stochastic intercept. It is thus easy to follow
the steps of the previous subsection and establish that the optimal interest rate rule is

ît = r̂nt +

(
(1 +

σ

κ1

Y

C
(1 + β))λ̃1 − 1− β

σ

κ1

Y

C
λ̃21

)
π̂t

+δ

[
(1 +

σ

κ1

Y

C
(1 + β))− β

σ

κ1

Y

C
(δ + λ̃1)

][
π̂t − λ̃1π̂t−1 − f̃∆ψgov,t

]
+
σ

κ1

Y

C
(1− ρµ)µ̂t

+

[
(1 +

σ

κ1

Y

C
(1 + β))− β

σ

κ1

Y

C
(ρµ + λ̃1)

]
ν̃1µ̂t

−δ
[
(1 +

σ

κ1

Y

C
(1 + β))− β

σ

κ1

Y

C
(δ + λ̃1)

]
1

βλ̃2

1

1− ρµ

λ̃2

(µ̂t − µ̂t−1)

where the expression for f̃ is the same as in subsection C.1 but now ωY

κ1
=

ω2+Sσ
Y
C

κ1
.

C.4 Impulse responses

We complement the results we showed in the main text with additional graphs plotting the re-
sponses of macroeconomic variables to shocks.

Persistent Shocks to Spending Figure 6 plots the IRFS under Ramsey and the optimal rules
when the output target is the steady state output. The top 2 panels of the Figure assume λY = 0
and the bottom panels set λY = 0.12 (≈ 1

θ
(σ Y

C
+ γh)). The maturity of debt δ varies across the

panels. To produce these graphs we assumed that spending follows a first order autoregressive
process with a persistence coefficient equal to 0.9.

Each of the plots contains three IRFS. Ramsey corresponds to the optimal Ramsey policy
(equivalently an optimal rule with stochastic intercepts). The ‘Dual Mandate Rule’ corresponds
to the optimal policy derived in Proposition 5 without stochastic intercepts.39 Finally, ‘Simple
Rule’ corresponds to the case where monetary policy follows ît = r̃t + δπ̂t.

As can be seen from the graphs the dual mandate policy matches almost perfectly the impulse
response functions when debt is long term. With short debt however the fit is not good. These
patterns confirm our main findings for the case of persistent shocks.

In Figure 7 we conduct the same exercise, but now assume λY = 0.5. The dual mandate
rule matches almost perfectly the Ramsey IRFS with long debt. The ‘Simple Rule’ (setting the
inflation coefficient equal to δ) also results in a good fit. With a constant output target government
spending becomes a shifter in the Phillips curve, (when there is an income effect on labour supply).
Therefore, a disturbance in government spending simultaneously shocks all three equations of the
model (Euler, Phillips and consolidated budget). Even so, the optimal rules that we derived in
this paper can approximate the Ramsey outcome closely when government debt is long term.

Shocks to preferences We now revisit the analysis from Section 4 to present the impulse
responses of macroeconomic variables to preference shocks. As in Section 4, we consider i.i.d.
shocks and separately examine the cases σ = 0, λY > 0 and σ > 0, λY = 0. We have analytically
derived the response of inflation to spending and preference shocks in these models (equations

39For λY = 0 Proposition 5 defines the same policy function as Proposition 4, when λ̃1 = 0.
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Figure 6: Rules vs Ramsey: Steady State Output Target I
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Notes: The figure compares the optimal policy impulse responses of inflation, output, and the nominal interest
rate with the optimal interest rate rules when we omit stochastic intercepts. We set λY = 0 in the top panel and

λY = 1
θ (σ

Y
C
+ γh) ≈ 0.12 in the bottom panel.
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Figure 7: Rules vs Ramsey: Steady State Output Target II
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Notes: The figure compares the optimal policy impulse responses of inflation, output, and the nominal interest
rate with the optimal interest rate rules when we omit stochastic intercepts. We set λY = 0.5.
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Figure 8: Rules vs Ramsey: Micro-founded loss function
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the analogous objects under the optimal inflation targeting rules.
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(28) and (30) respectively). For convenience, we provide these results again.

∆ψgov,t = ψ̃(GĜt + (b− s)ξ̂t)

in the Fisherian model with output smoothing and

∆ψgov,t = ϵ̃

[
(G+ (b− s)σ

G

C
)Ĝt + (b− s)ξ̂t

]
in the canonical NK model without output smoothing. The expressions for ψ̃ > 0 and ϵ̃ > 0 were
provided in Appendix A.

Assume that ξ̂t < 0. Noting that s < b when δ < 1, the above expressions tell us that the
shock will make ∆ψgov,t negative, therefore inflation will drop following the shock.

To understand why a negative ξ̂t shock is deflationary, note that it has two opposing effects
on the intertemporal consolidated budget. On the one hand, the shock will increase the market
value of debt outstanding in t through increasing real long bond prices. On the other hand, it
will also increase the present value of surpluses that compensate for debt. When δ < 1 the second
effect dominates and the shock needs to be ‘financed’ with deflation for the intertemporal budget
to hold. When long bonds are consols, δ = 1, the two effects will cancel out and inflation will be
zero. 40

The formulae in equations (27) and (29) in text showed that the dynamic path of inflation in
response to a change in ∆ψgov,t induced by a preference shock is exactly that from a spending
shock. Therefore, we do not need to discuss again these solutions. In Figures 9 and 10 we plot
impulse responses. The patterns are indeed very similar to the analogous objects for the spending
shock we showed in text, the signs have flipped since we now consider a negative shock.

In Figure 11 we present the Impulse Response Functions (IRFs) for a persistent preference
shock. The top two panels depict results for λY = 0, while the bottom panels show results for
λY = 0.5. Under long-term debt, the Ramsey policy is closely approximated by both the ‘Dual
Mandate’ and ‘Simple’ rules. The discrepancies observed with the ‘Dual Mandate Rule’ are minor
and temporary, especially when considering the scale of the graphs. Monetary policy proves highly
effective in stabilizing macroeconomic variables in response to the preference shock when debt is
long-term. Conversely, with short-term debt, the interest rate rules perform poorly compared to
the Ramsey outcome.

Finally, it is important to note that for preference shocks, the constant output target scenario
considered in Figure 11 closely aligns with the outcome derived from a microfounded loss function.
For the sake of brevity, we have not included this case in the graphs.

Cost Push Shocks. We now show the responses of macroeconomic variables to cost push
shocks. The top two panels in Figure 12 consider λY = 0. The bottom panels set λY equal to
the microfounded weight. As it is evident from the graphs, the optimal interest rate rules match
closely the Ramsey responses, when debt is long term. Assuming short maturity debt however,
compromises the fit. We thus conclude that the optimal interest rate rules can approximate the
Ramsey outcome also in the case of supply side shocks.

40We prove this assertion analytically in Appendix F.

66



Figure 9: Impulse response functions, ξ shock
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Notes: The figure displays the impulse responses of inflation, output, and the nominal interest rate following a
negative preference shock (ξ), in the case where λi = σ = 0. Top panels assume λY = 0, while in the bottom panels
we set λY = 0.5. In each plot, the solid blue line depicts impulse responses in the case where government debt is
short term (δ = 0); the dashed red lines and dash-dotted black lines plot the responses of variables when δ = 0.5
and δ = 0.95, respectively. The dotted cyan line considers the case where fiscal policy is passive (ϕτ,b > ϕ̃τ ).
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Figure 10: Impulse response functions with σ > 0 (ξ shock)
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Notes: The figure displays the impulse responses of inflation, output, and the nominal interest rate following a
negative demand shock (ξ), in the case where λi = 0 and σ = 1. Top panels assume λY = 0, while in the bottom
panels we set λY = 0.5. In each plot, the solid blue line depicts impulse responses in the case where government
debt is short term (δ = 0); the dashed red lines and dash-dotted black lines plot the responses of variables when
δ = 0.5 and δ = 0.95, respectively. The dotted cyan line considers the case where fiscal policy is passive (ϕτ,b > ϕ̃τ ).
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Figure 11: Rules vs Ramsey: Preference Shocks
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Notes: The figure compares the optimal policy impulse responses of inflation, output, and the nominal interest
rate with the optimal interest rate rules when we omit stochastic intercepts. We set λY = 0 in the top panel and
λY = 0.5 in the bottom panel.
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Figure 12: Rules vs Ramsey: Cost Push Shocks
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Notes: The figure compares the optimal policy impulse responses of inflation, output, and the nominal interest
rate with the optimal interest rate rules when we omit stochastic intercepts. We set λY = 0 in the top panel and
λY = 0.12 in the bottom panel.
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Figure 13: Welfare losses: Ramsey vs. interest rate rules with demand shocks
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Notes: The Figures compare the performance of the Ramsey rules, the Dual Mandate Rule
without intercept (Optimal rule w/o intercept), the ‘Simple rule’ ît = r̃t + δπ̂t with the
performance of ad hoc rules (48) with optimized coefficients, as a function of debt maturity
in years (4× 1

1−δ ). The graphs labeled ‘Rule’ optimizes s ρi, ϕπ and ϕY in (48). The ‘Rule
ρi = 0’ constrains ρi to zero. ‘Rule ρi = ϕY = 0’ optimizes over ϕπ.

The top graph shows the absolute welfare losses. The bottom graph expresses the losses

relative to the Ramsey solution.

C.5 Ad hoc interest rate rules vs Ramsey rules.

In this subsection we compare the performance of ad hoc interest rate rules and Ramsey optimal
rules in the active fiscal regime. We show that Ramsey optimal rules outperform (by a considerable
margin) ad hoc rules in terms of reducing macroeconomic volatility.

More specifically, we assume that the planner minimizes the microfounded loss function derived
in Section C.2. The optimal Ramsey rule for this model was derived in C.3. We compare the
outcome under the optimal policy equilibrium with that of an equilibrium where interest rates are
set according to:

ît = ρiît−1 + ϕππ̂t + ϕY Ỹt (48)

Parameters ρi, ϕπ and ϕY are set optimally so that the loss function is minimized.
Rules of the form (48) are commonly used in DSGE models.41 The main differences with the

optimal Ramsey rule is that in the latter, ît tracks the natural rate of interest and a stochastic
intercept term that is a function of the contemporaneous shocks.

41See Bianchi and Ilut (2017); Bianchi and Melosi (2019); Leeper and Leith (2016) among others. See also
Schmitt-Grohé and Uribe (2007) for an exercise with optimized interest rate rules in the context of the fiscal
theory.
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We solve the models calibrating parameters to the values reported in text (Table 1). We further
assume that spending and preference factors follow processes x̂t = ρxx̂t−1 + υ̂x,t for x = ξ,G.
We calibrate the first order autcorrelation coefficients and the variances of the shocks using the
estimates of Smets and Wouters (2007). Thus ρG = 0.97, ρξ = 0.22 σG = 0.53 and σξ = 0.23.

Figure (13) plots the values of the loss function for different calibrations of the debt maturity.
The solid blue line is the Ramsey rule outcome, the dashed red is the outcome under rule (48)
when coefficients ρi, ϕπ and ϕY are optimized separately for each value of δ considered. Moreover,
the black line constrains ρi = 0 whereas the green line assumes ρi = ϕY = 0, focusing on a simple
inflation targeting rule when ϕπ is optimal.

Ramsey rules lead to considerably smaller losses than ad hoc rules. When debt is short term
(quarterly), the Ramsey losses are more than 2 times smaller than the losses implied by the rules
with optimized coefficients. The losses are also smaller in the case of the dual mandate rule
(Proposition 5) when we drop the stochastic intercepts. However, a simple rule with inflation
coefficient equal to δ performs worse than any of the other models considered.

The reasons for these outcomes should be clear from our discussion in text. When debt is short
term, stochastic intercepts are an important ingredient of Ramsey rules and therefore dropping
them worsens the performance of the model. Moreover, in the presence of strong indirect output
effects, setting the inflation coefficient equal to δ (in this case 0) is far from optimal. (In fact, the
optimal inflation coefficients ought to be negative!). Note that this explains the relative success of
the dual mandate policy. In this case inflation coefficients are not constrained (they are optimal)
and also monetary policy tracks the real interest rate.

Next consider the performance of these models under plausible maturity structures of debt
(with debt maturity exceeding 3-4 years, or say equal to 5 years to match the US data moment).
It is evident that the outcomes under the ‘dual mandate’ and ‘simple’ rules essentially coincide
with the Ramsey outcome. However, rules with optimized coefficients perform much worse and
moreover, as we lengthen the maturity structure, the gap gets progressively bigger. Obviously, the
key difference between the optimal rules and those with optimized coefficients in the case of long
debt maturity, is the presence of explicit real rate tracking in the former, but not in the latter.

These findings generalize to alternative calibrations of the shock processes, which for the sake
of brevity we do not report here. Based on the findings of this subsection we conclude that optimal
rules dominate ad hoc DSGE rules, in terms of minimizing the losses of the central bank.

C.6 Real rate tracking.

We now show that our main result that optimal policy can be approximated by a simple rule
setting the inflation coefficient equal to δ is robust towards assuming that the real interest rate
that is tracked is the one that is backed out from the Fisher equation. Obviously, this property
holds in the case of the Fisherian models we analyzed in text and so we consider the canonical
New Keynesian model with a dual mandate objective function. In Figure 14 we plot the impulse
response functions under steady state output targeting (top 2 rows) and the microfounded loss
function (rows 3 and 4). Rows 1 and 3 assume i.i.d shocks and 2 and 4 assumed persistent shocks.
As can be seen from these graphs setting r̃t = ît−Etπ̂t+1 does not compromise the fit of the simple
rule to the Ramsey outcome.

This property should not be surprising. The reader that followed our methodology used to
derive the optimal interest rate rules in the previous sections, will have noticed that the appropriate
r̃t has been determined through collecting the shocks from the the Euler equation, wherein the
Phillips curve was used to determine the optimal inflation coefficients. Hence, given the optimal
inflation path, the terms σ Y

C
(Ŷt+1− Ŷt) in the real interest rate, are simply going to be equal to the

shocks to the Phillips curve (when they are relevant). Our optimal rules are thus robust towards
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Figure 14: Tracking the real interest rate.
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Notes: The Figure shows the impulse response functions under the Ramsey policy and the

simple rule ît = r̃t + δπ̂t, when we assume that r̃t is the real interest rate that satisfies the

Fisher equation (r̃t := ît − Etπ̂t+1). All the graphs correspond to an average maturity of 5

years. The first and the third rows assume that i.i.d shocks under the ad hoc loss function

(row 1) and the microfounded loss function (row 3). The second and fourth rows repeat

these objects in the case of persistent shocks.
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tracking the Fisher equation implied real interest rate.

D Interest rate smoothing objective.

We now provide additional results characterizing optimal policy in the case where the planner’s
objective function features inflation, output and interest rate smoothing. More specifically, as in
Giannoni and Woodford (2003) we assume that the central bank sets inflation, output and interest
rate sequences to maximize the following function:

− 1

2

∞∑
t=0

βtE0

{
π̂2
t + λY Ŷ

2
t + λiî

2
t

}
(49)

for λY , λi ≥ 0.
Maximization of (49) is subject to the dynamic equations (1), (2) and (5) and given the tax

rule (6).42 We again solve for optimal policies with a Lagrangian. Letting ψπ,t be the multiplier
attached to the Phillips curve constraint, ψi,t, and ψgov,t the analogous multipliers attached to
the Euler equation and the consolidated budget respectively, the first order conditions for the
optimum are given by:

−π̂t +∆ψπ,t −
ψi,t−1

β
+

b

1− βδ

∞∑
l=0

δl∆ψgov,t−l = 0 (50)

−λY Ŷt − ψπ,tκ1 + σ
Y

C
(ψi,t −

ψi,t−1

β
) + σ

Y

C
b

∞∑
l=0

δl∆ψgov,t−l + σ
Y

C
(G− τ)ψgov,t = 0 (51)

−λiît + ψi,t = 0 (52)

b

1− βδ

(
ψgov,t − Etψgov,t+1

)
+ ϕτ,bτEtψgov,t+1 = 0 (53)

In what follows we characterize analytically interest rate rules for two scenarios. First, in a
Fisherian model we can derive the optimal rule for any maturity of debt. Second, we can derive
the optimal policy rule when σ, λi > 0 and δ = λY = 0. For other cases, deriving analytical results
is not easy. We thus complement our analysis with numerically solved optimized interest rate
rules.

D.1 A Fisherian model with output and interest rate smoothing ob-
jectives.

We concentrate on the case of active fiscal policy, hence ∆ψgov,t ̸= 0. Setting σ = 0 the system of
first order conditions simplifies to

−π̂t −
λY
κ1

∆Ŷt −
λiît−1

β
+

b

1− βδ

∞∑
l=0

δl∆ψgov,t−l = 0 (54)

42Given optimal policies we can use (4) to solve for p̂t,δ. In other words, we do not have to keep track of the
bond price in the optimal policy program.
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and using the Phillips curve and the Euler equation we can express this as a function of inflation
and the Lagrange multiplier:

−π̂t −
λY
κ21

(π̂t − βEtπ̂t+1) +
λY
κ21

(π̂t−1 − βEt−1π̂t)−
λiξ̂t−1

β
− λiπ̂t

β
+
λi(π̂t − Et−1πt)

β
+

+
b

1− βδ

∞∑
k=0

δk∆ψgov,t−l = 0

Inflation evolves according to:

Etπ̂t+1 − (1 + κ̃
λi
β

+ κ̃+
1

β
)π̂t +

1

β
π̂t−1 = −ζt

where

ζt ≡ (1 + κ̃
λi
β
)(π̂t − Et−1π̂t)− κ̃

λiξ̂t−1

β
++κ̃

b

1− βδ

∞∑
k=0

δk∆ψgov,t−l = 0

and κ̃ =
κ21
λY β

.
The two roots of the characteristic polynomial are :

λ̃1,2 =
1

2

(
(1 +

1

β
+ κ̃+ κ̃

λi
β
)±

√
(1 +

1

β
+ κ̃+ κ̃

λi
β
)2 − 4̃

β

)
Let λ̃1 denote the stable root. Inflation solves :

π̂t =
1

λ̃2
Etπ̂t+1 +

1

λ̃2

1

1− λ̃1L
ζt =

1

λ̃2

1

1− λ̃1L

∑
j≥0

1

λ̃j2
Etζt+j (55)

We can write∑
j≥0

1

λ̃j2
Etζt+j =

∑
j≥0

1

λ̃j2
Et

[
(1 + κ̃

λi
β
)(π̂t+j − Et+j−1π̂t+j) + κ̃

b

1− βδ

∞∑
k=0

δk∆ψgov,t+j−l − κ̃
λiξ̂t+j−1

β

]

= −κ̃λiξ̂t−1

β
− 1

λ̃2
κ̃
λiξ̂t
β

+ (1 + κ̃
λi
β
)(π̂t − Et−1π̂t) + κ̃

b

1− βδ

1

1− δ

λ̃2

1

1− δL
∆ψgov,t

Putting everything together and using (55) we get:

π̂t = λ̃1π̂t−1 +
1

λ̃2
(1 + κ̃

λi
β
)(π̂t − Et−1π̂t) +

κ̃

λ̃2

b

1− βδ

1

1− δ

λ̃2

1

1− δL
∆ψgov,t −

1

λ̃2
κ̃
λiξ̂t−1

β
− 1

λ̃22
κ̃
λiξ̂t
β

(56)

and

(1− 1

λ̃2
(1 + κ̃

λi
β
))(π̂t − Et−1π̂t) =

κ̃

λ̃2

b

1− βδ

1

1− δ

λ̃2

∆ψgov,t −
1

λ̃22
κ̃
λiξ̂t
β

The optimal interest rate rule is stated in the following Proposition.
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Proposition 6. Assume σ = 0 and λi, λY > 0. Assume further that fiscal policy is active.
The optimal interest rate rule is

ît = δît−1 + λ̃1π̂t − λ̃1δπ̂t−1 +
κ̃

λ̃2

b

1− βδ

δ

1− δ

λ̃2

∆ψgov,t + (1− 1

λ̃2
κ̃
λi
β
)(ξ̂t − δξ̂t−1)) (57)

Proof. Use (56) to find Etπ̂t+1 and ît = Etπ̂t+1 + ξ̂t to obtain (57).

The optimal interest rates follow an inertial rule; ît reacts to current and lagged inflation and
to the lagged value of the nominal rate. This is clearly in accordance with the planner’s objective
when λi, λY > 0. Furthermore, note that adjusting the nominal interest rate one for one with
the real rate ξ̂t is not optimal precisely because of the desire to smooth the path of ît. Therefore,
in (57) both the current and the lagged value of the shock to preferences affect optimal policy.

Lastly, the optimal policy tracks the stochastic intercept κ̃

λ̃2

b
1−βδ

δ
1− δ

λ̃2

∆ψgov,t. As in the previous

analytical results ∆ψgov,t can be expressed as a function of the date t shocks. For brevity we omit
this derivation.

To close this paragraph we state the optimal interest rate rule in the case where λY = 0 and
λi > 0. This rule cannot be found easily from (57) setting λY = 0 and so for completeness we
show it as a separate result.

Proposition 6’. Assume λi > 0 and λY = σ = 0. The optimal interest rate rule is:

ît =
ξ̂t

1 + λi/β
+

δ

1 + λi/β
π̂t +

δλi/β

1 + λi/β
ît−1

when ϕτ,b = 0, ψgov,t ̸= 0 (active fiscal policy).

Proof: The proof is provided in paragraph D.4.1.

D.2 Optimal interest rate policy in the canonical NK model with ac-
tive fiscal policy.

We now consider the canonical NK model with σ > 0. As we will illustrate in this subsection
deriving analytical results for the optimal interest rate sequence when σ, λi > 0 is not easy.
In contrast to the case without interest rate smoothing studied in text, under the interest rate
smoothing objective, the Euler equation is a constraint in the planner’s program and the first
order conditions (50) to (53) feature the current and lagged values of the nominal interest rate.
We will show by means of an analytical example (corresponding to the simplest case possible,
λY = δ = 0) that the optimal inflation coefficient solves a non-linear equation whose roots are
not feasible to find analytically. We will thus resort to the numerical solution of the model to
characterize optimal interest rate rules more generally.

D.3 A partially analytical example

Consider first λi, σ > 0 but λY = 0. Assume further that debt is short term, δ = 0. For simplicity
(and wlog) we will consider only the case of spending shocks. We will show that a simple inflation
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targeting rule of the form: ît = ϕGĜt + ϕππ̂t can fit the Ramsey optimal policy. Moreover, we
will characterize the coefficients using the impulse response function. In other words, the rule
ît = ϕGĜt + ϕππ̂t will fit the Ramsey outcome following a shock to spending. This simplifies our
derivations considerably, however, the reader should note that our approach in this subsection is
more restrictive than in the main text (where we were able to accomplish a general characterization
of optimal interest rate policies). The analytics of this section will force all lagged variables of the
model to be equal to zero.

Combining the first order conditions under the assumed parameter values gives:

−π̂t +
σ

κ1

Y

C
(λi∆ît −

λi
β
∆ît−1) +

σ

κ1

Y

C
b(∆ψgov,t −∆ψgov,t−1) +

ωY
κ1

∆ψgov,t −
λiît−1

β
+ b∆ψgov,t = 0

Using the interest rate rule along with the initial conditions ît−1 = ît−2,∆ψgov,t−1 = 0 and the

equilibrium ∆ψgov,t = ϵĜt we can write:

−π̂t +
σλi
κ1

Y

C
(ϕGĜt + ϕππ̂t) + (

σ

κ1

Y

C
b+

ωY
κ1

+ b)ϵĜt = 0

Next the first order condition in t+ 1 becomes:

−π̂t+1 +
σ

κ1

Y

C
(λi∆ît+1 −

λi
β
ît)−

σ

κ1

Y

C
bϵĜt −

λiît
β

= 0

or

π̂t+1 (1−
σ

κ1

Y

C
λiϕπ)︸ ︷︷ ︸

ζ1

= − (
σ

κ1

Y

C
bϵ+ λi(

1

β
+
σ

κ1

Y

C
(1 +

1

β
))ϕG)︸ ︷︷ ︸

ζ2

Ĝt − λi(
1

β
+
σ

κ1

Y

C
(1 +

1

β
))ϕπ︸ ︷︷ ︸

ζ3

π̂t

Finally, inflation in t+ 2 solves:

−π̂t+2 +
σ

κ1

Y

C
(λi∆ît+2 −

λi
β
∆ît+1)−

λiît+1

β
= 0

or

π̂t+2ζ1 = −ζ3π̂t+1 +
λi
β

σ

κ1

Y

C
(ϕππ̂t + ϕGĜt) = ζ3(

ζ3
ζ1
π̂t +

ζ2
ζ1
Ĝt) +

λi
β

σ

κ1

Y

C
(ϕππ̂t + ϕGĜt)

Dropping the shocks for simplicity and using the policy rule the Euler equation in t can be written
as:

ϕππ̂t =

(
σ

κ1

Y

C
(1 + β) + 1

)
π̂t+1 −

σ

κ1

Y

C
π̂t − β

σ

κ1

Y

C
π̂t+2

We thus get:

ϕπ = −
(
σ

κ1

Y

C
(1 + β) + 1

)
ζ3
ζ1

− σ

κ1

Y

C
− β

σ

κ1

Y

C
(
ζ23
ζ21

+
λi
β

σ

κ1

Y

C

ϕπ
ζ1

) (58)

(58) is a a nonlinear equation in coefficient ϕπ. Solving it analytically to obtain the value of the
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coefficient is obviously not trivial. We thus illustrated that deriving complete analytical results
in the canonical model with interest rate smoothing is not easy. We next turn to the numerical
solution of the model to investigate the features of optimal policy rules when δ > 0 and λY > 0.

D.4 Numerical examples

To fix ideas it is useful to rearrange the first order conditions and derive the following expression
for the nominal interest rate in the model.

Proposition 7. The interest rate policy can be expressed as:

ît = ϕ̃ππ̂t + ϕ̃Y∆Ŷt + ϕ̃iît−1 +
1

β
∆ît−1︸ ︷︷ ︸

Giannoni and Woodford (2003)

+ Dt (59)

with ϕ̃π = κ1C
λiσY

, ϕ̃i = (1 + κ1
βσ

C
Y
) and ϕ̃Y = λY C

σλiY
. Moreover,

Dt = −C
Y

κ1
λiσ

b

1− βδ

∞∑
l=0

δl∆ψgov,t−l −
b

λi

∞∑
l=0

δl
(
∆ψgov,t−l −∆ψgov,t−l−1

)
− (G− τ)

λi
∆ψgov,t

Proof: The proof requires to simply combine the FONC and for the sake of brevity we omit
it. ■

According to (59) the solution for the nominal interest rate can be decomposed in two distinct
components .

The first (labeled Giannoni and Woodford (2003) in underbrace) is the standard optimal
superinertial rule derived in Giannoni and Woodford (2003). It links interest rates to inflation,
output growth and lagged values of the interest rate. The impact of these variables on ît depends
on the weights λi, λY that capture the output and interest rate stabilization objectives of the
central bank and on the structural parameters σ, κ1 and β.43

The second component, Dt, is a weighted sum of the current and lagged values of the growth
of the multiplier ∆ψgov. As discussed in text, the lagged values of the multiplier are the promises
made by the planner to alter inflation and output following shocks that have hit the consolidated
budget in the past. These terms enter in Dt because changes in inflation and output will influence
the path of the nominal interest rate.

What we are interested in is to investigate optimal rules in which object Dt is not included in
the specification and therefore ît is a function of macroeconomic variables only, inflation output
and lagged interest rates. As discussed previously, establishing such policies analytically is not
easy and we thus need to turn to numerical experiments.

We assume that monetary policy sets the nominal interest rate according to:

ît = ϕππ̂t + ϕY Ŷt + ϕiît−1 + ϕ∆i∆ît−1 (60)

We will estimate the values of coefficients ϕπ, ϕY , ϕi, ϕ∆i so that the model when interest rates
follow (60) approximates the optimal policy model.

43Thus, under passive fiscal policy the optimal rule is the one of Giannoni and Woodford (2003). This of course
is not surprising since when the consolidated budget is irrelevant for optimal policy our model is essentially the
three equation NK model with the same objective function as Giannoni and Woodford (2003).
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Table 2 shows the estimates of the coefficients.44 The table is split in 3 sub-tables. The first
two correspond to the active fiscal policy model. We consider several calibrations: We set δ = 0.5
in the left, and δ = 0.95 in the middle. Moreover, in the top panel of each subtable we let λY = 0,
in which case we also constrain ϕY to be equal to 0, whereas the bottom panel assumes λY = 0.5,
thus setting the weight to output stabilization in the policy objective to be half of the weight
attached to inflation stabilization. Each of the columns of the subtables corresponds to a different
calibration of the pair λi, σ.

For comparison, the right part of the Table shows the coefficients in the passive fiscal model
corresponding to each calibration considered. Finally, the assumed values for the remaining model
parameters are reported in Table 1 (see the notes of that table for a brief discussion of the
calibration).

Several results stand out. First, note that (not surprisingly) under the estimated values of ϕi
and ϕ∆i monetary policy follows passive money rules.45 In contrast to the super-inertial policy
of Giannoni and Woodford, 2003 (where coefficients are such that the rule contains an explosive
root), under active fiscal policy, simple inertial rules featuring only up to one lag of the nominal
rate are approximately optimal.

Second, the estimated coefficients vary as we vary the values of parameters σ, λi, λY ,. A key
determinant of the estimates is the debt maturity. This is easily noticeable in the top panels
of the left and middle sub-tables. Assuming σ = 1 and λi = 0.5 yields an estimate ϕπ of 0.21
when δ = 0.5 and 0.43 when δ = 0.95. Moreover, when we assume λi = 1 we have -0.10 and 0.52
for δ = 0.5 and δ = 0.95 respectively. Thus, higher debt maturity yields a stronger reaction of
monetary policy to inflation, implying a more persistent response of inflation to the shock. This
feature can be easily understood based on our results we derived in the paper.

To better illustrate the properties of optimal policy under the interest rate smoothing objective
in Figure 15 we plot the IRFS, assuming λY = 0 (top panel) and λY = 0.5 (bottom). The blue
lines are the baseline with no interest rate smoothing, the dashed and dotted lines correspond to
λi = 0.5 and λi = 1 respectively. We further assume σ = 1 (our baseline value for this parameter).
Concentrate on the second and fourth rows of the graph, assuming δ = .95. Relative to the
baseline, a positive coefficient λi implies that the interest rate response is hump shaped. Thus,
interest rates increase less when the shock hits and continue increasing until roughly period 5.
As can be seen from the left plots, this reaction of monetary policy leads inflation and output to
react more strongly to the shock on impact. After 5 quarters, all macroeconomic variables begin
to converge to the target values at rates at rates equal or close to δ.

It is quite evident that the response of the interest rate when δ = .95 can be matched by an
inertial rule with a positive inflation coefficient. This confirms the top panel of Table 2. Simple

44We produced these estimates through matching the impulse responses of the optimal policy model. We focused
on matching the responses to the spending shock only. Note that (60) could produce a perfect fit in some of the
cases reported in Table 2. In other cases this was not so and to improve the fit we added the spending shock as an
additional argument to the rule. We therefore estimated

ît = ϕGĜt + ϕππ̂t + ϕY Ŷt + ϕiît−1 + ϕ∆i∆ît−1

This turned out being useful when δ = 0.95. Presumably, we would need to add further lags of inflation, output
and interest rates in (60) to avoid introducing Ĝt. We did not want to extend to further lags, as we wanted to
maintain as closely as possible the structure of Proposition 1. Coefficient ϕG was found to be small in magnitude
and we do not report it in the Table.

45The rules obviously have to satisfy the passive policy requirement, otherwise the Blanchard-Kahn condition
would not be satisfied and the model solution could not be found.

In the numerical examples shown in Table the estimated coefficients ϕπ, ϕY are smaller in magnitude than ϕ̃π, ϕ̃Y

in the Giannoni and Woodford, 2003 policy. This is not a necessary property of the passive money policy. Under
the super-inertial rule, monetary policy is active for any positive values of coefficients ϕπ, ϕY . Thus ϕπ, ϕY could
even be smaller than in the active fiscal scenario.
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inertial rules would also likely produce a very god fit when we assume λY = 0.5 (both output and
interest rate smoothing) , but in Table 2 we instead explored rules targeting both inflation and
output, to contrast with the results of Giannoni and Woodford, 2003.

We conclude that simple rules are approximately optimal in the case of the interest rate
smoothing objective when δ = .95. Establishing an explicit formula however is much more tedious
than the dual mandate case considered in text.

D.4.1 Proof of Proposition 6’

Consider λi > 0 and λY = σ = 0 and the case of active monetary policy. Conjecture that optimal
policy is a rule of the form

ît = θξ̂t + λ̃1π̂t + λ2ît−1 (61)

From the FONC of the Ramsey program, inflation satisfies:

π̂t = −λi
β
ît−1 (62)

and therefore ît =
1

1+
λi
β

ξ̂t.

Now use (61) and the Euler equation to get:

ît =
1

1− λ̃2L

(
θξ̂t + λ̃1π̂t

)
= ξ̂t + Etπ̂t+1

and when λ̃1 + λ̃2 > 1 we have

π̂t = Et
∑
j≥0

1

(λ̃1 + λ̃2)j

(
1− θ

(λ̃1 + λ̃2)
ξ̂t+j −

λ̃2

(λ̃1 + λ̃2)
ξ̂t+j−1

)
=

1− θ

(λ̃1 + λ̃2)
ξ̂t −

λ̃2

(λ̃1 + λ̃2)
ξ̂t−1 −

λ̃2

(λ̃1 + λ̃2)2
ξ̂t

where the final equality uses the assumption that shocks are i.i.d. From this equation, we can
easily derive the conditions on parameters θ, λ̃1, λ̃2 stated in the Proposition.

Now consider the case of passive monetary policy. Optimal inflation satisfies:

π̂t = −λi
β
ît−1 +

b

1− βδ

∑
l≥0

δl∆ψgov,t−l

From the Euler equation we have:

ît = ξ̂t + Et

(
−λi
β
ît +

b

1− βδ

∑
l≥0

δl∆ψgov,t−l+1

)
= ξ̂t −

λi
β
ît +

δb

1− βδ

∑
l≥0

δl∆ψgov,t−l

= ξ̂t −
λi
β
ît + δ

(
π̂t +

λi
β
ît−1

)
Thus :

ît =
1

1 + λi
β

ξ̂t +
δ

1 + λi
β

π̂t +

λi
β

1 + λi
β

ît−1
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Figure 15: Rules vs Ramsey: Steady State Output Target I
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Notes: The figure compares the optimal policy impulse responses of inflation, output, and the nominal interest rate
when the loss function features an interest rate smoothing objective. The baseline λi = 0 is shown for comparison
using the blue solid line. The red line corresponds to the case λi = 0.5 and the black line to the case λi = 1. We
set λY = 0 in the top sub-figure and λY = 0.5 in the bottom.
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■

E Extensions: Distortionary Taxes and Complete Mar-

kets

In this section we present two further extensions of our model. First, we study optimal policy
in the model with distortionary taxes and show that our results continue to hold in this case.
Second, we consider the a model with complete markets assuming that government debt is state
contingent. We characterize optimal monetary policy rules in this case.

E.1 Optimal Policies with Distortionary Taxation

We first present analytical results for the case where taxes are distortionary. Under this assumption
the two model equations that need to be changed are the Phillips curve and the government budget
constraint. We now have:

π̂t = κ1Ŷt − κ2Ĝt + κ3τ̂t + βEtπ̂t+1,

where κ1 ≡ − (1+η)Y
θ

(γh + σ Y
C
) > 0, κ3 ≡ − (1+η)Y

θ
τd

(1−τd) ≥ 0, κ2 ≡ − (1+η)

θY
σG
C
> 0, and where τ d

denotes the steady state distortionary tax rate.
Moreover, now the surplus of the government becomes a function of output and we have:

sŜt ≡
[
−G
(
Ĝt(1 + σ

G

C
)− σ

Y

C
Ŷt + ξ̂t

)
+ r

(
R̂t + ξ̂t

)]
r is the steady state revenue of the government, and R̂t denotes the revenue scaled by marginal
utility. We have:

R̂t =

(
(1 + γh)Ŷt +

τ̂t
1− τ d

)
We continue assuming that fiscal policy is given by (6).
Optimal policy solves the following system of equations:

−π̂t +∆ψπ,t +
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l = 0 (63)

−λY Ŷt − ψπ,tκ1 + σ
Y

C
b

∞∑
l=0

δl∆ψgov,t−l + ωY ψgov,t = 0 (64)

βb

1− βδ

(
ψgov,t − Etψgov,t+1

)
− βϕτ,bEt

(
κ3ψπ,t+1 − r

dR̂t

dτ̂t
ψgov,t+1

)
= 0 (65)

where now ωY ≡ Gσ Y
C
+ r(1 + γh).

E.1.1 The two equilibria under distortionary taxes

It is possible to show that this model admits two equilibria under active and passive fiscal policies.
However, we now need to separately treat the cases where λY = 0 and λY > 0. As we explain
below, in the case λY > 0 we need to modify the objective of the planner slightly assuming that the
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target is the natural level of output (not the steady state level). Unless we make this assumption
the model may not admit an equilibrium in which monetary policy is active.

Case 1: λY = 0 Assume first that λY = 0. (65) can be written as:

βb

1− βδ

(
ψgov,t − Etψgov,t+1

)
− βϕτ,bEt

(
κ3
σ

κ1

Y

C
b

∞∑
l=0

δl∆ψgov,t−l+1 +
κ3ωY
κ1

ψgov,t+1 −
r

1− τ d
ψgov,t+1

)
= 0

(66)

and so

η̃1

(
ψgov,t − Etψgov,t+1

)
− βϕτ,bEt

(
κ3
σ

κ1

Y

C
b
∆ψgov,t+1

1− δL
+ η̃2ψgov,t+1

)
= 0

where η̃2 < 0 for the economy to be at the upward sloping part of the Laffer curve.
The above can be rearranged into a second order difference equation:

−
(
η̃1 + βϕτ,b(η̃2 + κ3

σ

κ1

Y

C
b)

)
Etψgov,t+1 +

(
η̃1(1 + δ) + βϕτ,b(η̃2δ + κ3

σ

κ1

Y

C
b)

)
ψgov,t − δη̃1ψgov,t−1 = 0

or

Etψgov,t+1 −
(
1− (1− δ)η̃2

βϕτ,b
η̃3

+
δη̃1
η̃3

)
ψgov,t +

δη̃1
η̃3
ψgov,t−1 = 0

where η̃3 =

(
η̃1 + βϕτ,b(η̃2 + κ3

σ
κ1

Y
C
b)

)
. It is easy to show that the characteristic polynomial has

two roots, one stable and one unstable. The unique non-explosive solution is thus ψgov,t = 0.
We can now derive the threshold value ϕτ,b. From the first order condition of inflation it is

easy to show that when ψgov,t = 0, π̂t = 0 for all t. With distortionary taxation output evolves
according to:

Ŷt = −κ3
κ1
τ̂t +

κ2
κ1
Ĝt

The Euler equation then gives us:

ît = ξ̂t + σ
Y

C
Et

(
−κ3
κ1

∆τ̂t+1 +
κ2
κ1

∆Ĝt+1

)
− σ

G

C
Et∆Ĝt+1

Analogously, the price of long term bonds evolves according to:

p̂t = −ξ̂t − σ
Y

C
Et

(
−κ3
κ1

∆τ̂t+1 +
κ2
κ1

∆Ĝt+1

)
+ σ

G

C
Et∆Ĝt+1 + βδEtp̂t+1

For simplicity, let us suppress the shocks (This does not change anything with regard to the

threshold ϕ̃τ ). Using the above expression we can then write:

p̂t = σ
Y

C

κ3
κ1
ϕτ,b(b̂t − b̂t−1) + βδEtp̂t+1 (67)
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Moreover, the consolidated budget constraint (again without shocks) can written as:

βb

(
b̂t + p̂t

)
= bb̂t−1 + βδbp̂t + r(1− βδ)ϕτ,b

(
κ3
κ1

(1 + γh + σ
Y

C
)− 1

1− τ d

)
b̂t−1 (68)

(67) and (68) form the system of equations that needs to be resolved.[
βδ ϵ̃

0 βb

]
︸ ︷︷ ︸

≡A

(
Etp̂t+1

b̂t

)
=

[
1 ϵ̃

bβ(δ − 1) b+ χ̃

]
︸ ︷︷ ︸

≡B

(
p̂t
b̂t−1

)

where χ̃ ≡ R(1− βδ)ϕτ,b

(
κ3
κ1
(1 + γh + σ Y

C
)− 1

1−τd

)
and ϵ̃ ≡ σ Y

C
κ3
κ1
ϕτ,b.

Then

A−1B =
1

det(A)

[
βb− ϵ̃βb(δ − 1) ϵ̃(β − 1)b− ϵ̃χ̃

β2δb(δ − 1) βδ(b+ χ̃)

]
The characteristic equation is:

λ2 − λ

det(A)

(
βb+ ϵ̃βb(1− δ) + βδ(b+ χ̃)

)
+

1

det(A)2

(
β2δb(b+ χ̃) + ϵ̃β3δ(1− δ)b

2
)

The smallest root is:

λ1 =
1

2

1

det(A)

[(
βb+ ϵ̃βb(1− δ) + βδ(b+ χ̃)

)
−

−

√(
βb+ ϵ̃βb(1− δ) + βδ(b+ χ̃)

)2

− 4

(
β2δb(b+ χ̃) + ϵ̃β3δ(1− δ)b

2
)]

It is easy to show that λ1 = 1 when b+ χ̃ = βb, or

ϕτ,b =
b(1− β)

r(1− βδ)

(
1

1−τd −
κ3
κ1
(1 + γh + σ Y

C
)

) ≡ ϕ̃τ

which is the expression shown in Section 5.3 in text.
Moreover, we can show that λ1 is monotonically decreasing in ϕτ,b and λ1 < 1 when ϕτ,b > ϕ̃τ .

Finally, the largest root always exceeds 1. Thus the unique stable equilibrium is attained when
ϕτ,b > ϕ̃τ .

Case 2: λY > 0 Consider now the case where λY > 0. Now an equilibrium under passive fiscal
policy where ψgov,t = 0 may not exist. To see this, note that (65) can now be written as:

βb

1− βδ

(
ψgov,t − Etψgov,t+1

)
− βϕτ,bEt

(
−κ3
κ1
λY Ŷt+1 + κ3

σ

κ1

Y

C
b

∞∑
l=0

δl∆ψgov,t−l+1 +
κ3ωY
κ1

ψgov,t+1

− r

1− τ d
ψgov,t+1

)
= 0
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Following the notation of the previous subsection this can be rearranged into:

Etψgov,t+1 −
(
1− (1− δ)η̃2

βϕτ,b
η̃3

+
δη̃1
η̃3

)
ψgov,t +

δη̃1
η̃3
ψgov,t−1 = −βϕτ,bκ3λY

κ1η̃3

(
EtŶt+1 − δŶt

)
Notice that the forcing term EtŶt+1 − δŶt on the RHS of the above equation precludes a solution
where ψgov,t = 0. To see this, suppose that indeed ψgov,t were equal to 0. Then, it should also

be that EtŶt+1 − δŶt = 0. From the first order conditions of inflation and output we would
get: π̂t =

λY
κ1
(Ŷt − Ŷt−1). Using this and the Phillips curve we can derive a difference equation in

aggregate output with forcing term −κ3
κ1
τ̂t+

κ2
κ1
Ĝt. Aggregate output will generally not equal zero,

and EtŶt+1 − δŶt will not be zero either.
To interpret the above, notice that when taxes are distortionary they become a cost push shock

in the Phillips curve which drives the inflation output tradeoff in the equilibrium with active fiscal
policy. Thus, the planner will always attempt to use the tax schedule, targeting the path of debt,
in order to smooth the shock and thereby smoothing the inflation output tradeoff. This makes the
government debt constraint relevant, independent of the value of ϕτ,b.

46 Interestingly, assuming
a steady state output target introduces to the model elements of jointly optimal monetary and
fiscal policy policies (see e.g. Schmitt-Grohé and Uribe (2004); Lustig et al. (2008); Faraglia et al.
(2013); Leeper and Zhou (2021)).

The problem will not arise if we assume that optimal policy seeks to stabilize output around
the natural level. Intuitively, under this assumption distortionary taxes will not appear explicitly
in Phillips curve and we will once again have a dynamic equation for ψgov,t which will not feature
any forcing term.

To show this explicitly let us assume (for simplicity and wlog) σ = 0. The Phillips curve can
then be written as

π̂t = κ1Ỹt + βEtπ̂t+1

where Ỹt := Ŷt − Ŷ n
t and Ŷ n

t = − τd

γh(1−τd)
τ̂t is the natural level of output.

Moreover, the consolidated budget becomes

βb

1− βδ
b̂t,δ + b

∞∑
j=1

βjδj−1

[
Et

(
−

j∑
l=1

π̂t+l + ξ̂t+j

)]
= −

[
−G
(
Ĝt + ξ̂t

)
+ r

(
(1 + γh)Ỹt − (1 + γh)

τ d

γh(1− τ d)
τ̂t +

τ̂t
1− τ d

+ ξ̂t

)]
+ bξ̂t (69)

+
b

1− βδ
(b̂t−1,δ − π̂t) + δb

∞∑
j=1

βjδj−1Et

(
−

j∑
l=1

π̂t+l + ξ̂t+j

)

With a period loss function −1
2
E

(
π̂2
t + λY Ỹ

2
t

)
is trivial to show that the model now admits

an equilibrium where ψgov,t = 0. The first order condition for bonds can be written as:

βb

1− βδ

(
ψgov,t − Etψgov,t+1

)
− βϕτ,bEt r[((1 + γh)

τ d

γh(1− τ d)
− 1

1− τ d
)]︸ ︷︷ ︸

η̃2

ψgov,t+1

)
= 0

46In solving this model numerically, we found that increasing ϕτ,b can bring the model very close to the 3 equation
NK model, where debt is not a constraint for monetary policy. Thus, from a practical standpoint, optimal monetary
policy effectively becomes active even though this is not possible to show analytically.
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where again η̃2 < 0 otherwise the economy is on the wrong side of the Laffer curve. It is obvious
that the solution is ψgov,t = 0 when fiscal policy is passive.

The threshold ϕ̃τ can be found using the budget constraint. Leaving out the shocks we can
express this as:

βb

1− βδ
b̂t,δ + r((1 + γh)Ŷ

n
t +

τ̂t
1− τ d

) =
b

1− βδ
b̂t−1,δ

and so using the definition of Ŷ n
t above and the fiscal rule we have:

b̂t,δ =
1

β

[
1− r

(1− βδ)ϕτ,b

b(1− τ d)
(1− 1 + γh

γh
τ d)

]
b̂t−1,δ

Quite evidently we now have

ϕ̃τ =
(1− β)

1− βδ

b

r

(1− τ d)

(1− 1+γh
γh

τ d)

which is the formula shown in text when σ = 0. It is straightforward to extend the above to the
case σ > 0 and recover the expression for ϕ̃τ in subsection 5.3.

E.1.2 Optimal policy rules with distortionary taxation.

We first derive the optimal interest rate rule for the simple Fisherian model assuming that the
planner’s objective only features inflation stabilization. Then, we will derive the optimal policies
under the alternative versions of the model considered in Section 3. For brevity, we will omit the
derivation in the dual mandate case, since it will become evident that our results carry through.

Simple Fisherian policies. With distortionary taxes and assuming σ = λY = 0 optimal
inflation is determined by the following condition:

π̂t =
ωY
κ1

∆ψgov,t +
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l = 0

where ωY ≡ R(1 + γh). We concentrate on the case of active fiscal policy.47 Using the Euler
equation in this model we then have that:

ît = ξ̂t + Etπ̂t+1 = ξ̂t + Et(
ωY
κ1

∆ψgov,t+1 +
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l+1) = ξ̂t + δ
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l

Thus,

ît = ξ̂t + δ(π̂t −
ωY
κ1

∆ψgov,t)

Therefore, relative to Proposition 2, the optimal rule with distortionary taxes adds the stochas-
tic intercept −δ ωY

κ1
. Intuitively, the planner will use inflation between t and t+1 to distort output

47With passive policy it is simple to show that the rule shown in Proposition 2 continues to apply.
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and increase the fiscal revenue of the government (when the debt constraint tightens). We can
however show that this effect is not large and a simple rule ît = ξ̂t + δπ̂t is nearly optimal.

The canonical model, σ > 0. Now consider the case where σ > 0. In this case, optimal
inflation is still described by

π̂t =
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l + σ
Y

Cκ1
b

∞∑
l=0

δl
(
∆ψgov,t−l −∆ψgov,t−l−1

)
+
ωY
κ1

∆ψgov,t (70)

i.e. the condition we derived in subsection A.2. The difference is that under distortionary taxes
ωY = Gσ Y

C
+R(1 + γh).

Essentially, all the derivations of subsection A.2 can be repeated here. We will therefore get
the same interest rate rule, i.e. equation (41). The only modification concerns the stochastic
intercept term.

Output stabilization. Finally, let λY > 0 and σ = 0. Optimal inflation obeys the following

−π̂t −
λY
κ21

(π̂t − βEtπ̂t+1) +
λY
κ21

(π̂t−1 − βEt−1π̂t) +
R

κ1
(1 + γh)∆ψgov,t +

b

1− βδ

∞∑
k=0

δk∆ψgov,t−l = 0

We now define:

ζt ≡ (π̂t − Et−1π̂t) +
κ21
βλY

b

1− βδ

∞∑
k=0

δk∆ψgov,t−l +
κ21
βλY

R

κ1
(1 + γh)∆ψgov,t = 0

So that inflation again evolves according to:

Etπ̂t+1 − (1 +
1

β
+

κ21
λY β

)π̂t +
1

β
π̂t−1 = −ζt

Solving the second order polynomial we once again obtain:

π̂t =
1

λ̃2
Etπ̂t+1 +

1

λ̃2

1

1− λ̃1L
ζt =

1

λ̃2

1

1− λ̃1L

∑
j≥0

1

λ̃j2
Etζt+j

Then,

∑
j≥0

1

λ̃j2
Etζt+j =

∑
j≥0

1

λ̃j2
Et

[
(π̂t+j − Et+j−1π̂t+j) + κ̃

R

κ1
(1 + γh)∆ψgov,t+j + κ̃

b

1− βδ

∞∑
k=0

δk∆ψgov,t+j−l

]
=

π̂t − Et−1π̂t + κ̃
R

κ1
(1 + γh)∆ψgov,t + κ̃

b

1− βδ

1

1− δ

λ̃2

1

1− δL
∆ψgov,t

and so

π̂t = λ̃1π̂t−1 +
1

λ̃2
(π̂t − Et−1π̂t) +

1

λ̃2
κ̃
R

κ1
(1 + γh)∆ψgov,t +

κ̃

λ̃2

b

1− βδ

1

1− δ

λ̃2

1

1− δL
∆ψgov,t (71)
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We can once again show that

Etπ̂t+1 = λ̃1π̂t +
κ̃

λ̃2

b

1− βδ

1

1− δ

λ̃2

Et
1

1− δL
∆ψgov,t+1︸ ︷︷ ︸

= δ
1−δL

∆ψgov,t

and

π̂t − Et−1π̂t =
λ̃2

λ̃2 − 1

κ̃

λ2

b

1− βδ

1

1− δ

λ̃2

∆ψgov,t

The optimal interest rate rule is given by:

ît = ξ̂t + (λ̃1 + δ)π̂t − δλ̃1π̂t−1 −
δ

λ̃2
κ̃
R

κ1
(1 + γh)∆ψgov,t − δ

õ

λ̃2 − 1
∆ψgov,t

which is of the same form as the rule under lump sum taxes, however, now the stochastic intercept
is − δ

λ̃2
κ̃ R
κ1
(1 + γh)∆ψgov,t − δ õ

λ̃2−1
∆ψgov,t instead of just −δ õ

λ̃2−1
∆ψgov,t.

Dual Mandate. It should be evident that in the case of a dual mandate objective, the optimal
interest rate rule will be the same as in case of lump sum taxes. The stochastic intercept will
again reflect the planner’s desire to distort output in t and change the fiscal revenue. In solving
the model numerically, we found that this effect is however not significant. For brevity we omit
the impulse response graphs.

E.2 Optimal Policy with Complete Markets/when Debt is a Shock
Absorber

We now provide a final analytical result, characterizing the optimal interest rate rule under active
fiscal policy in a limiting case where ψgov,t = 0. This case is relevant when debt is state contingent
(complete markets) and the consolidated budget constraints do not influence the optimal monetary
policy even though taxes are constant through time.

Rather than introducing explicitly state contingent government bonds we base our derivations
on a equivalent model in which debt acts as a shock absorber, enabling complete markets. Our
argument is rooted in the literature on optimal debt management in macroeconomic models48.
We will show that in the limiting case when shocks that hit the economy do not tighten the
intertemporal budget constraint (and so ψgov,t = 0 for t), optimal monetary policy under constant
taxes can be again represented as a passive money rule.

To simplify the algebra, we will present our derivations using the canonical New Keynesian
model without any output smoothing objective. Therefore σ > 0 but λY = 0. Moreover, we will
assume that only preference shocks can hit the economy; this assumption further simplifies the
notation and the algebra G=0. We consider δ = 1, the limit when long bonds are consols. In this
limit we can show that inflation, output and debt are at steady state for all t.

48See for example Angeletos (2002); Buera and Nicolini (2004); Faraglia et al. (2019); Bhandari, Evans, Golosov,
and Sargent (2017).
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To grasp the intuition behind this last result, notice that when long bonds are consols the
consolidated budget (in format analogous to equation (3)) can be written as:

bp1(b̂t,1 + p̂t,1) = (1 + p1)b(b̂t−1,1 − π̂t) + bp1p̂t,1 −RR̂t (72)

where b1 now represents the quantity of the consol and p̂1 is the corresponding price. The latter
evolves according to:

p̂t,1 = −ξ̂t − Et
[
π̂t+1 + σ(Ŷt − Ŷt+1) + βp̂t+1,1

]
.

Clearly, the terms bp1p̂t,1 on the LHS and RHS of (72) cancel out and ξ̂t can be dropped from this

equation. The disturbance ξ̂t changes the price of newly issued debt, and changes, in proportion,
the market value of outstanding debt, which acts as a shock absorber. Under optimal policy we
have ψgov,t = 0 and inflation, output do not need to adjust to finance the shock, regardless of the
specification of fiscal policy.

The following Proposition derives the optimal monetary policy rule in this model:

Proposition 8 Consider the case where σ > 0 and λi = λY = G = 0. Assume also that δ = 1
(i.e. long bonds are consols). We then have ψgov,t = 0 under both active and passive fiscal policies.

Optimal monetary policy sets the nominal rate following a rule ît = ξ̂t + ϕππ̂t and:

i) Under passive fiscal policy it sets ϕπ > 1

ii) Under active fiscal policy it sets ϕπ ≤ 1.

We will prove this Proposition in the next paragraph.
Note that i) is simply a repetition of the result in subsection 3.2.2. ii) states that in the active

fiscal case, optimal monetary policy sets the inflation coefficient to any value less than or equal
to 1. Because in this model shocks exert no influence on the budget constraint, all that monetary
policy needs to do is to support the zero inflation outcome. This can be accomplished with any
passive interest rate policy.

Proposition 8 can be extended in several meaningful ways to analogous results when λY > 0
and when spending shocks can hit the economy.49 In all these cases we can derive a passive interest
rate rule to implement the optimal policy equilibrium.

E.2.1 Proof of Proposition 8

We will first prove that the equilibrium under optimal policies features 0 inflation when δ = 1.
Then we will show that this outcome can be implemented with a rule of the form ît = ξ̂t+ϕππ̂t+
ϕY Ŷt. This is a more general rule than the one considered in Proposition 8 where we focused on
the case ϕY = 0. The conditions we derive below nest this case as well.

49The case λY > 0 is simple to illustrate. Since in the equilibrium studied above output is always equal to
target, any value λY > 0 would again lead us to Proposition 8. Assuming that spending shocks can hit the
economy however, would probably require a change in the modelling of government debt. For example Angeletos
(2002) and Buera and Nicolini (2004) consider the case where debt is issued in two zero coupon bonds and show
that the portfolio that can absorb fiscal shocks is one where the long bond debt position is several times GDP and
short term debt is negative. The returns to this portfolio cannot be replicated with the decaying coupon model we
assume here. Finally, when λi > 0 letting δ = 1 would not be enough for debt to fully absorb the demand shocks.
Under interest rate smoothing inflation and output will not be zero and it turns out that to insulate the budget
constraint from the shock, the portfolio needs to be tilted even more towards long term debt. See below for an
analytical derivation supporting this claim.

90



For clarity, we write here the system of equations that needs to be resolved under the parameter
values assumed. We have:

π̂t = κ1Ŷt + βEtπ̂t+1,

ît = ξ̂t + Et

(
π̂t+1 − σ

(
Ŷt − Ŷt+1)

)

b1p

(
b̂t,1 + p̂t

)
=

(
1 + p

)
b1

(
b̂t−1,1 − π̂t

)
+ b1pp̂t − τ τ̂t

p̂t =

(
−ξ̂t − Et

(
π̂t+1 + σ

(
Ŷt − Ŷt+1)

))
+ βp̂t+1

where p = β
1−β denotes the steady state of the consol.

Under parameters λi = 0 λY , σ > 0 the first order conditions assuming active fiscal policy give
us:

−π̂t −
λY
κ1

∆Ŷt +
σ

κ1
b1

∞∑
l=0

(
∆ψgov,t−l −∆ψgov,t−l−1

)
+ ωY∆ψgov,t +

b1
1− β

∞∑
l=0

∆ψgov,t−l = 0

ψgov,t − Etψgov,t+1 = 0

We are required to solve the system of equations (E.2.1), (E.2.1), (E.2.1), (E.2.1) and (E.2.1)
together with the fiscal rule. 50 (E.2.1) can be written as:

b̂t,1 =
1

β

(
b̂t−1,1 − π̂t

)
− τϕτ,b

b1p
b̂t−1,1 (73)

since p̂t drops from the LHS and RHS of (73) it is also obvious that (E.2.1) can be treated as a
residual in this equilibrium system. The complete system is now (E.2.1) (73), (E.2.1) and (E.2.1).
Moreover, since ξt does not appear anywhere in these equations, it is obvious that the solution is
π̂t = Ŷt = b̂t,1 = ψgov,t = 0. It can be shown that this solution is unique.

In the passive fiscal model we know from subsection 3.2.3 that π̂t = Ŷt = 0.

Let us now show that these outcomes can be implemented with an inflation targeting rule.
Now the system of equations that we need to resolve is (E.2.1), (73) together with

ϕππ̂t + ϕY Ŷt = Et

(
π̂t+1 − σ

(
Ŷt − Ŷt+1)

)
(74)

p̂t = −ϕππ̂t − ϕ̃Y Ŷt − ξ̂t + βp̂t+1 (75)

In matrix form we can write this system as:

AEtzt+1 = Bzt + Cξ̂t (76)

50(E.2.1) can be satisfied ex post since ît is a ‘slack’ variable.
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where zt =

(
π̂t, Ŷt, p̂t, b̂t−1

)
and

A =


β 0 0 0
1 σ 0 0
0 0 β 0
0 0 0 1



B =


1 −κ1 0 0

ϕπ ϕ̃Y + σ 0 0

ϕπ ϕ̃Y 1 0

− 1
β

0 0 1
β
− τϕτ,b

b1p


and C = [0, 0, 1, 0]′. The dynamics of (76) are governed by the eigenvalues of A−1B.

A−1B =


1
β

−κ1
β

0 0
ϕπ
σ
− 1

σβ
κ1
σβ

+ ϕY
σ

+ 1 0 0
ϕπ
β

ϕY
β

1
β

0

0 0 1
β
− τϕτ,b

b1p


The characteristic polynomial is:

(
1

β
− λ

)2(
κ1
σβ

+
ϕ̃Y
σ

+ 1− λ

)(
1

β
− τϕτ,b

b1p
− λ

)
+

(
1

β
− λ

)(
1

β
− τϕτ,b

b1p
− λ

)
κ1
β
(
ϕπ
σ

− 1

σβ
) = 0

Rearranging we get:(
1

β
− λ

)(
1

β
− τϕτ,b

b1p
− λ

)[(
1

β
− λ

)(
κ1
σβ

+
ϕ̃Y
σ

+ 1− λ

)
+
κ1
β

ϕπ
σ

]
= 0

The solution is unique if we get 3 eigenvalues outside the unit circle. Suppose that fiscal policy is
‘passive’ so that 1

β
− τϕτ,b

b1p
< 1. Then the 2 eigenvalues that we can obtain from solving the second

order polynomial in the square bracket above have to exceed 1. The polynomial is:

λ2 − λ

(
1

β
+
κ1
σβ

+
ϕ̃Y
σ︸ ︷︷ ︸

χ1

+1

)
+

1

β

(
ϕ̃Y
σ

+ 1

)
+
κ1
β

ϕπ
σ︸ ︷︷ ︸

χ2

= 0

Focusing on positive values for parameters ϕπ, ϕY both roots exceed 1 if:

(χ1 + 1)−
√

(χ1 + 1)2 − 4χ2

2
> 1

or

(χ1 − 1) >
√

(χ1 + 1)2 − 4χ2 → (χ1 − 1)2 > (χ1 + 1)2 − 4χ2 → 4χ2 > (χ1 + 1)2 − (χ1 − 1)2 = 4χ1

The condition χ2 > χ1 holds when

1

β

(
ϕ̃Y
σ

+ 1

)
+
κ1
β

ϕπ
σ
>

1

β
+
κ1
σβ

+
ϕY
σ
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or

ϕY (1− β)

κ1
+ ϕπ > 1 (77)

In the case where fiscal policy is active it is easy to check that a unique equilibrium requires
the opposite inequality to hold in (77). Finally, it is easy to verify that in either of these cases
inflation, debt and output are always at steady state. ■
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