
Compulsive and Addictive Consumption and
the Value of Information

Subir Bose� Miltiadis Makrisy

January 2010

Abstract

We present a new theory of rational addiction based on four premises.
First, addictive consumption is compulsive. Second, occurrence of
cravings depends on past behavior. Third, addicts try to rationally
manage the process of cravings through their consumption. Fourth,
and motivated by neuroscience and psychology literature, our decision
maker is not fully aware of the addictive properties of the substance.
In our model there is scope for campaigns that inform consumers
about the addictive properties of the various substances. Drugs with
stronger withdrawal syndromes are associated with lower consump-
tion. Moreover, our theory provides mico-foundations for nonlinear
intrinsic habit-forming behavior by starting from a standard model
of fully rational decision maker with intertemporally separable pref-
erences. Our model may also give rise to extrinsic habit-forming be-
havior. In fact, in our model, due to addiction being harmful, we may
have contrarian behavior due to informational cascades.
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1 Introduction

Often consumption is addictive and (hence) compulsive. Moreover, often
consumers are not fully aware of the addictive properties (vis-a-vis them-
selves) of certain consumption goods. Consider for instance smoking which
arguably has both obvious withdrawal syndromes (�I am dying for a smoke�)
and more subtle ones (�I would love to have a smoke right now�, �smoking
helps me to relax/concentrate�). However, existing literature ignores this.
This paper attempts to �ll this gap.
The seminal paper on rational addiction, Becker and Murphy (1988) (BM

hereafter), investigates a nonlinear intrinsic habit formation model where
past consumption increases the value of future consumption. The main in-
sight is that higher future price of the addictive substance reduces current
consumption. In that model, the decision maker is rational and fully aware of
the implications of her consumption decisions when maximizes her intertem-
poral payo¤. Thus, government policy should only depend on externalities
imposed by addicts. Moreover, the decision maker would never choose to
avoid cues or enter rehabilitation. Gruber and Köszegi (2001) (GK hereafter)
introduce dynamic inconsistency in BM by means of hyperbolic discounting.
That work is motivated by evidence of unrealized intentions to quit at some
time in the future and the search for self-control devices to help quit.1 In
their context government policy should also depend on the �internalities�im-
posed by dynamically inconsistent addicts. Moreover, commitment is valu-
able when it changes future behavior. However, the habit-forming preferences
these papers deploy are ad hoc: they lack axiomatic foundations.2

Gul and Pesendorfer (2007) in turn characterize axiomatically preferences
over menus of streams of consumption rather than on streams themselves and
investigate their implications for rational addiction. In their context, past
consumption a¤ects cost of current self-control and the decision maker can
choose consumption and future options that go against temptations. The
latter are de�ned there as consumption bundles and future options that are
costly to ignore (ie. not choose). There as well taxes are harmful without ex-
ternalities as in BM, while rehab is desirable as in GK, but as a commitment

1See Gruber and Köszegi (2001) for a discussion of this evidence.
2For an axiomatization of the linear intrinsic habit formation model see Rozen (2009).

Rustichini and Siconol� (2005) also axiomatize dynamically consistent habit formation
over consumption streams, but do not o¤er a particular structure for the utility or form
of habit aggregation.
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device to reduce temptation. Therefore, prohibitive policies are bene�cial.
Moreover, the demand for temporary commitment generates rehab cycles.
Bernheim and Rangel (2004) (BR hereafter) investigate also addictive con-
sumption in a framework that allows for micro-founded preferences,3 but
under �cue�induced mistakes�. Speci�cally, the decision maker operates in
a stochastic environment where she may be �hit by temptations�that carry
very high physiological and psychological costs of being ignored. In this case,
she will always consume the addictive substance.4 However, addicts can en-
gage in activities that reduce the exposure to temptations whenever they are
in a �cool� state, ie. whenever they do not have a cue-triggered impulse.
Thus rehab cycles arise due to a form of �consumption-smoothing�.
In this paper, we present a new theory of rational addiction based on

four central premises. First, addictive consumption is compulsive in that
consumption decisions are in�uenced by the presence of temptations (as in
GP and BR). However, in contrast to these papers temptations here are cue-
triggered taste-shocks/cravings as in Laibson (2001) (L hereafter). Moreover,
in contrast to BR, in the absence of temptations consumption of the addic-
tive substance is inferior to abstention due to the presence of health costs.
Second, temptations are endogenous in that their occurrence depends on past
behavior (as in BR and GP but crucially in contrast to L5). Third, addicts
understand their susceptibility to cravings (as in GP, BR and L) and try
to rationally manage the process through their consumption even under a
temptation (as in GP and L but crucially in contrast to BR). In fact, our

3In fact, the model in BR can also accommodate intrinsic habit-forming preferences as
in BM. However, most of the insights in BR do not rely on such preferences; the insights
they o¤er can also be derived in a context with no intertemporal preference complemen-
tarities (see pp. 1567-1568 in BR).

4In fact BR describe their model in terms of a �cold�and a �hot�state. In the former,
the decision maker matches actions to preferences, while in the latter the decision maker
consumes the substance with no reference to her preferences. In this way the latter be-
havior may diverge from preferences. However, this behavior is also observationally very
similar to the one that would arise when the decision maker always matches actions to
preferences but in some states the cost of abstaining from the addictive consumption is
very high that �forces�the decision maker to consume the substance. For a related point
see footnote 18 and the last paragraph in p. 1563 in BR.

5Note here that in L the probability of occurrence of the various cues is exogenously
determined, which is not the case here or in BR. In L, however, it is past cue-conditioned
consumption of the substance that a¤ects the degree of cue-triggered impulse to consume
the substance (ie. the marginal utility from consumption). In this sense, preferences in L
belong to the intrinsic habit-formation paradigm.
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decision maker would like to pay for not having a craving.6 However, once
she gets an urge then she will indulge in her craving as long as the (net of
health and monetary costs) bene�ts from doing so outweigh the expected
future addiction costs from increasing the likelihood of future cravings. The
fourth premise of our theory, and what di¤erentiates substantially our work
from the existing literature, is that individuals are not fully aware of the eas-
iness to quit. The reason for this is not some kind of dynamic inconsistency
as in GK or some other �behavioral�reason. Instead, our decision maker is
a Bayesian expected utility maximizer with standard discounting who, how-
ever, faces uncertainty over the likelihood of future temptations. In other
words, our decision maker is a standard homo economicus who neverthe-
less lacks some information about the addictive properties of the substance.
Therefore, when she consumes, the decision maker in e¤ect experiments and
tries to infer the addictive properties of the substance by using her experience
in terms of current and past cravings and past consumption.
The fourth central premise of our theory is motivated by the consensus

that seems to emerge in the neuroscience and psychology literature7 that
the way individuals associate levels of pleasure/pain (ie. utility) with cer-
tain (consumption) activities (and hence the way individuals make decisions)
is in�uenced by two mechanisms: cognitive control and impulses generated
by forecasting.8 The former associates activities and pleasure/pain in an
undistorted way by �identifying alternative courses of action or projecting
the future consequences of choices�(from BR p. 1563), while the latter may
distort these associations by overrelying on recent experiences and repetitive
associations in the past. Thus, the latter mechanism may give rise to mis-
perceptions about the actual (current and future) pleasure/pain associated
with the (current) consumption of addictive substances. Moreover, fore-
casts of utility from consumption may be in�uenced by the presence (or not)

6This echoes the bene�cial e¤ect of removing temptations in GP and L. However, in
our model, as in L, eliminating options would not be bene�cial for consumers. Note also
that we abstain from analyzing external (�lifestyle�) activities that reduce exposure to
temptations (which are the focus of BR, GK and to some extend in L). We recognize
that individuals may manage their addiction through lifestyle activities. We abstract
from this possibility to focus on the novel aspect of our theory, which is management of
addiction through consumption in the face of uncertainty over the addictive properties of
the substance.

7For this see the excellent discussion in pp. 1562-1565 in BR and in pp. 84-86 in L.
8The latter is referred to in BR as impulses generated by the �Hedonic Forecasting

Mechanism�.
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of certain environmental cues and complementarities between activities and
consumption.9

We have to emphasize here that the theory we present may not be ap-
plicable to all addictive substances. For instance, we focus on cue-conditioned
impulses that do not defeat higher cognitive control (while the existence of
cue-conditioned cravings that override cognitive control is the focus of BR).
Moreover, there are addictive goods whose addictive properties are well un-
derstood and publicly available. However, there are also addictive goods for
which the latter is not true and cue-triggered mistakes are not common10

(smoking, sex, shopping, food - addictions and kleptomania are some ex-
amples). Therefore, we view our work as an important complement of the
existing literature in understanding (rational) addiction.
In contrast to the received literature, in our model of rational addiction

there is scope for informational policies that take the form of campaigns that
inform consumers about the addictive properties of the various substances
(and not about the health and monetary costs of addictive consumption as,
following the received literature, these are assumed to be known by con-
sumers). Moreover, our theory provides mico-foundations for nonlinear in-
trinsic habit-forming behavior by starting from a standard model of fully
rational decision maker with intertemporally separable preferences. It does
so by virtue of uncertainty over the likelihood of future temptations which is
endogenous in that it depends on past behavior and the history of past and
current temptations. Interestingly, our model may also give rise to extrinsic
habit-forming behavior.11 The reason is that in our context the past and
current consumption of peers may provide valuable information about the
addictive properties of the substance and thereby in�uence the consumption
of our decision maker. In fact, in our model, due to addiction being harmful,
we may have contrarian behavior as a result of informational cascades.
Our analysis has also a number of other interesting implications. First,

consumption patterns depend on the inherent addictive properties of the sub-
stance as well as on the family and social environment of individuals when
they make their �rst consumption decision. The reason for the latter is that

9See also L for a related discussion of cue-triggered consumption.
10On this see also footnote 18 in BR.
11In models of extrinsic habit formation, individuals derive utility from their relative

position in society, as in the �catching up with the Joneses� e¤ect of Abel (1990). This
di¤erentiates these models from the intrinsic formation paradigm where evaluation of own
consumption uses as a reference point own past consumption.
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the environment will have a big impact on the prior of the decision maker
about the addictive properties of the substance, which in turn will in�uence
the �rst and subsequent consumption decisions. Second, our model can fea-
ture failed attempt to quit and occasional use as a process of information ac-
quisition (not due to dynamic inconsistency or cue-induced mistakes). Third,
more addictive drugs may be associated with lower consumption among more
experienced users and higher consumption among new users (in contrast to
BR). This will be the case if the degree of addiction is increasing in past
consumption due to the fact that in our model higher (perceived) degree of
addiction leads to lower consumption to reduce future cravings. Fourth, our
model predicts that addictive substances with higher self-control costs are
associated with lower consumption. Finally, it provides a theoretical foun-
dation behind an existing method to stop smoking with, arguably, many
bene�ciaries (one of the authors is one).12 This method in fact has at its
centre the fact that smoking has very subtle cravings which give rise to fore-
casts of bene�ts that can be mistaken as actual bene�ts. It is also against
the use of quit aids because, and our model agrees to this, they perpetuate
addiction (though admittedly at lower health costs). Instead, subsidies for
aids could be spent on information campaigns about the addictive properties
of smoking that may reduce smoking signi�cantly and thereby both health
and future monetary costs.
The organization of the paper is as follows. The next section describes

the basic model which is used to build our intuition and derive in Section
3 most of our results. The robustness of the insights of this basic model is
the topic of Section 4, where, among others, the relation of our model to
the intrinsic habit formation literature is also discussed. Finally, Section 5
concludes

2 Model

In this section we consider the simplest model that can capture our story.
We consider some extensions later in Section 4 .
There are two periods t = 1; 2: Let � be the discount factor. A consumer

chooses action at in each period t where at 2 f0; 1g; in what follows, we will
use the words �action� and �consumption� interchangeably. at = 1 and 0

12See �The Easy Way to Stop Smoking�by Alan Carr, Penguin Books Ltd, 3rd Revised
edition (1999).
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represent consumption of the addictive substance and abstention in period t
respectively. We will often use smoking to describe the model, though our
framework can describe other addictive goods as well as we have mentioned
in the Introduction.
Net (of monetary and non-monetary short and long run costs) utility

per period is given by the bounded function u(at; xt): The random variable
xt 2 f0; 1g is used to capture �urge�or �craving�. In any period t; xt = 1
(respectively, xt = 0) represents the state when the urge is present (respec-
tively, absent). The following two inequalities on the function u depict the
basic assumption that in the absence of any intertemporal e¤ects the optimal
action of the consumer would be to choose at = x in state x:

Assumption 1 u(0; 0) > u(1; 0)

Action at = 1 is costly and hence in the absence of any urge, at = 0 is
the best action ceteris paribus. This is captured by assumption (1). This
assumption also di¤erentiates our work from BR.

Assumption 2 u(1; 1) > u(0; 1)

Even though at = 1 is costly, when the craving happens, the urge is
su¢ ciently strong so as to make at = 1 the best action all other things equal.
This is captured by assumption (2). Note that in our case u(1; 1)� u(0; 1) is
bounded. If it was unbounded then x = 1 could be thought of as a cue that
defeats cognitive control along the lines of BR.
The above describe the ex-post (period t) preferences given the state xt:

However, we want to model the e¤ect that the consumer is aware that com-
pulsive consumption (we focus here) is bad. This is captured by assumption
(3), that shows that (even after taking into account the ex-post preferences)
the consumer would prefer not to get the urge.

Assumption 3 u(0; 0) > u(1; 1):

As we see shortly, while assumptions (1) and (2) drive the second period
optimal choice, the �rst period action is in�uenced by assumption (3) as well.
At this stage note that the above assumptions imply that the welfare

costs of the addictive consumption are known and well understood by the
decision maker. However, before we continue, we need to point out here that
the above formulation abstracts from any long run cumulative cost-e¤ects
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of the compulsive consumption. We choose this formulation not because we
think that such costs are not important, but in order to emphasize that our
results do not rely on any cumulative welfare costs. In particular, note that
u(1; 0)�u(0; 0) represents the welfare cost (due to health and monetary costs)
of compulsive consumption, while u(0; 0)�u(0; 1) represents the welfare cost
associated with having a craving and not consuming (ie. the cost of self-
control). We discuss this, as also the issue of how our model relates to the
habit formation models, in more detail in section 4.
We now describe the beliefs of the consumer about the evolution of the

state xt: The consumer does not know the true stochastic process but attaches
a probability distribution (representing his prior) over the set of possible
processes. For simplicity, we restrict attention to the situation when this set
consists of the following two processes only. The �rst is an i.i.d process where
in both periods, the probability that xt = 1 is equal to p with 1 > p > 0:
The other process, which we refer to as the addictive process, depends on the
past and current consumption. More speci�cally, under the latter process,
the probability that x2 = 1 is given by f(h1; a1); with f being continuous,
where h1 is a measure of past consumption prior to period 1. For brevity, we
will refer to h1 as history in this and the next sections. Higher h1 represents
a higher level of past (passive) consumption, with h1 = 0 representing no
consumption in the past. We assume the following:

Assumption 4 f(h; a) is increasing in both arguments.

Note that for the two period model it su¢ ces to assume only that f
is increasing in a: However, for the more general model, we also need the
monotonicity with respect to h: Denote by f0 the probability that x1 = 1
which depends positively on consumption up to and including (some arti�-
cial) period zero.13 It is the second process that makes consumption addic-
tive: higher current or past consumption makes higher future consumption
more likely through the e¤ect of increasing the likelihood of occurrence of
future cravings. The prior that the process is the addictive one is given by
�0:
We also make the following intuitive assumption on the stochastic processes.

Assumption 5 f(0; 0) = p

13In other words, we can think of an arti�cial period t = 0 and write f0 as f(h0; a0):
We write f0 to simply avoid notational cluttering.
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Zero current and past consumption under the addictive process gives the
same likelihood for craving in the next period as the i.i.d process. Put di¤er-
ently, for someone who has never consumed the addictive good, the chances
of getting an urge next period is the same under the addictive process as
it is under the i.i.d process. Note that assumptions (4) and (5) imply that
f � p: Note also that assumption (5) implies that as long as the consumer�s
subjective belief puts some (initial) probability on the addictive process be-
ing the true process, she does expect an increase in the likelihood of future
cravings whenever there is (additional) consumption of the addictive good.
Note here that expressing the model in terms of a decision maker who knew
that the probability of having a craving is f(h; a; �) (with f being increasing
in h and a for any �) but did not know her addictive type � 2 f�l; �hg; with
f(0; 0; �l) = f(0; 0; �h) � p; f(h; a; �h) > f(h; a; �l) for h > 0 and/or a > 0;
and f(h; a; �h)=f(h; a; �l) being increasing in h and a; would give qualitatively
similar results.
The sequence of events in any period is as follows. In any period t; the

consumer starts with the prior �t�1 and past behavior summarized by ht�1
and at�1:The state xt is realized and is observed by the consumer, who then
uses the realized value of xt to update her prior to arrive at the posterior
�(xt; �t�1; ht�1; at�1); where h0 and a0 are the measure of past consumption
and actual consumption in (the arti�cial) period zero (and so f(h0; a0) = f0).
The consumer also chooses action at; given her beliefs, in order to maximize
her intertemporal welfare. Being a rational consumer, she takes into account
the possible implications of her current choice of action on the likelihood of
the future occurrences of cravings. An important point to note is that the
consumer cannot commit to future actions. In addition, given that between
the observation in period t of state xt and the observation in period t+ 1 of
state xt+1 there is no new information about the state-generating process, we
have for period t+1 prior �t that �t = �(xt; �t�1; ht�1; at�1): That is, period
t+1 prior is (endogenous and) equal to the posterior of the previous period.
For later use, we de�ne

D = u(0; 0)� u(1; 1)
B = u(1; 1)� u(0; 1)

As we will see in more detail shortly, D captures, in a way, the (long run)
bene�t from not having the urge. B on the other hand represents the short
run bene�t from indulging to the urge.

9



3 Optimal consumption

In this section we analyze the optimal choices of the consumer. Here, and
for the rest of the paper as well, we make the tie-breaking assumption that if
in any period the consumer is indi¤erent between choosing at = 1 or at = 0;
she will choose at = 0: It can easily be checked that no qualitative result is
a¤ected if one were to break the tie in the other way.
We start by considering the second period. Since there is no future period

to consider, the posterior beliefs about the stochastic process are actually
irrelevant, and the optimal consumption in the second period is determined
solely by the second period state x2: Clearly, given assumptions (1) and (2),
the consumer chooses a2 = 1 if and only if x2 = 1: Therefore the welfare
bene�t of not having a craving in the second period is D:
Turning to the �rst period choices, assumptions (1) and (3) imply that

the short run and the long run incentives are not in con�ict when x1 = 0
(The action a1 = 1 is costly in terms of current period payo¤. Moreover,
for any posterior beliefs, it (weakly) worsens the future expected payo¤ by
making cravings (weakly) more likely.14) Thus, if x1 = 0; the optimal action
is a1 = 0:
The problem is more interesting when x1 = 1. In this case, the posterior

beliefs are important. Let for the rest of this section only, with some abuse
of notation, �1 stand for the posterior in question.

15 Payo¤ from action a1 is

u(a1; 1) + �u(0; 0)� �D[(1� �1)p+ �1f(h1; a1)] (1)

The �rst term is the current period payo¤while the second is the discounted
payo¤ in the absence of any future urge. The third term represents the
discounted expected cost when the craving occurs next period, which occurs
with perceived probability (1� �1)p+ �1f(h1; a1).
As expression (1) shows, when x1 = 1; the current period payo¤ is maxi-

mized by choosing a1 = 1: However, this raises the future cost by increasing
the (posterior) likelihood of a craving (since f(h1; 1) > f(h1; 0)): Therefore

14And, if �0(1� f0) > 0; the future expected payo¤ is in fact strictly lower.
15By Bayes rule, the period�1 posterior (belief) that the true process is the addictive

one given that x1 = 1 is given by

�0f0
�0f0 + (1� �0)p
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when deciding whether or not to smoke the rational consumer balances the
current �kick�from satisfying the urge, B; versus the decrease in discounted
future utility, �D; from exposing herself to a greater risk of being addicted.
The resolution of this trade-o¤ is then that non-smoking (i.e. a1 = 0) is

the optimal response even in the presence of craving if and only if

B

�D
� �1 [f(h1; 1)� f(h1; 0)] (2)

The left hand side re�ects the trade-o¤ between the current �kick�and
the future cost of addiction. The right hand side is the perceived increase
in the probability of being addicted, i.e., of getting a craving in the future
as a result of current smoking. Thus, if the increase in future perceived
probability of craving is su¢ ciently high then no consumption is optimal.
We collect the results on optimal consumption in the Proposition below.

Proposition 1 Optimal Consumption for the two periods is given by
(a) For t = 2; a2 = x2
(b) For t = 1; a1 = 0 when x1 = 0: When x1 = 1; a1 = 0 if and only if

inequality (2) holds.

Proof. Parts (a) and the �rst part of (b) follows from the discussion above.
To see the last part of (b), note that when x1 = 1 the payo¤ in (1) implies
that action a1 = 0 is preferred to a1 = 1 when

u(0; 1) + �u(0; 0)� �D[(1� �1)p+ �1f(h1; 0)]
�

u(1; 1) + �u(0; 0)� �D[(1� �1)p+ �1f(h1; 1)]

which after some straightforward algebraic manipulation, and substituting
B for u(1; 1)� u(1; 0) gives the inequality (2):
For the discussion that follows note that D can be rewritten as D =

u(0; 0)� u(0; 1)� B; where u(0; 0)� u(1; 0) represents the withdrawal cost,
which is assumed to be independent of health and monetary costs of addictive
consumption. Thus, B=D is increasing in B: Inequality (2) con�rms certain
results of the received literature. First, higher future non-addiction (ie. mon-
etary or health) costs lower current consumption (consider a decrease in B
). Second, more addictive drugs are associated with lower consumption for
any given beliefs (consider an increase in f(h1; 1)�f(h1; 0) for any given h1).
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Third, direct peer e¤ects can reduce self-control (B increases); peer e¤ects
are discussed further later. Finally, reducing the occurrence of cravings and
exposure to cues (e.g. change habits/environment) is bene�cial for any given
priors (consider a decrease in the true probability of x1 = 1).
Importantly, Proposition (1), and in particular inequality (2), provide us

with some new implications and insights. First, they illustrate the role of
(a policy of providing) information (about the addictive properties of the
compulsive consumption) in our model. Suppose the true process is in fact
the addictive one but that the consumer does not know this and consequently
has beliefs such that �1 < 1: Then, if for some history h1 we have B <
[f(h1; 1)� f(h1; 0)] [�D] but inequality (2) is not satis�ed, the consumer will
choose to smoke in period t = 1 but will stop (voluntarily) if provided with
(credible) information about the true process. It is important to note that
similar to the standard rational addiction model, (many) other types of policy
interventions - for example, forcing the consumer not to smoke,16 or raising
taxes on the addictive good - are not welfare enhancing policy interventions
in our set up where there are no consumption externalities and/or no merit
good arguments.
Second, in this model, the prior �0 can be thought of arising as a result of

the environment in which the decision maker has been raised (and prior to the
�rst instance she has to decide whether to consume the compulsive good or
not). As such, it can capture the cultural and family environment and habits
as well as peer and own experience. Thus, for a young, and maybe excessively
impulsive, youngster who lives in a family and social environment where
smoking is the norm, �0 may be relatively low. In this case, the posterior
�1 will be relatively low and hence, all other things equal, the above result
implies that the likelihood of smoking is relatively high.
Third, consider a decision-maker with some prior �0 and (positive) past

consumption such that [B=�D]=[f(h1; 1)� f(h1; 0)] � �0 <
�0f0

�0f0+(1��0)p
: One

could think that in this case the decision maker would pledge before the
occurrence of state x1 to quit smoking and indeed abide by it regardless of
the realized state. Next period coming though, the decision maker will smoke
if x2 = 1: Thus, our model features failed attempts to quit and occasional
use as a process of information acquisition (not due to dynamic inconsistency
or cue-induced mistakes). Of course, one might argue at this stage that this

16For instance, extraneous resistance to cravings (physical con�nement, �special medi-
cines�- see BR for discussion of such measures )
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is an artifact of the two-period horizon of our basic model. However, as we
show in the next section the insights in this section carry over in a model with
more than two periods under certain plausible conditions. In fact, we show
there that if there is a su¢ ciently long period with no cravings (and hence
no consumption) then the decreasing posterior will ultimately be low, which
in turn implies that if the decision maker is eventually �hit�by a craving she
may indeed indulge and get her short run �kick�.
Fourth, quit aids are bene�cial in reducing health costs but reduce self-

control as they sustain addiction (consider an increase in B and hence an
increase in the likelihood of wanting to smoke).
Fifth, drugs with stronger withdrawal syndromes are associated with

lower consumption. This follows directly from recalling that self-control costs
are represented by u(0; 0)� u(0; 1) and D = u(0; 0)� u(0; 1)�B:
Finally, consider addictive substances such that the degree of addiction

(for given beliefs �1) f(h1; 1) � f(h; 0) is increasing in past consumption
history h1. In this environment, more addictive drugs (for given beliefs �1)
are associated with a higher likelihood that consumption will not take place
for more experienced users. Loosely speaking, thus, more addictive drugs
are associated with lower consumption among more experienced users and
higher consumption among new users (in contrast to BR).
Our model features experimentation and learning of the addictive proper-

ties of a certain consumption good if �0 is di¤erent than 0 or 1: Note however
that absence of learning does not change the essence of our main message
insofar �0 < 1: In fact, our case of information campaigns would be stronger
if �0 = 0 (and knowing that the process is addictive leads to no smoking).
We conclude this section by discussing some new implications of our model
for peer e¤ects.

3.1 Peer E¤ects

Our model features two kinds of peer e¤ects:
(1) Simple peer e¤ect. Can be modelled as an increase in u(1; 1) which

would imply an increase in B (and a decrease in D): This would give the
standard peer e¤ect where an agent has a higher tendency to smoke if more
people around him also smoke. Alternatively, this can also be modelled as
an increase in f(ht�1; at�1) and p in period t for any given history. In other
words, for any given history, the more people smoke, the more likely it is
that a particular individual of that group will face an urge to smoke.
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(2) There is a less obvious peer e¤ect which arises out of a process of
information acquisition as a result of observing others�smoking practices. In
particular suppose whether the process is addictive or not is the same for all
individuals. The prior �0 is now the probability that the typical process is
addictive. In such an environment observing others�consumption gives an
individual further information about addictiveness of her own process. Given
our assumptions on D and B; it is still the case that Lemma will still be true
and hence at = 1 implies that xt = 1: However, if at = 0 it may still be the
case that xt = 1: Hence as in herd behavior models actions will not perfectly
reveal the state/signal x: It still remains that an agent does not smoke in
the absence of an urge (i.e. at = 0 whenever xt = 0): As in the herding
behavior literature (e.g. Bikhchandani et al. 1992, and Banerjee 1992), an
informational cascade can arise for xt = 1: In more detail, an agent who
would otherwise smoke may decide not to smoke if many of his peers have
been smoking frequently as the latter would imply that the process is very
likely to be addictive. Similarly, an agent who would otherwise not smoke
may decide to smoke if many of his peers have not been smoking frequently
as the latter would imply that the process is very likely not to be addictive.
Note the di¤erent implications of the two di¤erent forms of peer group

e¤ects. In the preference related peer group e¤ect we get the standard con-
clusion of reinforcing smoking behavior in a group. In the information related
peer group e¤ect however, we can get contrarian behavior due to informa-
tional cascades. Therefore, our model can be thought of as providing some
mico-foundations for extrinsic habit formation (ie. for consumption history
of peers to a¤ect own tendency to consume).

4 Extensions

We start by considering a model with T > 2 periods (where T can be �nite
or in�nite) and then move to a discussion of cumulative welfare e¤ects.

4.1 Longer Horizon

For any period 1 � t � T; and given any history of consumption represented
by the vector (a0; :::; at�1); let the scalar ht be a measure of past consumption,
which, hereafter, we will simply call the period t history. For example, for
some � 2 (0; 1=2]; we could have ht =

Pt�1
i=0 ai(�)

t�i: In this case, ht belongs

14



to the interval [0; 1] for all t and ht+1 = �(ht+at): More generally, for any ht;
we postulate that ht+1 = g(ht; at) with g(0; 0) = 0; and the function g being
continuous and increasing in both arguments. The fact that g is increasing in
h di¤erentiates also our model from that in GP. We also assume that for any
h 2 [0; H]; where H is a well-de�ned scalar, and a 2 f0; 1g; g(h; a) 2 [0; H]:
Moreover, h1 2 [0; H]:
Next, we describe the (natural) extensions of the corresponding terms

and de�nitions of the two period model. Let f(ht; at) denote the probability
that xt+1 = 1 under the addictive process. We retain all the assumptions
from the 2-period model about function f . As in the two period model, we
let �t�1 and �(xt; �t�1; ht�1; at�1) denote period-t prior and posterior beliefs
that the true process is the addictive one. As usual, the latter is obtained
by updating �t�1 (using Bayes rule) upon observing the realized value of xt
for any t � 1:17 For reasons similar to those in the two-period model we have
�t = �(xt; �t�1; ht�1; at�1):
To simplify the discussion hereafter let as focus on the case when 0 <

�0f0 + (1� �0)p < 1 and f(h; 1) < 1 for any h (and hence Bayes rule can be
applied in any period t - even if t > 1 and �t�1 = 1 and xt = 0).
Note then that as long as 1 > �t�1 > 0; assumption (5) implies that, ex-

cept for the case ht�1 = at�1 = 0; the period-t posterior belief is increasing in
x (otherwise is independent of xt):18 Furthermore, the period t posterior is in-
creasing in the prior �t�1. Finally, if 1 > �t�1 > 0, then �(1; �t�1; ht�1; at�1)
is increasing, while �(0; �t�1; ht�1; at�1) is decreasing, in ht�1 at�1 (otherwise
they are independent of past consumptions).
It is helpful to de�ne here the posterior probability that xt+1 = 1 given

ht; at and prior �t: Let this posterior probability be denoted by �(at; ht; �t)
where

�(at; ht; �t) = [1� �t]p+ �tf(ht; at)
17Formally,

�(1; �t�1; ht�1; at�1) =
�t�1f(ht�1; at�1)

�t�1f(ht�1; at�1) + (1� �t�1)p

and

�(0; �t�1; ht�1; at�1) =
�t�1(1� f(ht�1; at�1))

�t�1(1� f(ht�1; at�1)) + (1� �t�1)(1� p)
:

18In fact, after a straightforward rearrangement, one can see that �(1; �t�1; ht�1; at�1)�
�(0; �t�1; ht�1; at�1) is proportional to �t�1(1� �t�1)(f(ht�1; at�1)� p):
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The optimal action in any period t depends on period-t history ht; poste-
rior �t and observed state xt: The beliefs about the future occurrences of the
cravings depend on these variables and the chosen action at: The observed
state xt in�uences also the current payo¤. Let a(ht; xt; �t) denote the optimal
period-t consumption for any t:
Let Z(at; xt; ht; �t) denote the period-t expected discounted payo¤ when

in period t the state is xt; the history is ht; the posterior is �t and the action
is at: That is,

Z(at; xt; ht; �t) � u(at; xt)+
+��(at; ht; �t)�

�Z(a(g(ht; at); 1; �(1; �t; ht; at)); 1; g(ht; at); �(1; �t; ht; at))+
+�[1� �(at; ht; �t)]�

�Z(a(g(ht; at); 0; �(0; �t; ht; at)); 0; g(ht; at); �(0; �t; ht; at))
Let �nally

V (x; h; �) � Z(a(h; x; �); x; h; �)
be the equilibrium expected discounted payo¤ given posteriors �; history
h and craving-state x; where we suppress (unless stated otherwise to avoid
confusion) the dependence of it on the horizon T:
For similar reason to that in the two-period model, if T is �nite, then

a(hT ; xT ; �T ) = xT : Moreover, we have V (xT ; hT ; �T ) = u(xT ; xT ):
To discuss optimal consumption for any period t < T; a(ht; xt; �t); we

need to understand �rst the properties of the period-t value function V (xt; ht; �t):
Consider the following properties:
(A) V (xt+1; ht+1; �t+1) is nonincreasing,
(B) V (0; g(ht; at); �(0; �t; ht; at)) is nonincreasing in ht and at;
(C) V (0; g(ht; at); �(0; �t; ht; at))� V (1; g(ht; at); �(1; �t; ht; at)) � D:
Property (A) states that at optimum the decision maker is (weakly) better

o¤ from the point of view of period t+1 if there is no craving, history is low
and posterior is low. Property (B) states that for given period-t+1 prior �t;
the period-t + 1 value function conditional on not having a craving is lower
if past consumptions are higher. Finally, property (C) states that for given
period-t + 1 prior �t and period-t history and action ht and at; the gain in
period-t+ 1 value function from not having a craving is at least equal to D:
To appreciate the implications of the above properties note �rst that they

are all trivially true when t = T �1 (ie. T is �nite) due to a(hT ; xT ; �T ) = xT
and thereby V (xT ; hT ; �T ) = u(xT ; xT ):
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Second, in the Appendix B we can prove the following Lemma:

Lemma 2 If properties (A) and (B) are true for t � n; 2 � n + 1; then
a(hn; 0; �(0; �n�1; hn�1; an�1)) = 0 and property (C) is true for t = n� 1:
That is, if the value function in all periods from n + 1 (inclusive) and

onwards satis�es properties (A) and (B), then property (C) is true for period
n and the optimal action in period n when there is no craving is to abstain
from consumption. In fact, the latter result, in conjunction with properties
(A) and (B) being true for period T; has been used in the simple two-period
model for n = 1:
Third, one can also show that property (A) is true for t = T � 2 (ie. T is

�nite). This follows directly from the above Lemma, that u(0; 0) > u(1; 1) >
u(0; 1); the de�nition of optimum, that �(aT�1; hT�1; �T�1) is nondecreas-
ing and, �nally, that V (xT�1; hT�1; �T�1) = u(a(hT�1; xT�1; �T�1); xT�1) +
�u(0; 0) � ��(a(hT�1; xT�1; �T�1); hT�1; �T�1)D: The reader is referred to
Appendix A for the details.
Fourth, property (B) holds for t = T � 2 if �(0; g(h; a); �(0; �; h; a))

is nondecreasing in h and a. To see this, note, due to Lemma 2, that
V (0; g(hT�2; aT�2); �(0; �T�2; hT�2; aT�2)) = u(0; 0) + �u(0; 0)
� ��(0; g(hT�2; aT�2); �(0; �T�2; hT�2; aT�2))D: Note however that the

monotonicity of �(0; g(h; a); �(0; �; h; a)) with respect to h and a depends on
the properties of g and f:
Finally, the applicability of properties (A) and (B) for any period t � T�3

when T > 3 (t < T � 3 when T � 1) is not guaranteed because for such t
the value function depends on posteriors and higher past consumptions have
two opposite e¤ects on posteriors depending on the craving state: positive if
there is an urge and negative if there is no craving.

Bearing the above in mind, let us restrict hereafter attention to environ-
ments where

Assumption 6 f and g are such that (for any t � 1 and
1Q
i=2

y � 1 ) if

h00 � h0 and a00 � a0 (with at least inequality strict) then

(1� f(h0; a0))
(1� f(h00; a00))

tY
i=2

(1� f(Lt�ig(h0; a0); 0))

� f(Lt�1g(h00; a00); 0)

f(Lt�1g(h0; a0); 0)

tY
i=2

(1� f(Lt�ig(h00; a00); 0)):
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In the above assumption, L is an operator on functions g(h; a) and �(0; �j; h; a)
de�ned by

Lg(h; a) = g(g(h; a); 0) and

L�(0; �j; h; a) = �(0; �(0; �j; h; a); g(h; a); 0):

Moreover, Lt denotes the tth application of the L operator after using the
convention that L0g(h; a) = g(h; a) and L0�(0; �j; h; a) = �(0; �j; h; a): That
is, in general, Ltg(h; a) = g(Lt�1g(h; a); 0) and Lt�(0; �j; h; a)
= �(0; Lt�1�(0; �j; h; a); L

t�1g(h; a); 0): To understand the notation, con-
sider the example with t = 2: In this case we have: L2g(h; a) = Lg(g(h; a); 0)
= g(g(g(h; a); 0); 0) and L2�(0; �j; h; a) = L�(0; �(0; �j; h; a); g(h; a); 0) =
�(0; �(0; �(0; �j; h; a); g(h; a); 0); g(g(h; a); 0); 0) = � (0; L�(0; �j; h; a); Lg(h; a); 0):
Similarly for any t > 2: Essentially the tth application of the operator gives
the posterior belief and the history in period j + t + 1 given that in period
j the prior was �j; history was h and action was a; and that in any period
after j up to period t+ j+1 the craving-state has been x = 0 and the action
has been to abstain from addictive consumption:
We show in Appendix C, that the above assumption implies that for any

1 � t � T � j � 1
(i) �(0; Lt�1g(h; a); Lt�1�(0; �j; h; a)) is non-decreasing in h and a and
(ii) �(1; Lt�1�(0; �j; h; a); L

t�1g(h; a); 0) is non-decreasing in h and a,
which are what is really needed for Lemma 2 below.
To see how strong the above assumption is and how it relates to the

existing literature, we also show in Appendix C that the set of g and f
functions that are consistent with assumption 6 is not empty. In fact, we
also show that functions g and f which are consistent with (BM, GK, L and
BR) must be su¢ ciently responsive to h relative to a:
We turn to discussing optimal consumption when T is �nite.

4.1.1 The Case of Finite Horizon

The following Lemma extends in the T�period model certain properties of
the 2-period model.

Lemma 3 Assume 6. Then properties (A)-(C) and a(ht+1; 0; �(0; �t; ht; at)) =
0 also hold for any 0 � t � T � 1:
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Proof. Under assumption 6, in Appendix B we show that if properties (A)
and (B) are true for any t � n; then they are also true for t = n � 1; for
any given 2 � n + 1 � T: Induction as well as the fact that, as we have
mentioned earlier, properties (A)-(C) hold in the last period, and Lemma 2
imply directly the desired result.
Thus, under assumption 6, we have, as intuition would suggest given the

dependence of occurrences of future cravings on history, that higher con-
sumption now or in the past is (weakly) detrimental for future welfare for
any given future state and posteriors. Moreover, given that cravings make
consumption and hence future cravings more likely given beliefs, we have
that the bene�t in terms of overall future welfare from not having an �urge�
next period (i.e. period t + 1) is (weakly) higher than the one-period wel-
fare bene�t of not having a craving next period D: Furthermore, for reasons
similar to those in the two-period model, choosing at = 1 when xt = 0 is
not optimal.19 Hence, in what follows, we restrict attention to analyzing the
situation when xt = 1:
To do so let us lighten notation �rst. Even though the period-t poste-

rior depends on �t�1; ht�1; at�1; as well as on the realized value of xt; for
expositional simplicity, and unless there is a risk of confusion, we suppress
the dependence of period-t posteriors on �t�1; ht�1; at�1 and let �t(xt) =
�(xt; �t�1; ht�1; at�1) (the dependence in question is captured simply by the
time-subscript of �t(x)): Similarly, we set, whenever there is no risk of con-
fusion, at(ht; xt) � a(ht; xt; �t(xt)) and Vt(xt; ht) � V (xt; ht; �t(xt)): Finally,
let us set �t(ht; at) � �(at; ht; �t(1)):
We start by introducing �rst some de�nitions. Let bDt(ht) be given by

bDt(ht) = Vt+1(0; g(ht; 1))� Vt+1(1; g(ht; 1))

Note that the above Lemma implies that bDt(ht) � D > 0. bDt(ht) has a
similar interpretation to D: In particular, it is the expected gain - evaluated
at t+1 - from not having an urge in the future given that the consumer smokes
in the current period and optimally responds to the presence or absence of an
urge in the future. Contrasting bDt(ht) with D; note that the kind of current
consumption is irrelevant for the de�nition of the latter. The reason is that
in a two-period model, the second-period consumption is determined entirely

19Put di¤erently, since smoking is costly (monetarily and otherwise) from both short
and long run point of view, there is no reason for the consumer to indulge in smoking in
the absence of any urge.
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by the temporal payo¤ and is independent of the �rst- period consumption,
and we have bD1(h1) = D. With more than two periods, the consumption in
any period t < T � 1 a¤ects future consumption incentives.
The latter also lies behind the existence of the extra term 	t(ht) de�ned

below: Let us �rst de�ne �t(h; x) as

�t+1(ht; x) = Vt+1(x; g(ht; 0))� Vt+1(x; g(ht; 1))
Note that the above Lemma implies that �t+1(ht; x) � 0: �t+1(ht; x) repre-
sents the expected future gain - evaluated at t+1 - from not smoking in the
current period if the future state is x. 	t+1(ht) is given by

	t+1(ht) = �t(ht; 0)�t+1(ht; 1) + (1� �t(ht; 0))�t+1(ht;0)
	t+1(ht) � 0 represents the expected value of �t+1(ht; x) conditional on
not smoking in period t: Note that in the two-period model, �2(h1; 1) =
�2(h1; 0) = 0 (and hence 	2(h1) = 0) because, as we have already men-
tioned, �rst-period consumption does not a¤ect the optimal consumption in
the second period (that is, a2(g(h1; a1); x2) is independent of a1) and because
there is no future in the second period to be a¤ected by consumption up to
period 2 (that is, V (x2; h2; �2) is independent of h2 and �2):
Note now that payo¤ from action at in period t (when xt = 1) is then

given by

u(at; 1) + �Vt+1(0; g(ht; at)) (3)

���t(ht; at) [Vt+1(0; g(ht; at))� Vt+1(1; g(ht; at))]
We have:

Proposition 4 No smoking is the optimal action in period t (given that
xt = 1) if and only if the following inequality holds:

B � �f�t(1) [f(ht; 1)� f(ht; 0)] bDt+1(ht) + 	t+1(ht)g (4)

Proof. Using expression (3), we see that when x1 = 1; action a1 = 0 is
preferred to a1 = 1 when

u(0; 1) + �Vt+1(0; g(ht; 0))

���t(ht; 0) [Vt+1(0; g(ht; 0))� Vt+1(1; g(ht; 0))]
�

u(1; 1) + �Vt+1(0; g(ht; 1))

���t(ht; 1) [Vt+1(0; g(ht; 1))� Vt+1(1; g(ht; 1))]
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which after some straightforward algebraic manipulation, that includes adding
up at both sides the term �t(ht; 0) [Vt+1(0; g(ht; 1))� Vt+1(1; g(ht; 1))], and
using the de�nitions for B; bDt+1(ht) and 	t+1(ht); gives the inequality.
Comparing inequality (4) with inequality (2), we can see two di¤erences.

First, the term D is replaced by bDt+1(ht): Second there is an extra term
	t+1(ht). The reason for this is re�ected in our earlier discussion of the
interpretation of these terms.
At this point, we can ask how the presence of a longer horizon a¤ects

the likelihood of smoking in any period t: To answer this, recall that for
any t < T � 1; 	t+1(ht) � 0 and that bDt+1(ht) � D (while 	T (hT�1) = 0

and bDT (hT�1) = D): Therefore, a longer (�nite) horizon makes smoking less
likely as it (weakly) increases the relative cost of smoking (see the right hand
side of inequality (4) and compare it with inequality (2)).
Next, we show that the above insight carries forward to the in�nite hori-

zon case. However, proving this intuitive result turns out to be more chal-
lenging than one might have conjectured.

4.1.2 In�nite Horizon

Turning to the case of T !1; the �rst issue that arises is whether the value
function V (x; h; �) is well-de�ned. The second issue is whether it satis�es
properties (A) and (B) (in which case, by Lemma 2, it will also satisfy prop-
erty (C) and that the best response to no craving is no zero consumption).
If these are still true, our results, and in particular Lemma 3 and the above
proposition, will be robust to allowing for in�nite horizon.
By using standard dynamic programming techniques one can show that

V (x; h; �) is indeed well-de�ned, continuous and bounded. Furthermore, with
a somewhat more involved analysis, one can also that the value function
satis�es also properties (A) and (B) under assumption 6. The details are in
Appendix D.

4.2 Cumulative Welfare E¤ects

Here we consider environments where the period t payo¤ given craving state
xt; action at and history of past consumption ht is given by v(at; xt; ht)
with v(1; 1; ht) > v(0; 1; ht); v(1; 0; ht) < v(0; 0; ht); v(1; 1; ht) > v(0; 0; ht)
and v(at; xt; ht) being nondecreasing in ht. These assumptions maintain
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the properties of compulsive consumption, while introducing cumulative wel-
fare costs of past consumptions. Let also D(h) = v(0; 0; h) � v(1; 1; h) and
B(h) = v(1; 1; h) � v(0; 1; h); and note that these replace D and B; respec-
tively (with D(h1) and B(h1) being the relevant variables in the two-period
model).
Focus on the case of in�nite horizon to facilitate comparisons with most

of the received literature on rational addiction. By repeating the steps in
Appendix B one can easily show that Lemma 2 is still valid here. As we also
show in Appendix D the value function is still well-de�ned. Moreover, most
of our results,20 and in particular the above proposition and Lemma 3 are
robust to the introduction of cumulative welfare results.
At this stage we can discuss how our work relates to the habit formation

literature. Intrinsic formation models assume, in general, an intertemporal
utility where past consumption a¤ects valuation of current and future con-
sumption. Our discussion above emphasizes that our results do not rely on
the presence or absence of such intertemporal e¤ects.
Many of the intrinsic habit-formation models seem to be able to ex-

plain phenomena that standard intertemporally separable preferences can-
not. Some examples are the following: Constantinides (1990) helps under-
stand data indicating that individuals are far more averse to risk than might
be expected; Boldrin, Christiano, and Fisher (2001) who combine habit for-
mation and intersectoral in�exibilities in a model of real business cycles to
suggest an explanation for why consumption growth is connected strongly to
income, but only weakly to interest rates; Uribe (2002) who gives an explana-
tion for the contractions in consumption that are observed before the collapse
of exchange rate stabilization programs. The above literature however pos-
tulates the habit formation preferences in an ad hoc manner. In fact, until
recently there have been no theoretical underpinnings of habit formation pref-
erences.21 Rozen (2009), who axiomatizes the so-called linear habit formation
model used in some of the papers above, Rustichini and Siconol� (2005),
who axiomatize dynamically consistent habit formation over consumption
streams, but do not o¤er a particular structure for the utility or form of habit
aggregation, and Gul and Pesendorfer (2007), who also axiomatize a dynam-

20The only results that would require, in order to still hold, further assumptions on the
monotonicity with respect to history of B(h)=D(h) have to do with the relative behavior
of groups that di¤er in terms of their history.
21However, there is a large literature on the axiomatization of static reference depen-

dence.
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ically consistent non-linear habit formation model by considering preferences
on menus of streams of consumption rather than on streams themselves,
are recent notable exceptions. In relation to this strand of literature, our
model generates non-linear habit forming preferences, but by starting from a
standard intertemporally separable discounted utility. The reason is that our
fully rational decision maker lacks information about the determination of the
state of the world (the �urge�to consume in the future), with the perceived
mechanism depending on an endogenous (due to the addictive nature of con-
sumption) Markov chain. To see this, revert to our model with no welfare cu-
mulative e¤ects where utility is given by u(a; x): Note then that at time t the
utility is given by u(at; xt) +

PT�t
i=1 �

iEt[u(at+i; Xt+i) j ht�1; at�1; at+i�1; xt];
where at+i�1 = (at; at+1; :::; at+i�1) and Et[u(at+i; Xt+i) j ht; at+i�1; xt] de-
notes the expectations operator with respect to Xt+i given the t�period
prior �t�1, past history ht�1 and consumption at�1 (and hence ht), ob-
served state xt and the consumption stream at+i�1 (which will determine
the history stream (ht+1; ht+2; :::; ht+i) and hence the perceived probability
distribution over Xt+i; p+ �(xt; �t�1; ht�1; at�1)[f(ht+i�1; at+i�1)� p]; for all
i = 1; :::; T � t). Thus, our expected utility falls under the rubric of nonlinear
habit formation models.

5 Conclusions

We have presented a theory of rational addiction that complements the re-
ceived literature in an important way. In particular, our theory of rational
addiction is based on four central premises. First, addictive consumption
is compulsive. Second, cue-triggered cravings are endogenous in that their
occurrence depends on past behavior. Third, addicts understand their sus-
ceptibility to cravings and try to rationally manage the process through their
consumption even under a temptation. Fourth, and what di¤erentiates sub-
stantially our theory from existing work, is that consumers are not fully
aware of the easiness to quit because they lack some information about the
addictive properties of the substance.
In our context, there is scope for campaigns that inform consumers about

the addictive properties of the various substances. Moreover, our theory pro-
vides some mico-foundations for habit-forming behavior by starting from a
standard model of fully rational decision maker with intertemporally separa-
ble preferences, but with uncertainty over the likelihood of future temptations
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which is endogenous in that it depends on past behavior and the history of
past and current temptations. Our analysis has also a number of other inter-
esting implications. These include that consumption patterns depend on the
inherent addictive properties of the substance as well as on the family and
social environment of individuals when they make their �rst consumption
decision. Moreover, failed attempts to quit and occasional use can emerge as
a process of information acquisition. Finally, our model predicts that drugs
with stronger withdrawal syndromes are associated with lower consumption.
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7 Appendix A

Here we prove property (A) for t+ 1 = 1 = T � 1
Proof. Let (x00T�1; h

00
T�1; �

00
T�1) � (x0T�1; h0T�1; �0T�1) and a0T�1 = a(h0T�1; x0T�1; �0T�1)

and a00T�1 = a(h
00
T�1; x

00
T�1; �

00
T�1): We have by the de�nition of optimum that

when x00T�1 = x
0
T�1 � xT�1 we have

V (xT�1; h
0
T�1; �

0
T�1) �

= u(a00T�1; xT�1) + �u(0; 0)� ��(a00T�1; h0T�1; �0T�1)D �
u(a00T�1; xT�1) + �u(0; 0)� ��(a00T�1; h00T�1; �00T�1)D

where the last inequality follows from �(a; h0T�1; �
0
T�1) � �(a; h00T�1; �

00
T�1):

Note now that by de�nition V (xT�1; h00T�1; �
00
T�1) = u(a

00
T�1; xT�1)+�u(0; 0)�

��(a00T�1; h
00
T�1; �

00
T�1)D. Thus, V (xT�1; h

00
T�1; �

00
T�1) � V (xT�1; h

0
T�1; �

0
T�1):

Finally, we have when h00T�1 = h0T�1 � hT�1 and �00T�1 = �0T�1 � �T�1 by
de�nition of optimum and Lemma 2 that

V (0; hT�1; �T�1) =

= u(0; 0) + �u(0; 0)� ��(0; hT�1; �T�1)D �
u(a00T�1; 1) + �u(0; 0)� ��(1; hT�1; �T�1)D

where the last inequality follows from u(0; 0) > u(a; 1) and �(0; hT�1; �T�1) �
�(1; hT�1; �T�1): Thus, V (1; hT�1; �T�1) � V (0; hT�1; �T�1):

8 Appendix B

Here we prove Lemma 2 and part of Lemma 3
Lemma 2

Proof. We start with proving that a(hn; 0; �(0; �n�1; hn�1; an�1)) = 0
For any given �n�1; hn�1 and an�1 and corresponding period n history hn

and posteriors �n(xn) � �(xn; �n�1; hn�1; an�1); let xn = 0: Then, if an = 0;
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the expected discounted payo¤ in period n is

u(0; 0)

+��(0; hn; �n(0))V (1; h
0; �(1; �n(0); hn; 0))

+�(1� �(0; hn; �n(0)))V (0; h0; �(0; �n(0); hn; 0))
� u(0; 0) + E�(0;hn;�n(0))V (X; h

0; �(X;�n(0); hn; 0))

where h0 = g(hn; 0): On the other hand, if an = 1; the payo¤ is

u(1; 0)

+��(1; hn; �n(0))V (1; h
00; �(1; �n(0); hn; 1))

+�(1� �(1; hn; �n(0)))V (0; h00; �(0; �n(0); hn; 1))
� u(1; 0) + E�(1;hn;�n(0))V (X; h

00; �(X;�n(0); hn; 1))

where h00 = g(hn; 1): Note that �(0; hn; �n(0)) � �(1; hn; �n(0)): Note by
the property (A) for t = n and �(1; �n(0); hn; a) � �(0; �n(0); hn; a) that
V (1; g(hn; a); �(1; �n(0); hn; a))� V (0; g(hn; a); �(0; �n(0); hn; a)); by the prop-
erty (A) for t = n and �(1; �n(0); hn; 1) � �(1; �n(0); hn; 0) that V (1; h0; �(1; �n(0); hn; 0)) �
V (1; h00; �(1; �n(0); hn; 1)) and by the property (B) for t = n that V (0; h

0; �(0; �n(0); hn; 0)) �
V (0; h00; �(0; �n(0); hn; 1)). Therefore, E�(1;hn;�n(0))V (X; h

00; �(X;�n(0); hn; 1))
� E�(0;hn;�n(0))V (X; h0; �(X;�n(0); hn; 0)): This alongside u(0; 0) > u(1; 0)

proves that an(hn; 0; �n(0)) = 0:
We now prove property (C) for t = n� 1
Given the previous result, we have, for any given �n�1; hn�1 and an�1

and corresponding period n history hn and posteriors �n(xn) ;

V (0; hn; �n(0))

= u(0; 0)

+��(0; hn; �n(0))V (1; h
0; �(1; �n(0); hn; 0)))

+�(1� �(0; hn; �n(0)))V (0; h0; �(0; �n(0); hn; 0))
� E�(0;hn;�n(0))V (X; h

0; �(X;�n(0); hn; 0))

where h0 = g(hn; 0) and similarly

V (1; hn; �n(1))

= max
a
fu(a; 1) + E�(a;hn;�n(1))V (X; g(hn; a); �(X;�n(1); hn; a))g
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Note, due to u(0; 0)� u(0; 1) > u(0; 0)� u(1; 1) = D; that property (C) for
t = n� 1 is proved if E�(1;hn;�n(1))V (X; h00; �(X;�n(1); hn; 1))
� E�(0;hn;�n(1))V (X; h0; �(X;�n(1); hn; 0))
� E�(0;hn;�n(0))V (X; h0; �(X;�n(0); hn; 0)); where h00 = g(hn; 1): These fol-

low directly after noting that (a) �(0; hn; �n(0))� �(0; hn; �n(1))� �(1; hn; �n(1)),
(b) by the assumption that property (A) holds for t = n and �(1; �n(xn); hn; a) �
�(0; �n(xn); hn; a) we have V (1; g(hn; a); �(1; �n(xn); hn; a))� V (0; g(hn; a); �(0; �n(xn); hn; a));
(c) by the assumption that property (A) holds for t = n and �(1; �n(1); hn; 1)
� �(1; �n(1); hn; 0) � �(1; �n(0); hn; 0) we have V (1; h0; �(1; �n(0); hn; 0)) �
V (1; h0; �(1; �n(1); hn; 0)) � V (1; h00; �(1; �n(1); hn; 1)), (d) by the assump-
tion that property (B) holds for t = n we have V (0; h0; �(0; �n(1); hn; 0)) �
V (0; h00; �(0; �n(1); hn; 1)); and (e) by the assumption that property (A) holds
for t = n and �(0; �n(0); hn; 0) � �(0; �n(1); hn; 0) we have V (0; h0; �(0; �n(0); hn; 0))
� V (0; h0; �(0; �n(1); hn; 0)).
Result needed for Lemma 3

Proof. Assume that properties (A) and (B) hold for t = n.
We �rst prove property (A) for t = n� 1
Let (x00n; h

00
n; �

00
n) � (x0n; h0n; �0n) and a0n = a(h0n; x0n; �0n) and a00n = a(h00n; x00n; �00n):

We have by the de�nition of optimum that when x00n = x
0
n � xn

V (xn; h
0
n; �

0
n) �

= u(a00n; xn)

+��(a00n; h
0
n; �

0
n)V (1; g(h

0
n; a

00
n); �(1; �

0
n; h

0
n; a

00
n))

+�(1� �(a00n; h0n; �0n))V (0; g(h0n; a00n); �(0; �0n; h0n; a00n))
� u(a00n; xn) + E�(a00n;h0n;�0n)V (X; g(h

0
n; a

00
n); �(X;�

0
n; h

0
n; a

00
n))

Note now that V (xn; h00n; �
00
n) = u(a

00
n; xn) +E�(a00n;h00n;�00n)V (X; g(h

00
n; a

00
n); �(X;�

00
n; h

00
n; a

00
n)):

Thus, V (xn; h00n; �
00
n) � V (xn; h0n; �0n) follows directly if

E�(a;h00n;�00n)V (X; g(h
00
n; a); �(X;�

00
n; h

00
n; a))�E�(a;h0n;�0n)V (X; g(h0n; a); �(X;�0n; h0n; a)).

This follows after observing (a) �(a; h0n; �
0
n) � �(a; h00n; �

00
n), (b) by the as-

sumption that property (A) holds for t = n and �(1; �n; hn; a) � �(0; �n; hn; a)
we have V (1; g(hn; a); �(1; �n; hn; a)) � V (0; g(hn; a); �(0; �n; hn; a)); (c) by
the assumption that property (A) holds for t = n and �(1; �0n; h

0
n; a) �

�(1; �00n; h
0
n; a) � �(1; �00n; h00n; a) we have V (1; g(h0n; a); �(1; �0n; h0n; a)) �

V (1; g(h0n; a); �(1; �
00
n; h

0
n; a)) � V (1; g(h00n; a); �(1; �

00
n; h

00
n; a)), and (d) by

the assumption that properties (B) and (A) hold for t = n alongside �(0; �0n; h
0
n; a) �

�(0; �00n; h
0
n; a) we have V (0; g(h

0
n; a); �(0; �

0
n; h

0
n; a))� V (0; g(h0n; a); �(0; �00n; h0n; a))

� V (0; g(h00n; a); �(0; �00n; h00n; a)):
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To conclude the proof of this part let h0n = h
00
n � hn; �0n = �00n � �n and

x0n = 0 < 1 = x
00
n and note by Lemma 2 that

V (0; hn; �n) =

= u(0; 0)

+��(0; hn; �n)V (1; g(hn; 0); �(1; �n; hn; 0))

+�(1� �(0; hn; �n))V (0; g(hn; 0); �(0; �n; hn; 0))
� u(0; 0) + E�(0;hn;�n)V (X; g(hn; 0); �(X;�n; hn; 0))

Note now that V (1; hn; �n) = u(a
00
n; 1) +E�(a00n;hn;�n)V (X; g(hn; a

00
n); �(X;�n; hn; a

00
n))

and that u(0; 0) > u(1; 1) � (a00n; 1): Thus, V (1; hn; �n) � V (0; hn; �n) follows
directly if E�(a00n;hn;�n)V (X; g(hn; a

00
n); �(X;�n; hn; a

00
n)) �

E�(0;hn;�n)V (X; g(hn; 0); �(X;�n; hn; 0)). This follows after observing (a)
�(0; hn; �n) � �(a00n; hn; �n), (b) by the assumption that property (A) holds
for t = n and �(1; �n; hn; a) � �(0; �n; hn; a) we have V (1; g(hn; a); �(1; �n; hn; a))
� V (0; g(hn; a); �(0; �n; hn; a)); (c) by the assumption that property (A)
holds for t = n and �(1; �n; hn; a

00
n) � �(1; �n; hn; 0) we have V (1; g(hn; 0); �(1; �n; hn; 0))

� V (1; g(hn; a
00
n); �(1; �n; hn; a

00
n)), and (d) by the assumption that property

(B) holds for t = n we have V (0; g(hn; 0); �(0; �n; hn; 0))
� V (0; g(hn; a00n); �(0; �n; hn; a00n)):
Finally, we prove property (B) for t = n� 1
Recalling the de�nition of the operator L; note that property (B) for t =

n� 1 would be implied directly by setting j = 0 in the following statement:

V (0; Ljg(h; a); Lj�(0; �n�1; h; a)) is nonincreasing in h and a for any T�n � j � 0:

In what follows we prove the above statement under the assumption that
properties (A) and (B) hold for all t � n.
This is done by induction on j.
Clearly the above statement is true for j = T � n
due to V (0; LT�ng(h; a); LT�n�(0; �n�1; h; a)) = u(0; 0) after recalling

that in the last period the optimal action follows the craving state. As-
sume that it is also true for some admissible j = i: For j = i � 1; we then
have, after using Lemma 2, that

V (0; Li�1g(h; a); Li�1�(0; �n�1; h; a)) = u(0; 0)

+E�(0;Li�1g(h;a);Li�1�(0;�n�1;h;a))V (X;L
ig(h; a); �(X;Li�1�(0; �n�1; h; a); L

i�1g(h; a); 0)):
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Recall that Lig(h; a) = g(Li�1g(h; a); 0) and Li�1g(h; a) is increasing in h and
a:Recall also that �(0; Li�1�(0; �n�1; h; a); L

i�1g(h; a); 0) = Li�(0; �n�1; h; a):
Note that Li�1g(h; a) and Li�1�(0; �n�1; h; a) refer to history and posteriors
in period n+ i�1: Clearly then, using in the above expectation the inductive
assumption, property (A) for t = n+ i� 1, and recalling that assumption 6
implies that
(i) �(0; Li�1g(h; a); Li�1�(0; �n�1; h; a)) is nondecreasing in h and a and
(ii) �(1; Li�1�(0; �n�1; h; a); L

i�1g(h; a); 0) is nondecreasing in h and a,
we have that the above expectation is nondecreasing in h and a and

thereby the desired result.

9 Appendix C

We start with (i). Note that Ltg(h; a) is increasing in h and a: Note also that
by assumption Lt�1g(h; a) � Ltg(h; a): We have for any 1 � t � T � j (and
1Q
i=2

y � 1 ):

�(0; Lt�1g(h; a); Lt�1�(0; �j; h; a)) = p+ L
t�1�(0; �j; h; a)[f(L

t�1g(h; a); 0)� p]

= p+
Lt�2�(0; �j; h; a)(1� f(Lt�2g(h; a); 0))[f(Lt�1g(h; a); 0)� p]

Lt�2�(0; �j; h; a)(1� f(Lt�2g(h; a); 0)) + (1� Lt�2�(0; �j; h; a))(1� p)

Thus, for h0 � h00 and/or a0 � a00 we have that

�(0; Lt�1g(h0; a0); Lt�1�(0; �j; h
0; a0))��(0; Lt�1g(h00; a00); Lt�1�(0; �j; h00; a00))
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has the sign of

Lt�2�(0; �j; h
0; a0)(1� f(Lt�2g(h0; a0); 0))[f(Lt�1g(h0; a0); 0)� p]�

fLt�2�(0; �j; h00; a00)(1� f(Lt�2g(h00; a00); 0)) + (1� Lt�2�(0; �j; h00; a00))(1� p)g
�Lt�2�(0; �j; h00; a00)(1� f(Lt�2g(h00; a00); 0))[f(Lt�1g(h00; a00); 0)� p]�

fLt�2�(0; �j; h0; a0)(1� f(Lt�2g(h0; a0); 0)) + (1� Lt�2�(0; �j; h0; a0))(1� p)g
=

fLt�2�(0; �j; h0; a0)(1� f(Lt�2g(h0; a0); 0))Lt�2�(0; �j; h00; a00)(1� f(Lt�2g(h00; a00); 0))�
�[f(Lt�1g(h0; a0); 0)� f(Lt�1g(h00; a00); 0)]g

+(1� p)�
fLt�2�(0; �j; h0; a0)(1� f(Lt�2g(h0; a0); 0))[f(Lt�1g(h0; a0); 0)� p](1� Lt�2�(0; �j; h00; a00))
�Lt�2�(0; �j; h00; a00)(1� f(Lt�2g(h00; a00); 0))[f(Lt�1g(h00; a00); 0)� p](1� Lt�2�(0; �j; h0; a0))g

Recalling the monotonicity properties of Lt�1g(h; a), we have that the
sign of the �rst term above is non-positive. The sign of the second term
above is also non-positive if

Lt�2�(0; �j; h
0; a0)

(1� Lt�2�(0; �j; h0; a0))
�

(1� f(Lt�2g(h0; a0); 0))
(1� f(Lt�2g(h00; a00); 0))

[f(Lt�1g(h0; a0); 0)� p]
[f(Lt�1g(h00; a00); 0)� p]

�
Lt�2�(0; �j; h

00; a00)

(1� Lt�2�(0; �j; h00; a00))

which can be rewritten as

Lt�3�(0; �j; h
0; a0)(1� f(Lt�3g(h0; a0); 0))

(1� Lt�3�(0; �j; h0; a0))(1� p)
�

(1� f(Lt�2g(h0; a0); 0))
(1� f(Lt�2g(h00; a00); 0))

[f(Lt�1g(h0; a0); 0)� p]
[f(Lt�1g(h00; a00); 0)� p]

�
Lt�3�(0; �j; h

00; a00)(1� f(Lt�3g(h00; a00); 0))
(1� Lt�3�(0; �j; h00; a00))(1� p)
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and hence, by iterating backwards, as

�j(1� f(h0; a0))
(1� �j)(1� p)

tQ
i=2

(1� f(Lt�ig(h0; a0); 0))
tQ
i=2

(1� f(Lt�ig(h00; a00); 0))

[f(Lt�1g(h0; a0); 0)� p]
[f(Lt�1g(h00; a00); 0)� p]

�
�j(1� f(h00; a00))
(1� �j)(1� p)

:

This is true of �j = 0 or, otherwise, if

(1� f(h0; a0))
(1� f(h00; a00))

tQ
i=2

(1� f(Lt�ig(h0; a0); 0))
tQ
i=2

(1� f(Lt�ig(h00; a00); 0))
(5)

� [f(Lt�1g(h00; a00); 0)� p]
[f(Lt�1g(h0; a0); 0)� p] :

We turn to (ii). Note due to p � f(h; a); that Lt�1�(0; �j; h; a) �
Lt�(0; �j; h; a): Note also that L

t�(0; �j; h; a) is nonincreasing in h and a.
We have, for any t � T � j � 1 :

�(1; Lt�1�(0; �j; h; a); L
t�1g(h; a); 0) =

Lt�1�(0; �j; h; a)f(L
t�1g(h; a); 0)

Lt�1�(0; �j; h; a)f(L
t�1g(h; a); 0) + (1� Lt�1�(0; �j; h; a))p

Thus,

�(1; Lt�1�(0; �j; h
0; a0); Lt�1g(h0; a0); 0)��(1; Lt�1�(0; �j; h00; a00); Lt�1g(h00; a00); 0)

has the sign of

Lt�1�(0; �j; h
0; a0)f(Lt�1g(h0; a0); 0)(1� Lt�1�(0; �j; h00; a00))p

�Lt�1�(0; �j; h00; a00)f(Lt�1g(h00; a00); 0)(1� Lt�1�(0; �j; h0; a0))p

The sign of this is non-positive if

Lt�1�(0; �j; h
0; a0)

(1� Lt�1�(0; �j; h0; a0))
f(Lt�1g(h0; a0); 0)

f(Lt�1g(h00; a00); 0)
�

Lt�1�(0; �j; h
00; a00)

(1� Lt�1�(0; �j; h00; a00))
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or, equivalently, if

Lt�2�(0; �j; h
0; a0)

(1� Lt�2�(0; �j; h0; a0))
(1� f(Lt�2g(h0; a0); 0))
(1� f(Lt�2g(h00; a00); 0))

f(Lt�1g(h0; a0); 0)

f(Lt�1g(h00; a00); 0)

�
Lt�2�(0; �j; h

00; a00)

(1� Lt�2�(0; �j; h00; a00))

By backward iteration (recall the steps above), the latter is true if �j = 0 or,
otherwise, if ,

(1� f(h0; a0))
(1� f(h00; a00))

tQ
i=2

(1� f(Lt�ig(h0; a0); 0))
tQ
i=2

(1� f(Lt�ig(h00; a00); 0))
(6)

� f(Lt�1g(h00; a00); 0)

f(Lt�1g(h0; a0); 0)
:

Comparing (5) and (6), and noting that f(L
t�1g(h00;a00);0)

f(Lt�1g(h0;a0);0) �
f(Lt�1g(h00;a00);0)�p
f(Lt�1g(h0;a0);0)�p ;

we thus have that a necessary and su¢ cient condition for both assumptions
(i) and (ii) to be true for any �j is (6).
To see how restrictive (6) is and how it relates to the literature, consider

the following law of motion: g(h; a) = �(h) + �2a with �2 > 0; �(h) positive
and increasing with �(0) = 0; �(H) + �2 � H (recall our requirement that
g(h; a) � H) and h1 < h = �(h) + �2 (so that consumption raises history).22
This encompasses the law of motions (conditional on history h be bounded
and �(h) being increasing) in BM (where �(h) = �1h; 1 � �1 � 0 and
�2 = 1), GK (where �(h) = �1h and �1 = �2 < 1), L (where �(h) = �1h
and �1 + �2 = 1). In addition, if �(�2) = �2; �(h) = h for h < �2 and
�(h) = �2 + �1(h � �2) for h > �2 with 0 � �1 < 1 , then it also shares in
a simple manner the qualitative characteristics of the law of motion in BR;
in particular that there is depreciation (�1 < 1) and once consumption takes
place history never reverts to the �clean state�h = 0 (here the lower history
of someone who has ever tried the substance is �2 > 0 and in BR it is �2 = 1).

22Interestingly, (6) is not satis�ed if �(h) = 0 for any h (as in GP) and f(h0a0) <
f(h00; a00): in this case f(Lt�ig(h; a); 0) = p for any i = 1; :::; t: Thus, our assumption that
g is increasing in both a and h is crucial for our results when T > 2.
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Furthermore, consider f(h; a) = f̂(g(h; a)) (with f̂(g) increasing, f̂(0) =
p and f̂(g(H; 1)) < 1), which is consistent with BR (for a given �lifestyle
activity�).23 A simple special case of this is f(h; a) = p + g(h; a) with
g(H; 1) < 1� p (recall our requirement that f(h; a) < 1):
For such fundamentals, focus on the case of h1 � �2 (thus, our decision

maker has already consumed once the substance - or in the case of smokers
our decision maker has been a passive smoker): We can thus restrict further
attention to the case of g(h; a) = c(a) + �1h + �2a; with c � 0 (as in BM,
GK and L) or c(1) = 0 and c(0) = (1� �1)�2 > 0 (as in BR) and �2 > 0 and
0 < �1 < 1.
We then have that f(h; a) = p+c(a)+�1h+�2a. Moreover, f(L

jg(h; a); 0) =
p+c(0)+�1L

jg(h; a); and Lg(h; a) = c(0) + �1g(h; a) = c(0)+c(a)�1+�
2
1h+

�1�2a; L
2g(h; a) = c(0) + �1Lg(h; a) = c(0)(1 + �1) + c(a)�

2
1 + �

3
1h + �

2
1�2a;

and continuing the iteration, Ljg(h; a) = c(0)
j�1P
i=0

�i1+ c(a)�
j
1+ �

j+1
1 h+ �j1�2a:

Thus, f(Ljg(h; a); 0) = p+ c(0)
jP
i=0

�i1 + c(a)�
j+1
1 + �j+21 h+ �j+11 �2a:

Therefore, after using convention
P�1

�=0 y = 0, (1�f(h; a))
tQ
i=2

(1�f(Lt�ig(h; a); 0)) =
t+1Q
i=2

(1�p�c(0)
t�iP
�=0

��1�c(a)�t�i+11 ��t�i+21 h��t�i+11 �2a) and (6) can be rewrit-

ten as

t+1Q
i=2

(1� p� c(0)
t�iP
�=0

��1 � c(a0)�t�i+11 � �t�i+21 h0 � �t�i+11 �2a
0)

t+1Q
i=2

(1� p� c(0)
t�iP
�=0

��1 � c(a00)�t�i+11 � �t�i+21 h00 � �t�i+11 �2a
00)

�
p+ c(0)

t�1P
i=0

�i1 + c(a
00)�t1 + �

t+1
1 h00 + �t1�2a

00

p+ c(0)
t�1P
i=0

�i1 + c(a
0)�t1 + �

t+1
1 h0 + �t1�2a

0

The above alongside �1H+�2 < 1�p (to ensure f(h; a) < 1) and �1H+�2 �
H (to ensure that g(h; a) � H) place restrictions on �1 > 0 and �2 > 0.
Clearly for �1 # 0 (and hence �2 � H and �2 < 1�p) the above is violated

23Recall that in BM, GK and GP we have f(h; a) = 0, while in L we have �0 = 0 and/or
f(h; a) = p for any h; a:
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if a0 < a00 and c � 0. However, it is satis�ed if c(1) = 1 and c(0) = �2(1� �1)
(note that in this case we have f(h; a) = p+ �2 as �1 # 0).
For �1 " 1 and hence �2 # 0 and H < 1 � p and c(0) # 0; the above is

satis�ed (recall also that c(1) = 0) if

(1� p� h0)t
(1� p� h00)t �

p+ h00

p+ h0

which is satis�ed if h0 = h00 and a0 < a00: Moreover, if a0 = a00 and h0 < h00; we
have that the left hand side of the above inequality is decreasing in t: Thus,
the above inequality is satis�ed for any t � 1 if and only if

(1� p� h0)
(1� p� h00) � p+ h00

p+ h0
=)

(1� 2p� h0)h0 � (1� 2p� h00)h00

This, in turn is satis�ed for any h0; h00 2 [h1; H] such that h00 > h0 if and only
if (1� 2p� h)h is nondecreasing, which is true if and only if

1� 2p� 2H � 0

Note that the latter implies 1� p > H:
Accordingly, by continuity the fundamentals in question satisfy (6) if

1�2p � 2H; �1 is su¢ ciently high and �2 is su¢ ciently low (and �1H+�2 <
1� p and �1H + �2 � H).

10 Appendix D: The In�nite Horizon Case

To accommodate the extension where the temporal payo¤ depends also on
past consumption, let us de�ne here the decision-maker�s utility to be v(at; xt; ht);
t = 1; :::;1; with v(0; 0; h) > v(1; 0; h) and v(0; 0; h) > v(1; 1; h) > v(0; 1; h)
and v(a; x; h) being nonincreasing in h for any a and h: Assume that v is
bounded and continuous functions on f0; 1g � f0; 1g � [0; H]:
Recall that the law of motion for period t consumption history is

ht = g(ht�1; at�1)

with h0 and a0 predetermined, g(0; 0) = 0 and g being continuous and strictly
increasing:
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Recall also that (for given p and continuous and strictly increasing 1 >
f(h; a) � p) Bayesian updating implies the following di¤erence equation for
the period t posterior:

�t =M(�t�1; xt; ht�1; at�1)

with �0 predetermined (f(h0; a0) � f0) and

M(�t�1; 1; ht�1; at�1) =
�t�1f(ht�1; at�1)

(1� �t�1)p+ �t�1f(ht�1; at�1)
and

M(�t�1; 0; ht�1; at�1) =
�t�1(1� f(ht�1; at�1))

(1� �t�1)(1� p) + �t�1(1� f(ht�1; at�1))

Despite the seemingly nonstationary nature of the probability measure
over the stochastic state x; one can re-write it in a way that beliefs over the
next-period�s craving shock can be represented by a stationary and continu-
ous mapping. In more detail, note that the probability that xt+1 = 1 given
past consumptions and craving shocks is equal to

�(at; ht; �t) � p+ �t[f(ht; at)� p]

Note that by including the posterior probability in the set of state/predetermined
variables the above probability becomes stationary. However this comes
at the expense of having an additional law of motion with no clear-cut
monotonicity properties: that for posteriors. To see this de�ne the follow-
ing law of motion (from the decision-maker�s point of view) of the period t
craving-state

xt = �(�t�1; ht�1; at�1; !t)

with !t being a uniformly distributed random variable in [0; 1]; �(�t�1; ht�1; at�1; !)
being strictly decreasing in ! and �(�t�1; ht�1; at�1; !) = 1 when ! � �(at�1; ht�1; �t�1)
and zero otherwise. Note that � is nondecreasing in �t�1; ht�1 and at�1: We
then have that the period t posterior is in e¤ect a stochastic state variable
as well with law of motion

�t = M̂(�t�1; ht�1; at�1; !t) �M(�t�1; �(�t�1; ht�1; at�1; !t); ht�1; at�1)

Clearly, M̂ is nondecreasing in �t�1: M̂ is also nondecreasing in ht�1 and
at�1 if !t � �(at�1; ht�1; �t�1): However, if !t > �(at�1; ht�1; �t�1); the (con-
tradicting) monotonicity properties of M and � with respect to ht�1 and
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at�1 imply that the corresponding monotonicity of M̂ requires more struc-
ture into the problem (ie. the functions M and �). This is what complicates
the derivation of the properties of the (shown below to be well-de�ned) value
function, and the additional structure is accomplished by assumption 6.
We are now ready to proceed.

10.1 V is well-de�ned for T � 1
Our �rst task is to show that a well-de�ned value function V (x; h; �) exists.
Letting then the period�t vector of state/predetermined variables be st =
(xt; ht; �t); the Bellman equation is

V (xt; ht; �t) =

max
at2f0;1g

(
v(at; xt; ht) + �

(
�(at; ht; �t)V (1; g(ht; at);

�tf(ht;at)
(1��t)p+�tf(ht;at)

)

+ (1� �(at; ht; �t))V (0; g(ht; at);
�t(1�f(ht;at))

(1��t)(1�p)+�t(1�f(ht;at))
)

))
De�ne the set S of bounded and continuous functions 
 of x; h and �;

with x 2 f0; 1g; h 2 [0; H] and � 2 [0; 1]: De�ne then the function of x; h
and �

(L̂
)(x; h; �) = max
a2f0;1g

fv(a; x; h)+�
(

�(a; h; �)
(1; g(h; a); �f(h;a)
(1��)p+�f(h;a))

+ (1� �(a; h; �)) 
(0; g(h; a); �(1�f(h;a))
(1��)(1�p)+�(1�f(h;a)))

)
g

Note that if 
 2 S; then L̂
 is also bounded and continuous by Berge�s
theorem of maximum. Thus, the above de�nes a mapping L̂ from the set S
into itself. Moreover the set S with the sup norm, k
k = supx;a;� j
(x; a; �)j
is a complete normed vector space (see Theorem 3.1 in Stockey and Lucas
(1989) p. 47).
De�ne the metric �(z; y) = kz � yk and thereby the complete metric

space (S; �): We then know from the Contraction Mapping Theorem (Theo-
rem 3.2 in Stockey and Lucas (1989) p. 50) that if L̂ : S ! S is a contraction
mapping with modulus �; then (a) L̂ has exactly one �xed point, call it V , in
S, and (b) for any V0 2 S; �(L̂nV0; V ) � �n�(V0; V ); n = 0; 1; 2; ::: To show
then that the Bellman equation above is uniquely de�ned, we only have to
show that L̂ is a contraction mapping with modulus � (i.e. that for some
� 2 (0; 1); �(L̂z; L̂y) � ��(z; y) for all z; y 2 S). For this we make use of
Blackwell�s su¢ cient conditions for a contraction (Theorem 3.3 in Stockey
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and Lucas (1989) p. 54): Let Q � Rl; and let B(Q) be a space of bounded
functions V : Q ! R with the sup norm. Let L : B(Q) ! B(Q) be an
operator satisfying (a) monotonicity: z; y 2 B(Q) and z(q) � y(q); for all
q 2 Q; implies (Tz)(q) � (Ty)(q); for all q 2 Q;(b) discounting: there exists
some � 2 (0; 1) such that (T (f + d))(q) � (Tf)(q) + �d, for all f 2 B(X);
d � 0; q 2 Q; were (f +d)(q) is the function de�ned by (f +d)(q) = f(q)+d:
Then, L is a contraction mapping with modulus �:
Applying this to our case we have that the monotonicity requirement is

trivially satis�ed because (L̂
)(x; h; �) is the maximized value of the function

w(a; x; h; �; 
) � v(a; x; h)+�
(

�(a; a; �)
(1; g(h; a); �f(h;a)
(1��)p+�f(h;a))

+ (1� �(a; h; �)) 
(0; g(h; a); �(1�f(h;a))
(1��)(1�p)+�(1�f(h;a)))

)
;

and if z(x; h; �) � y(x; h; �); then w(a; x; h; �; y) is uniformly higher than
w(a; x; h; �; z): In more detail, after de�ning af � maxaw(a; x; h; �; f); we
have that if z(x; h; �) � y(x; h; �) then (L̂y)(x; h; �) � w(az; x; h; �; y) �
w(az; x; h; �; z) = (L̂z)(x; h; �). The discounting requirement is also trivially
satis�ed as (L̂(V +d))(x; h; �) = (L̂TV )(x; h; �)+�d: Therefore, the mapping
L̂ : S ! S is a contraction mapping with modulus �: Hence, the Bellman
equation and the value function it de�nes implicitly are well-de�ned.

10.2 Properties of V

Given Lemma 2, showing Lemma 3 and Proposition 4 amounts to showing
that properties (A) and (B) are valid when we move to in�nite horizon (with
cumulative welfare e¤ects of past consumptions - where Lemma 2 is still true
as we also mention in the relevant subsection).
After recalling the de�nition of the operator L on functions g and �; let

S� be the subset of S with all functions 
 that are weakly decreasing in x; h; �
and satisfy the following property:


(0; Ljg(h; a); Lj�(0; �n�1; h; a)) is nonincreasing in h and a for any j � 0; n � 1

Note that S� is nonempty (as it includes all constant functions) and all
functions in S� satisfy properties (A) and (B) (that latter follows by setting
j = 0).
Given that L̂ is uniformly contracting on the complete space S (endowed

with the sup norm), we have that if L̂ : S� ! S� and S� is closed; then the
unique value function de�ned by the Bellman equation lies in S�:
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10.2.1 Proof that L̂ : S� ! S�

Here we show that L̂ : S� ! S�.
To show this, consider 
 2 S� and let (x00; h00; �00) � (x0; h0; �0). Note that

the (assumed) monotonicity properties of �(a; h; �); �(x; �; h; a);
�(0; Ljg(h; a); Lj�(0; �n�1; h; a)), �(1; L

j�(0; �n�1; h; a); L
jg(h; a); 0) and

Lj�(0; �n�1; h; a); L
jg(h; a), for all j � 0 and n � 2; imply that

E�(a;h;�0)[
(Xn; g(h; a); �(Xn; �
0; h; a)] � E�(a;h;�00)[
(Xn; g(h; a); �(Xn; �

00; h; a))]

E�(a;h0;�)[
(Xn; g(h
0; a); �(Xn; �; h

0; a)] � E�(a;h00;�)[
(Xn; g(h
00; a); �(Xn; �; h

00; a))]

and, after setting �0n(0) = �(0; �n�1; h
0; a0) and �00n(0) = �(0; �n�1; h

00; a00) and
recalling �(0; Lj�00n(0); L

jg(h00; a00); 0)) = Lj+1�00n(0), that

E�(0;Ljg(h0;a0);Lj�0n(0))[
(Xn+j+1; L
j+1g(h0; a0); �(Xn+j+1; L

j�0n(0); L
jg(h0; a0); 0))]

� E�(0;Ljg(h00;a00);Lj�00n(0))[
(Xn+j+1; L
j+1g(h00; a00); �(Xn+j+1; L

j�00n(0); L
jg(h00; a00); 0))]

Note then that the de�nitions of maximum and a(:); the properties of
v; and the above properties imply (after setting a0 = a(x0; h0; �0) and a00 =
a(x00; h00; �00)) that

(L̂
)(x; h; �0)

= v(a0; x; h) + �

(
�(a0; h; �0)
(1; g(h; a0); �0f(h;a0)

(1��0)p+�0f(h;a0))

+ (1� �(a0; h; �0)) 
(0; g(h; a0); �0(1�f(h;a0))
(1��0)(1�p)+�0(1�f(h;a0)))

)
g

� v(a00; x; h) + �

(
�(a00; h; �0)
(1; g(h; a00); �0f(h;a00)

(1��0)p+�0f(h;a00))

+ (1� �(a00; h; �0)) 
(0; g(h; a00); �0(1�f(h;a00))
(1��0)(1�p)+�0(1�f(h;a00)))

)

� v(a00; x; h) + �

(
~�(a00; h; �00)
(1; g(h; a00); �00f(h;a00)

(1��00)p+�00f(h;a00))

+ (1� ~�(a00; h; �00)) 
(0; g(h; a00); �00(1�f(h;a00))
(1��00)(1�p)+�00(1�f(h;a00)))

)
= (L̂
)(x; h; �00)
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Similarly,

(L̂
)(x; h0; �)

= v(a0; x; h0) + �

(
�(a0; h0; �)
(1; g(h0; a0); �f(h0;a0)

(1��)p+�f(h0;a0))

+ (1� �(a0; h0; �)) 
(0; g(h0; a0); �(1�f(h0;a0))
(1��)(1�p)+�(1�f(h0;a0)))

)
g

� v(a00; x; h0) + �

(
�(a00; h0; �)
(1; g(h0; a00); �f(h0;a00)

(1��)p+�f(h0;a00))

+ (1� �(a00; h0; �0)) 
(0; g(h0; a00); �(1�f(h0;a00))
(1��0)(1�p)+�0(1�f(h0;a00)))

)

� v(a00; x; h00) + �

(
�(a00; h00; �)
(1; g(h00; a00); �f(h00;a00)

(1��)p+�f(h00;a00))

+ (1� �(a00; h00; �)) 
(0; g(h00; a00); �(1�f(h00;a00))
(1��)(1�p)+�(1�f(h00;a00)))

)
= (L̂
)(x; h00; �)

The above in turn imply from Lemma 2 that a(0; h; �) = 0. Thus, we have
(by using again the de�nition of optimum and the above properties) that:

(L̂
)(0; Ljg(h0; a0); Lj�0n(0))

= v(0; 0; h0)

+�

�
�(0; Ljg(h0; a0); Lj�0n(0))
(1; L

j+1g(h0; a0); �(1; Lj�0n(0); L
jg(h0; a0); 0))

+ (1� �(0; Ljg(h0; a0); Lj�0n(0))) 
(0; Lj+1g(h0; a0); Lj+1�0(0))

�
g

� v(0; 0; h00)

+�

�
�(0; Ljg(h00; a00); Lj�00n(0))
(1; L

j+1g(h00; a00); �(1; Lj�00n(0); L
jg(h00; a00); 0))

+ (1� �(0; Ljg(h00; a00); Lj�00n(0))) 
(0; Lj+1g(h00; a00); Lj+1�00n(0))

�
= (L̂
)(0; Ljg(h00; a00); Lj�00n(0))

Thus, we have that L̂ maps S� into itself. It remains to show that S� is
closed: We show this next.

10.2.2 Proof that S� is closed

Let 
(x; h; �) be a function from f0; 1g � [0; H]� [0; 1] to R and recall that
S denotes the subset of all continuous and bounded 
: The subset of S
consisting of all weakly decreasing functions is denoted by Sd. We will endow
all the function spaces we will deal with hereafter with the sup norm. We
�rst (partly) show a standard result which is that Sd is a closed subset of S:
The reason to have this argument explicitly is that we will need to do various
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iterations on Sd and we will be using the same type of arguments there as
well.

Sd is a closed subset of S We �rst want to show that Sd is a closed
subset of S:
Consider a sequence of functions f
ngn; where each 
n 2 Sd; that con-

verges to a limit function 
: We want to show that 
 2 Sd: Showing conti-
nuity and boundedness of �
 is standard, so the only thing to show is that 

is weakly decreasing.
So, suppose to the contrary that it is not. More speci�cally, suppose,

without loss of generality24, that there are two points in the domain (x; h0; �)
and (x; h00; �) such that h00 > h0 but that 
(x; h0; �) < 
(x; h00; �): To be
speci�c, suppose 
(x; h00; �)� 
(x; h0; �) = " > 0:
Now, since 
n converges uniformly to 
; there is a value of n; say bn such

that for all n > bn;
j
n(x; h00; �)� 
(x; h00; �)j <

"

2

and
j
n(x; h0; �)� 
(x; h0; �)j <

"

2

From the above two inequalities we have,


n(x; h
00; �) > 
(x; h00; �)� "

2
(7)

and,
�
n(x; h0; �) > �
(x; h0; �)�

"

2

which can be rewritten as

�
n(x; h0; �) > �
(x; h0; �)�
"

2
(8)

Combining (7) and (8), we get


n(x; h
00; �)� 
n(x; h0; �) > 
(x; h00; �)� 
(x; h0; �)� " = 0

which contradicts the fact that 
n is a nonincreasing function.

24It is more convenient to take the two points in the domain that di¤er in the h compo-
nent only. However, as will be clear shortly from the argument, this choice of two points
is not essential to the argument.
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S1;d is a closed subset of Sd We now consider a subset S1;d of Sd that
has some further properties.
Speci�cally, take any function 
 2 Sd: Consider any point in the domain

of the form (0; h; �): For any admissible (according to assumption 6) g and
f; consider the function e
1 which maps h; a; � to R as:

e
1(h; a; �) � 
(0; g(h; a); �(0; h; �; a)) (9)

De�ne then the set of functions, S1;d � Sd such that 
 2 S1;d if and only
if e
1 is weakly decreasing in h and a:
We need to show that S1;d is closed. Towards that end consider a sequence

of functions f
1ngn; where 
1n 2 S1;d; such that this sequence has a limit
function 
1: We need to show that 
1 2 S1;d:
Notice however that since S1;d is a subset of Sd and we have shown that

Sd is closed, any limit function then must be in Sd so the only way 
1 can
be not in S1;d is because its corresponding e
1 is not weakly decreasing in h
and a:
Fix a � and consider h00 � h0 and a00 � a0; with at least one inequality

strict, such that e
1(h00; a; �)� e
1(h0; a; �) = "; for some " > 0:
Let g0 = g(h0; a0) and g00 = g(h00; a00): Similarly, �0 = �(0; �; h0; a0) and

�00 = �(0; �; h00; a00): From (9), we have, 
1n(0; g
0; �0) = e
1n(h0; a0; �) and 
1n(0; g00; �00) =e
1n(h00; a00; �):Moreover �
1n(0; g0; �0) = e
1n(h; a0; �) and �
1n(0; g00; �00) = e
1n(h; a00; �):

Since 
1n converges to 

1 uniformly, there exists a positive integer bn; such

that for all n > bn;
j
1n(0; g00; �00)� 
1(0; g00; �00)j <

"

2

and
j
1n(0; g0; �0)� 
1(0; g0; �0)j <

"

2

From the above two inequalities we have,


1n(0; g
00; �00) > 
1(0; g00; �00)� "

2

and,
�
1n(0; g0; �0) > �
(0; g0; �0)�

"

2
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Combining these two, we get


1n(0; g
00; �00)� 
1n(0; g0; �0) > 
1(0; g00; �00)� 
1(0; g0; �0)� "

= e
1(h00; a00; �)� e
1(h0; a0; �)� "
= 0

which implies that

e
1n(h00; a00; �)� e
1n(h0; a0; �) > 0
This contradicts that 
1n 2 S1;d:
To complete the proof of the desired result, we can apply this argument

repeatedly to get successive subsets Sd � S1;d � S2;d; ::: each of which is
closed. Countable intersection of closed sets are closed and hence \nSn;d � S�
(the intersection of fSn;dgn) is closed.
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